Research article

Pullback attractor of Hopfield neural networks with multiple time-varying delays

  • Received: 04 March 2021 Accepted: 18 April 2021 Published: 06 May 2021
  • MSC : 34D20

  • This paper deals with the attractor problem of Hopfield neural networks with multiple time-varying delays. The mathematical expression of the networks cannot be expressed in the vector-matrix form due to the existence of the multiple delays, which leads to the existence condition of the attractor cannot be easily established by linear matrix inequality approach. We try to derive the existence conditions of the linear matrix inequality form of pullback attractor by employing Lyapunov-Krasovskii functional and inequality techniques. Two examples are given to demonstrate the effectiveness of our theoretical results and illustrate the conditions of the linear matrix inequality form are better than those of the algebraic form.

    Citation: Qinghua Zhou, Li Wan, Hongbo Fu, Qunjiao Zhang. Pullback attractor of Hopfield neural networks with multiple time-varying delays[J]. AIMS Mathematics, 2021, 6(7): 7441-7455. doi: 10.3934/math.2021435

    Related Papers:

  • This paper deals with the attractor problem of Hopfield neural networks with multiple time-varying delays. The mathematical expression of the networks cannot be expressed in the vector-matrix form due to the existence of the multiple delays, which leads to the existence condition of the attractor cannot be easily established by linear matrix inequality approach. We try to derive the existence conditions of the linear matrix inequality form of pullback attractor by employing Lyapunov-Krasovskii functional and inequality techniques. Two examples are given to demonstrate the effectiveness of our theoretical results and illustrate the conditions of the linear matrix inequality form are better than those of the algebraic form.



    加载中


    [1] D. Y. Xu, H. Y. Zhao, Invariant and attracting sets of Hopfield neural networks with delay, Int. J. Systems Sci., 32 (2001), 863–866. doi: 10.1080/00207720117561
    [2] D. Y. Xu, H. Y. Zhao, H. Zhu, Global dynamics of Hopfield neural networks involving variable delays, Comput. Math. Appl., 42 (2001), 39–45. doi: 10.1016/S0898-1221(01)00128-6
    [3] Z. L. Pu, D. Y. Xu, Global attractivity and global exponential stability for delayed Hopfield neural network models, Appl. Math. Mech-Engl., 22 (2001), 633–638.
    [4] Y. Huang, X. S. Yang, Hyperchaos and bifurcation in a new class of four-dimensional Hopfield neural networks, Neurocomputing, 69 (2006), 1787–1795. doi: 10.1016/j.neucom.2005.11.001
    [5] W. He, J. Cao, Stability and bifurcation of a class of discrete-time neural networks, Appl. Math. Model., 31 (2007), 2111–2122. doi: 10.1016/j.apm.2006.08.006
    [6] W.Z. Huang, Y. Huang, Chaos of a new class of Hopfield neural networks, Appl. Math. Comput., 206 (2008), 1–11.
    [7] E. Kaslik, St. Balint, Bifurcation analysis for a discrete-time Hopfield neural network of two neurons with two delays and self-connections, Chaos Soliton Fract., 39 (2009), 83–91. doi: 10.1016/j.chaos.2007.01.126
    [8] P. S. Zheng, W. S. Tang, J. X. Zhang, Some novel double-scroll chaotic attractors in Hopfield networks, Neurocomputing, 73 (2010), 2280–2285. doi: 10.1016/j.neucom.2010.02.015
    [9] R. L. Marichal, E. J. Gonzalez, G. N. Marichal, Hopf bifurcation stability in Hopfield neural networks, Neural Netw., 36 (2012), 51–58. doi: 10.1016/j.neunet.2012.09.007
    [10] M. Akhmet, M. Onur Fen, Generation of cyclic/toroidal chaos by Hopfield neural networks, Neurocomputing, 145 (2014), 230–239. doi: 10.1016/j.neucom.2014.05.038
    [11] R. Mazrooei-Sebdani, S. Farjami, On a discrete-time-delayed Hopfield neural network with ring structures and different internal decays: bifurcations analysis and chaotic behavior, Neurocomputing, 151 (2015), 188–195. doi: 10.1016/j.neucom.2014.06.079
    [12] Q. Wang, Y. Y. Fang, H. Li, L. J. Su, B. X. Dai, Anti-periodic solutions for high-order Hopfield neural networks with impulses, Neurocomputing, 138 (2014), 339–346. doi: 10.1016/j.neucom.2014.01.028
    [13] L. Yang, Y. K. Li, Existence and exponential stability of periodic solution for stochastic Hopfield neural networks on time scales, Neurocomputing, 167 (2015), 543–550. doi: 10.1016/j.neucom.2015.04.038
    [14] X. D. Li, D. O'Regan, H. Akca, Global exponential stabilization of impulsive neural networks with unbounded continuously distributed delays, IMA J. Appl. Math., 80 (2015), 85–99. doi: 10.1093/imamat/hxt027
    [15] C. Wang, Piecewise pseudo-almost periodic solution for impulsive non-autonomous high-order Hopfield neural networks with variable delays, Neurocomputing, 171 (2016), 1291–1301. doi: 10.1016/j.neucom.2015.07.054
    [16] A. M. Alimi, C. Aouiti, F. Cherif, F. Dridi, M. Salah M'hamdi, Dynamics and oscillations of generalized high-order Hopfield neural networks with mixed delays, Neurocomputing, 321 (2018), 274–295. doi: 10.1016/j.neucom.2018.01.061
    [17] X. Y. Yang, X. D. Li, Q. Xi, P. Y. Duan, Review of stability and stabilization for impulsive delayed systems, Math. Biosci. Eng., 15 (2018), 1495–1515. doi: 10.3934/mbe.2018069
    [18] J. T. Hu, G. X. Sui, X. X. Lv, X. D. Li, Fixed-time control of delayed neural networks with impulsive perturbations, Nonlinear Anal.-Model Control, 23 (2018), 904–920. doi: 10.15388/NA.2018.6.6
    [19] C. Aouiti, Oscillation of impulsive neutral delay generalized high-order Hopfield neural networks, Neural Comput. Appl., 29 (2018), 477–495. doi: 10.1007/s00521-016-2558-3
    [20] F. X. Wang, X. G. Liu, M. L. Tang, L. F. Chen, Further results on stability and synchronization of fractional-order Hopfield neural networks, Neurocomputing, 346 (2019), 12–19. doi: 10.1016/j.neucom.2018.08.089
    [21] X. Huang, Y. M. Zhou, Q. K. Kong, J. P. Zhou, M. Y. Fang, $ {\mathcal H}_{\infty}$ synchronization of chaotic Hopfield networks with time-varying delay: a resilient DOF control approach, Commun. Theor. Phys., 72 (2020), 015003. doi: 10.1088/1572-9494/ab5452
    [22] C. Chen, L. X. Li, H. P. Peng, Y. X. Yang, L. Mi, H. Zhao, A new fixed-time stability theorem and its application to the fixed-time synchronization of neural networks, Neural Networks, 123 (2020), 412–419. doi: 10.1016/j.neunet.2019.12.028
    [23] B. Song, Y. Zhang, Z. Shu, F. N. Hu, Stability analysis of Hopfield neural networks perturbed by Poisson noises, Neurocomputing, 196 (2016), 53–58. doi: 10.1016/j.neucom.2016.02.034
    [24] S. Zhang, Y. G. Yu, Q. Wang, Stability analysis of fractional-order Hopfield neural networks with discontinuous activation functions, Neurocomputing, 171 (2016), 1075–1084. doi: 10.1016/j.neucom.2015.07.077
    [25] C. J. Xu, P. L. Li, Global exponential convergence of neutral-type Hopfield neural networks with multi-proportional delays and leakage delays, Chaos Soliton Fract., 96 (2017), 139–144. doi: 10.1016/j.chaos.2017.01.012
    [26] Y. H. Zhou, C. D. Li, H. Wang, Stability analysis on state-dependent impulsive Hopfield neural networks via fixed-time impulsive comparison system method, Neurocomputing, 316 (2018), 20–29. doi: 10.1016/j.neucom.2018.07.047
    [27] S. X. Liu, Y. G. Yu, S. Zhang, Y. T. Zhang, Robust stability of fractional-order memristor-based Hopfield neural networks with parameter disturbances, Physica A, 509 (2018), 845–854. doi: 10.1016/j.physa.2018.06.048
    [28] Q. Yao, L. S. Wang, Y. F. Wang, Existence-uniqueness and stability of reaction-diffusion stochastic Hopfield neural networks with S-type distributed time delays, Neurocomputing, 275 (2018), 470–477. doi: 10.1016/j.neucom.2017.08.060
    [29] S. Arik, A modified Lyapunov functional with application to stability of neutral-type neural networks with time delays, J. Franklin I., 356 (2019), 276–291. doi: 10.1016/j.jfranklin.2018.11.002
    [30] A. Rathinasamy, J. Narayanasamy, Mean square stability and almost sure exponential stability of two step Maruyama methods of stochastic delay Hopfield neural networks, Appl. Math. Comput., 348 (2019), 126–152.
    [31] O. Faydasicok, A new Lyapunov functional for stability analysis of neutral-type Hopfield neural networks with multiple delays, , Neural Networks, 129 (2020), 288–297. doi: 10.1016/j.neunet.2020.06.013
    [32] W. Q. Shen, X. Zhang, Y. T. Wang, Stability analysis of high order neural networks with proportional delays, Neurocomputing, 372 (2020), 33–39. doi: 10.1016/j.neucom.2019.09.019
    [33] Q. K. Song, L. Y. Long, Z. J. Zhao, Y. R. Liu, F. E. Alsaadi, Stability criteria of quaternion-valued neutral-type delayed neural networks, Neurocomputing, 412 (2020), 287–294. doi: 10.1016/j.neucom.2020.06.086
    [34] Q. K. Song, Y. X. Chen, Z. J. Zhao, Y. R. Liu, F. E. Alsaadi, Robust stability of fractional-order quaternion-valued neural networks with neutral delays and parameter uncertainties, Neurocomputing, 420 (2021), 70–81. doi: 10.1016/j.neucom.2020.08.059
    [35] Y. K. Deng, C. X. Huang, J. D. Cao, New results on dynamics of neutral type HCNNs with proportional delays, Math. Comput. Simul., 187 (2021), 51–59. doi: 10.1016/j.matcom.2021.02.001
    [36] J. K. Hale, Asymptotic Behavior of Dissipative Systems Vol. 25, Providence: American Mathematical Society, 1988.
    [37] H. Crauel, F. Flandoli, Attractors for random dynamical systems, Probab. Theory Rel., 100 (1994), 365–393. doi: 10.1007/BF01193705
    [38] H. Crauel, A. Debussche, F. Flandoli, Random attractors, J. Dynam. Differ. Equ., 9 (1995), 307–341.
    [39] P. Kloeden, D. J. Stonier, Cocycle attractors in nonautonomously perturbed differential equations, Dynam. Comt. Dis. Ser. A, 4 (1998), 211–226.
    [40] D. N. Cheban, B. Schmalfuss, Global attractors of nonautonomous disperse dynamical systems and differential inclusions, Bull. Acad. Sci. Rep. Moldova Mat., 29 (1999), 3–22.
    [41] T. Caraballo, J. A. Langa, J. Robinson, Attractors for differential equations with variable delays, J. Math. Anal. Appl., 260 (2001), 421–438. doi: 10.1006/jmaa.2000.7464
    [42] T. Caraballo, P. E. Kloeden, J. Real, Pullback and forward attractors for a damped wave equation with delays, Stoch. Dyn., 4 (2004), 405–423. doi: 10.1142/S0219493704001139
    [43] T. Caraballo, P. Marn-Rubio, J. Valero, Autonomous and non-autonomous attractors for differential equations with delays, J. Differ. Equ., 208 (2005), 9–41. doi: 10.1016/j.jde.2003.09.008
    [44] L. Wan Q. H. Zhou, J. Liu, Delay-dependent attractor analysis of Hopfield neural networks with time-varying delays, Chaos Soliton Fract., 101 (2017), 68–72. doi: 10.1016/j.chaos.2017.05.017
    [45] R. A. Horn, C. R. Johnson, Topics in Matrix Analyis, Cambridge: Cambridge University Press, 1991.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2121) PDF downloads(93) Cited by(0)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog