In this paper, we employ new version of the Atangana-Baleanu integral operator namely $ ABK $-fractional integrals to obtain two general integral identities complying second-order derivatives for a given function. Thus allowing us to derive new generalized Hermite-Hadamard type inequalities via $ ABK $- fractional integrals. Moreover we give several new versions of Mid-point and Trapezoid type inequalities by employing Hölder, Young and Jensen inequalities.
Citation: Saad Ihsan Butt, Erhan Set, Saba Yousaf, Thabet Abdeljawad, Wasfi Shatanawi. Generalized integral inequalities for ABK-fractional integral operators[J]. AIMS Mathematics, 2021, 6(9): 10164-10191. doi: 10.3934/math.2021589
In this paper, we employ new version of the Atangana-Baleanu integral operator namely $ ABK $-fractional integrals to obtain two general integral identities complying second-order derivatives for a given function. Thus allowing us to derive new generalized Hermite-Hadamard type inequalities via $ ABK $- fractional integrals. Moreover we give several new versions of Mid-point and Trapezoid type inequalities by employing Hölder, Young and Jensen inequalities.
[1] | M. Klaričić Bakula, M. E. Özdemir, J. Pečarić, Hadamard type inequalities for $m-$convex and $\left(\alpha, m\right) $-convex functions, J. Inequalities Pure Appl. Math., 9 (2008), 12. |
[2] | U. S. Kirmaci, M. Klaričić Bakula, M. E. Özdemir, J. Pečarić, Hadamard-type inequalities of $s-$convex functions, Appl. Math. Comput., 193 (2007), 26-35. |
[3] | H. Kavurmaci, M. Avci, M. E. Özdemir, New inequalities of Hermite-Hadamard type for convex functions with applications, J. Inequalities Appl., 2011 (2011), 86. doi: 10.1186/1029-242X-2011-86 |
[4] | E. Set, J. Choi, B. Çelik, Certain Hermite-Hadamard type inequalities involving generalized fractional integral operators, RACSAM, 112 (2018), 1539-1547. Available from: https://doi.org/10.1007/s13398-017-0444-1. |
[5] | B. Bayraktar, Some integral inequalities for functions whose absolute values of the third derivative is concave and $r$-convex, Turkish J. Inequal., 4 (2020), 59-78. |
[6] | R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci., 44 (2017), 460-481. doi: 10.1016/j.cnsns.2016.09.006 |
[7] | R. Almeida, A. B. Malinowska, T. Odzijewicz, Fractional differential equations with dependence on the Caputo-Katugampola derivative, J. Comput. Nonlin. Dyn., 11 (2016). |
[8] | R. Almeida, Functional differential equations involving the $\Psi$-Caputo fractional derivative, Fractal Fract., 4 (2020), 29. doi: 10.3390/fractalfract4020029 |
[9] | T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57-66. doi: 10.1016/j.cam.2014.10.016 |
[10] | A. O. Akdemir, E. Set, M. E. Ozdemir, A. Yalcin, New generalizations for functions whose second derivatives are $GG$-convex, J. Uzbek. Math., 4 (2018), 22-34. doi: 10.29229/uzmj.2018-4-3. |
[11] | A. O. Akdemir, A. Ekinci, E. Set, Conformable fractional integrals and related new integral inequalities, J. Nonlinear Convex Anal., 18 (2017), 661-674. |
[12] | Z. Dahmani, On Minkowski and Hermite-Hadamard integral inequalities via fractional integration, Ann. Funct. Anal., 1 (2010), 51-58. doi: 10.15352/afa/1399900993 |
[13] | R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70. doi: 10.1016/j.cam.2014.01.002 |
[14] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integral and Derivatives, Theory and Applications, Gordon and Breach, Yverdon et alibi, 1993. |
[15] | E. Set, Z. Dahmani, I. Mumcu, New extensions of Chebyshev type inequalities using generalized Katugampola integrals via Polya-Szegö inequality, Int. J. Optim. Control: Theories Appl. (IJOCTA), 8 (2018), 137-144. doi: 10.11121/ijocta.01.2018.00541 |
[16] | B. Meftah, A. Souahi, Fractional Hermite-Hadamard type Inequalities for co-ordinated MT-convex functions, Turkish J. Inequal., 2 (2018), 76-86. |
[17] | U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860-865. |
[18] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progress Fractional Differ. Appl., 1 (2015), 73-85. |
[19] | T. Abdeljawad, D. Baleanu, On fractional derivatives with exponential kernel and their discrete versions, Reports Math. Phys., 80 (2017), 11-27. doi: 10.1016/S0034-4877(17)30059-9 |
[20] | M. Gürbüz, A. O. Akdemir, S. Rashid, E. Set, Hermite-Hadamard inequality for fractional integrals of Caputo-Fabrizio type and related inequalities, J. Inequal Appl., 2020 (2020), 172. Available from: https://doi.org/10.1186/s13660-020-02438-1. |
[21] | T. Abdeljawad, Fractional operators with exponential kernels and a Lyapunov type inequality, Adv. Differ. Equ., 2017 (2017), 313. Available from: https://doi.org/10.1186/s13662-017-1285-0. |
[22] | A. Atangana, D. Baleanu, New fractional derivatices with non-local and non-singular kernel, Theory Appl. Heat Transfer Model, Thermal Sci., 20 (2016), 763-769. |
[23] | T. Abdeljawad, D. Baleanu, Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel, J. Nonlinear Sci. Appl., 10 (2017), 1098-1107. doi: 10.22436/jnsa.010.03.20 |
[24] | A. Atangana, I. Koca, Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos, Solitons Fractals, 89 (2016), 447-454. doi: 10.1016/j.chaos.2016.02.012 |
[25] | M. A. Dokuyucu, D. Baleanu, E. Çelik, Analysis of Keller-Segel model with Atangana-Baleanu fractional derivative, Filomat, 32 (2018), 5633-5643. doi: 10.2298/FIL1816633D |
[26] | M. A. Dokuyucu, Analysis of the Nutrient Phytoplankton Zooplankton system with Non Local and Non Singular Kernel, Turkish J. Inequalities, 4 (2020), 58-69. |
[27] | M. A. Dokuyucu, Caputo and Atangana Baleanu Caputo fractional derivative applied to garden equation, Turkish J. Sci., 5 (2020), 1-7. |
[28] | A. Kashuri, Hermite-Hadamard type inequalities for the ABK-fractional integrals, J. Comput. Anal. Appl., 29 (2021), 309-326. |
[29] | E. Set, S. I. Butt, A. O. Akdemir, A. Karaoglan, T. Abdeljawad, New integral inequalities for differentiable convex functions via Atangana-Baleanu fractional integral operators, Chaos, Solitons Fractals, 143 (2021), 110554. doi: 10.1016/j.chaos.2020.110554 |
[30] | P. O. Mohammed, T. Abdeljawad, Integral inequalities for a fractional operator of a function with respect to another function with nonsingular kernel, Adv. Differ. Equations, 2020 (2020), 1-19. doi: 10.1186/s13662-019-2438-0 |
[31] | A. Guessab, G. Schmeisser, Sharp integral inequalities of the Hermite-Hadamard type, J. Approx. Theory, 115 (2002), 260-288. doi: 10.1006/jath.2001.3658 |
[32] | A. Guessab, G. Schmeisser, Sharp error estimates for interpolatory approximation on convex polytopes, SIAM J. Numer. Anal., 43 (2005), 909--923. doi: 10.1137/S0036142903435958 |
[33] | A. Guessab, G. Schmeisser, Convexity results and sharp error estimates in approximate multivariate integration, Math. Comp., 73 (2004), 1365-1384. |
[34] | N. Sene, Stability analysis of electrical RLC circuit described by the Caputo-Liouville generalized fractional derivative, Alex. Eng. J., 59 (2020), 2083-2090. doi: 10.1016/j.aej.2020.01.008 |
[35] | M. Yavuz, N. Sene, Fundamental calculus of the fractional derivative defined with Rabotnov exponential kernel and application to nonlinear dispersive wave model, J. Ocean Eng. Sci., 6 (2021), 196-205. doi: 10.1016/j.joes.2020.10.004 |
[36] | N. Sene, Analysis of a fractional-order chaotic system in the context of the Caputo fractional derivative via bifurcation and Lyapunov exponents, J. King Saud Univ. Sci., 33 (2021), 101275. doi: 10.1016/j.jksus.2020.101275 |
[37] | S. S. Dragomir, C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000. |
[38] | J. E. Pecaric, F. Proschan, Y. L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, Academic press, INC., 1992. |
[39] | S. I. Butt, S. Yousef, A. O. Akdemir, M. A. Dokuyucu, New Hadamard-type integral inequalities via a general form of fractional integral operators, Chaos, Solitons Fractals, 148 (2021), 111025. doi: 10.1016/j.chaos.2021.111025 |
[40] | B. Ghanbari, A. Atangana, A new application of fractional Atangana-Baleanu derivatives: Designing ABC-fractional masks in image processing, Physica A., 542 (2020), 123516. doi: 10.1016/j.physa.2019.123516 |
[41] | K. A. Abro, A. Atangana, A comparative study of convective fluid motion in rotat- ing cavity via Atangana-Baleanu and Caputo-Fabrizio fractal-fractional differ- entiations, Eur. Phys. J. Plus, 135 (2020), 226. doi: 10.1140/epjp/s13360-020-00136-x |