Research article

Putnam-Fuglede type theorem for class $ \mathcal{A}_k $ operators

  • Received: 16 July 2020 Accepted: 10 November 2020 Published: 04 February 2021
  • MSC : 47B47, 47A30, 47B20

  • We will call $ U\in B(X) $ as an operator of class $ \mathcal{A}_k $ if for some integer $ k $, the following inequality is satisfied:

    $ \vert U^{k+1}\vert^{\frac{2}{k+1}}\geq \vert U\vert^{2}. $

    In the present article, some basic spectral properties of this class are given, also the asymmetric Putnam-Fuglede theorem and the range kernel orthogonality for class $ \mathcal{A}_k $ operators are proved.

    Citation: Ahmed Bachir, Nawal Ali Sayyaf, Khursheed J. Ansari, Khalid Ouarghi. Putnam-Fuglede type theorem for class $ \mathcal{A}_k $ operators[J]. AIMS Mathematics, 2021, 6(4): 4073-4082. doi: 10.3934/math.2021241

    Related Papers:

  • We will call $ U\in B(X) $ as an operator of class $ \mathcal{A}_k $ if for some integer $ k $, the following inequality is satisfied:

    $ \vert U^{k+1}\vert^{\frac{2}{k+1}}\geq \vert U\vert^{2}. $

    In the present article, some basic spectral properties of this class are given, also the asymmetric Putnam-Fuglede theorem and the range kernel orthogonality for class $ \mathcal{A}_k $ operators are proved.



    加载中


    [1] A. Bachir, Generalized Derivation, SUT J. Math., 4 (2004), 111–116.
    [2] A. Bachir, F. Lombarkia, Fuglede-Putnam's theorem for w-hyponormal operators, Math. Inequal. Appl., 15 (2012), 777–786.
    [3] A. Bachir, An extension of Fuglede-Putnam theorem for certain posinormal operators, Int. J. Contemp. Math. Sci., 8 (2013), 827–832. doi: 10.12988/ijcms.2013.3452
    [4] F. Başar, Summability theory and its Applications, Bentham Science Publishers, Istanbul, 2012.
    [5] S. K. Berberian, Approximate proper vectors, Proc. Amer. Math. Soc., 13 (1962), 111–114.
    [6] S. K. Berberian, Extensions of a theorem of Fuglede and Putnam, Proc. Amer. Math. Soc., 71 (1978), 113–114. doi: 10.1090/S0002-9939-1978-0487554-2
    [7] A. Brown, C. Percy, Spectra of tensor products of operators, Proc. Amer. Math. Soc., 17 (1966), 162–166. doi: 10.1090/S0002-9939-1966-0188786-5
    [8] J. B. Conway, A Course in Functional Analysis, 2Eds., Springer, New York, 1990.
    [9] J. C. Hou, On tensor Products of Operators, Acta Math. Sin., 91 (1993), 195–202.
    [10] E. Dündar, F. Başar, On the fine spectrum of the upper triangle double band matrix $\vartriangle^+$ on the sequence space $c_0$, Math. Commun., 18 (2013), 337–348.
    [11] N. Jayanti, New Classes of Operators Satisfying Weyl's and Weyl Type Theorems, Ph. D., Covernemnt Arts College, Coimbatore, India, 2013.
    [12] R. L. Moore, D. D. Rogers, T. T. Trent, A note on intertwining M -hyponormal operators, Proc. Amer. Math. Soc., 83 (1981), 514–516.
    [13] S. Mecheri, A generalization of Fuglede-Putnam theorem, J. Pure Math., 21 (2004), 31–38.
    [14] S. Mecheri, A. Uchiyama, An extension of the Fuglede-Putnam's theorem to class $\mathcal{A}$ operators, Math. Inequal. Appl., 13 (2010), 57–61.
    [15] M. Mursaleen, F. Başar, Sequence Space, Topis in Modern Summability Theory, CRC Press, Taylor and Francis Group, Serie: Mathematics and Applications, Boca Raton, London, New York, 2020.
    [16] S. Panayappan, N. Jayanthi, Weyl and Weyl type theorems for class $\mathcal{A}^*_k$ and quasi class $\mathcal{A}_k^*$ operators, Int. J. Math. Anal. (Russia), 7 (2013), 683–698. doi: 10.12988/ijma.2013.13066
    [17] C. R. Putnam, On the normal operators on Hilbert space, Amer. J. Math., 73 (1951), 357–362. doi: 10.2307/2372180
    [18] M. Radjabalipour, An extension of Putnam-Fuglede theorem for hyponormal operators, Math. Zeitschrift, 194 (1987), 117–120. doi: 10.1007/BF01168010
    [19] M. H. M. Rashid, M. S. M. Noorani, On relaxation normality in the Fulgede-Putnam's theorem for a quasi-class $\mathcal{A}$ operators, Tamkang. J. Math., 40 (2009), 307–312. doi: 10.5556/j.tkjm.40.2009.508
    [20] J. Stochel, Seminormality of Operators from their Tensor Product, Proc. Amer. Math. Soc., 124 (1996), 435–440.
    [21] A. Uchiyama, K. Tanahashi, Fuglede-Putnam's theorem for $p$-hyponormal or $\log$-hyponormal operators, Glasgow Math. J., 44 (2002), 397–410. doi: 10.1017/S0017089502030057
    [22] M. Yeşilkayagil, F. Başar, A survey for the spectrum of triangles over sequences spaces, Numer. Funct. Anal. Optim., 40 (2019), 1898–1917. doi: 10.1080/01630563.2019.1639731
    [23] T. Yoshino, Remark on the generalized Putnam–Fuglede theorem, Proc. Amer. Math. Soc., 95 (1985), 571–572. doi: 10.1090/S0002-9939-1985-0810165-7
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2167) PDF downloads(98) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog