Citation: Alexander Bruno. Five new methods of celestial mechanics[J]. AIMS Mathematics, 2020, 5(5): 5309-5319. doi: 10.3934/math.2020340
[1] | A. B. Batkhin, Web of families of periodic orbits of the generalized Hill problem, Doklady Math., 90 (2014), 539-544. doi: 10.1134/S1064562414060064 |
[2] | A. B. Batkhin, Bifurcations of periodic solutions of a Hamiltonian system with a discrete symmetry group, Programm. Comput. Software, 46:2 (2020), 84-97. |
[3] | D. Benest, Libration effects for retrograde satellites in the restricted three-body problem, I: Circular plane Hill's case, Celest. Mech., 13 (1976), 203-215. |
[4] | A. D. Bruno, Analytical form of differential equations (II), Trans. Moscow Math. Soc., 26 (1972), 199-239. |
[5] | A. D. Bruno, On periodic flybys of the Moon, Celest. Mech., 24 (1981), 255-268. doi: 10.1007/BF01229557 |
[6] | A. D. Bruno, Local Methods in Nonlinear Differential Equations, Springer-Verlag, BerlinHeidelberg-New York-London-Paris-Tokyo, 1989. |
[7] | A. D. Bruno, The Restricted 3-body Problem: Plane Periodic Orbits, Walter de Gruyter, Berlin, 1994. |
[8] | A. D. Bruno, Power Geometry in Algebraic and Differential Equations. Elsevier Science, Amsterdam, 2000. |
[9] | A. D. Bruno, Normal form of a Hamiltonian system with a periodic perturbation, Comput. math. Math. Phys., 60 (2020), 36-52. doi: 10.1134/S0965542520010066 |
[10] | A. D. Bruno, Normalization of the periodic Hamiltonian system, Program. Comput. Software, 46:2 (2020), 76-83. |
[11] | A. D. Bruno, V. P. Varin, The limit problems for the equation of oscillations of a satellite, Celest. Mechan. Dyn. Astron., 67, 1997. |
[12] | A. D. Bruno, V. P. Varin, Periodic solutions of the restricted three-body problem for small mass ratio, J. Appl. Math. Mech., 71 (2007), 933-960. doi: 10.1016/j.jappmathmech.2007.12.012 |
[13] | A. D. Bruno, V. P. Varin, Closed families of periodic solutions of the restricted problem, Solar System Res., 43 (2009), 253-276. doi: 10.1134/S0038094609030071 |
[14] | A. D. Bruno, V. P. Varin, Families c and i of periodic solutions of the restricted problem for µ = 5 . 10−5, Solar Syst. Res., 43 (2009), 26-40. doi: 10.1134/S0038094609010031 |
[15] | A. D. Bruno, V. P. Varin, Family h of periodic solutions of the restricted problem for big µ, Solar Syst. Res., 43 (2009), 158-177. doi: 10.1134/S0038094609020099 |
[16] | A. D. Bruno, V. P. Varin, Family h of periodic solutions of the restricted problem for small µ, Solar Syst. Res., 43 (2009), 2-25. doi: 10.1134/S003809460901002X |
[17] | A. D. Bruno, V. P. Varin, On asteroid distribution, Solar Syst. Res., 45 (2011), 323-329. doi: 10.1134/S0038094611040010 |
[18] | A. D. Bruno, V. P. Varin, Periodic solutions of the restricted three body problem for small µ and the motion of small bodies of the solar system, Astron. Astrophys. Trans. (AApTr), 27 (2012), 479-488. |
[19] | M. Hénon, Sur les orbites interplanetaires qui rencontrent deux fois la terre, Bull. astron. Ser. 3, 3 (1968), 377-402. |
[20] | M. Hénon, Numerical exploration of the restricted problem. V. Hill's case: Periodic orbits and their stability, Astron. & Astrophys., 1 (1969), 223-238. |
[21] | M. Hénon, Generating Families in the Restricted Three-Body problem, Number 52 in Lecture Note in Physics. Monographs, Springer, Berlin, Heidelberg, New York, 1997. |
[22] | M. Hénon, Generating Families in the Restricted Three-Body Problem. II. Quantitative Study of Bifurcations, Number 65 in Lecture Note in Physics. Monographs. Springer-Verlag, Berlin, Heidelberg, New York, 2001. |
[23] | G. W. Hill, Researches in the lunar theory, Amer. J. Math., 1 (1878), 5-26, 129-147, 245-260. doi: 10.2307/2369430 |
[24] | A. Y. Kogan, Distant satellite orbits in the restricted circular three-body problem, Cosmic Res., 26 (1989), 705-710. |
[25] | M. L. Lidov, M. A. Vashkov'yak, Analytical Celestial Mechanics, Chapter Quasisatellite periodic orbits, 53-57, Kasan' University, Kazan', 1990. (in Russian). |
[26] | M. L. Lidov, M. A. Vashkov'yak, Perturbation theory and analysis of evolution of quasisatellite orbits in the restricted three-body problem, Cosmic Res., 31 (1993), 187-207. |
[27] | M. L. Lidov, M. A. Vashkov'yak, On quasi-satellite orbits in a restricted elliptic three-body problem, Astron. Lett., 20 (1994), 676-690. |
[28] | H. Poincaré, Les méhtods nouvelles de la mécanique céleste, volume 3, Gauthier-Villars, Paris, 1899. |
[29] | V. F. Zhuravlev, A. G. Petrov, M. M. Shunderyuk, Selected Problems of Hamiltonian Mechanics, (in Russian). |