Citation: Ahmed Bachir, Durairaj Senthilkumar, Nawal Ali Sayyaf. A Fuglede-Putnam property for N-class A(k) operators[J]. AIMS Mathematics, 2020, 5(6): 7458-7466. doi: 10.3934/math.2020477
[1] | A. Bachir, F. Lombarkia, Fuglede-Putnam Theorem for w-hyponormal operators, Math. Inequal. Appl., 4 (2012), 777-786. |
[2] | A. Bachir, S. Mecheri, Some Properties of ($\mathcal{Y}$) class operators, Kyungpook Math. J., 49 (2009), 203-209. |
[3] | A. Bachir, A. Segres, Asymmetric Putnam-Fuglede Theorem for (n, k)-quasi-*-Paranormal Operators, Symmetry, 11 (2019), 1-14. |
[4] | S. K. Berberian, Approximate proper vectors, Proc. Am. Math. Soc., 13 (1962), 111-114. |
[5] | R. G. Douglas, On majoration, factorization, and range inclusion of operators on Hilbert space, Proc. Am. Math. Soc., 17 (1966), 413-415. |
[6] | S. Mecheri, K. Tanahashi, A. Uchiyama, Fuglede-Putnam theorem for p-hyponormal or class $\mathcal{Y}$ operators, Bull. Korean Math. Soc., 43 (2006), 747-753. |
[7] | C. R. Putnam, On normal operators in Hilbert space, Am. J. Math., 73 (1951), 357-362. |
[8] | M. Radjabalipour, An extension of Putnam-Fuglede Theorem for Hyponormal Operators, Math. Z., 194 (1987), 117-120. |
[9] | D. Senthilkumar, S. Shylaja, *-Aluthge transformation and adjoint of *-Aluthge transformation of N-class A(k) operators, Math. Sci. Int. Res. J., 53 (2015), 1-6. |
[10] | D. Senthilkumar, S. Shylaja, Weyl's theorems for N-class A(k) operators and algebraically N-class A(k) operators, (communicated). |
[11] | J. G. Stamfli, B. Wadhwa, An asymmetric Putnam-Fuglede theorem for dominant operators, Indian Univ. Math. J., 35 (1976), 359-365. |
[12] | K. Tanahashi, On the converse of the Fuglede-Putnam Theorem, Acta Sci. Math. (Szeged), 43 (1981), 123-125. |
[13] | A. Uchiyama, T. Yoshino, On the class $\mathcal{Y}$ operators, Nihonkai Math. J., 8 (1997), 179-194. |
[14] | A. Uchiyama, K. Tanahashi, Fuglede-Putnam's theorem for p-hyponormal or log-hyponormal operators, Glasg. Math. J., 44 (2002), 397-410. |