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Abstract: The last volume of the book “Les méthods nouvelles de la Mecanique céleste” by
Poincaré [28] was published more than 120 years ago. Since then, the following methods have arisen.

1. Method of normal forms, allowing to study regular perturbations near a stationary solution, near
a periodic solution and so on.

2. Method of truncated systems, which are found with a help of the Newton polyhedrons, allowing
to study singular perturbations.

3. Method of generating families of periodic solutions (regular and singular).
4. Method of generalized problems, allowing bodies with negative masses.
5. Computation of a net of families of periodic solutions as a “skeleton” of a part of the phase space.
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1. Normal forms

Let us consider the Hamiltonian system

ξ̇ j =
∂γ

∂η j
, η̇ j = −

∂γ

∂ξ j
, j = 1, . . . , n (1.1)

with n degrees of freedom in a vicinity of the stationary solution

ξ = (ξ1, . . . , ξn) = 0, η = (η1, . . . , ηn) = 0. (1.2)

If the Hamiltonian function γ(ξ, η) is analytic at the point (1.2), then it is expanded into the power
series

γ(ξ, η) =
∑

γpqξ
pηq , (1.3)
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where p = (p1, . . . , pn), q = (q1, . . . , qn) ∈ Zn, p,q > 0, ξp = ξ
p1
1 ξ

p2
2 . . . ξ

pn
n . Here γpq are constant

coefficients. As the point (1.2) is stationary, than the expansion (1.3) begins from quadratic terms.
They correspond to the linear part of the system (1.1). Eigenvalues of its matrix are decomposed in
pairs:

λ j+n = −λ j , j = 1, . . . , n . (1.4)

Let λ = (λ1, . . . , λn). The canonical changes of coordinates

(ξ, η) −→ (x, y) (1.5)

preserve the Hamiltonian structure of the system. Here x = (x1, . . . , xn), y = (y1, . . . , yn).

Theorem 1 ( [4, §12]). There exists a formal canonical transformation (1.5), bringing the system (1.1)
to the normal form

ẋ j =
∂g
∂y j

, ẏ j = −
∂g
∂x j

, j = 1, . . . , n , (1.6)

where the series

g(x, y) =
∑

gpqxpyq (1.7)

contains only resonant terms with

〈p − q, λ〉 = 0,

and the square part g2(x, y) has its own normal form (i.e. the matrix of the system is the Hamiltonian
analog of the Jordan normal form).

If λ , 0, then the normal form (1.6) is equivalent to a system with smaller number of degrees
of freedom and with additional parameters. The normalizing transformation (1.5) conserves small
parameters and linear automorphisms of the initial system (1.1)

(ξ, η) −→
(̃
ξ, η̃

)
, t → t̃ .

Local families of periodic solutions satisfy the system of equations

∂g
∂y j

= λ jx ja ,
∂g
∂x j

= λ jy ja , j = 1, . . . , n ,

where a is a free parameter. For the real initial system (1.1), the coefficients gpq of the complex
normal form (1.7) satisfy to special properties of reality and after a standard canonical linear change
of coordinates (x, y) → (X,Y) the system (1.6) transforms in a real system [7, Ch. I]. There are
several methods of computation of coefficients gpq of the normal form (1.6), (1.7). The most simple
method was described in the book [29]. Normal forms of periodic Hamiltonian systems was described
in [9, 10], see also [7, Ch. II]. Normal forms near a periodic solution, near an invariant torus and near
family of them see in [7, Chs. II, VII, VIII], [6, Part II]. Normal form is useful in study stability,
bifurcations and asymptotic behavior of solutions.
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2. Newton polyhedrons

2.1. Truncated Hamiltonian function [8, Ch. 4]

Let x = (x1, . . . , xn), y = (y1, . . . , yn) and µ = (µ1, . . . , µs) be canonical variables and small parame-
ters respectively. Let a Hamiltonian function be

h(x, y,µ) =
∑

hpqrxpyqµr (2.1)

where p = (p1, . . . , pn), xp = xp1
1 . . . xpn

n and hpqr are constant coefficients. To each term of sum (2.1)
we put in correspondence its vectorial power exponent Q = (p,q, r) ∈ R2n+s. Set S of all points Q with
hQ , 0 in sum (1.1) is called as support S = S( f ) of the sum (2.1). The convex hull Γ(S) = Γ( f ) of
the support S is called as the Newton polyhedron of the sum (2.1). Its boundary consists of vertices
Γ

(0)
j , edges Γ

(1)
j and faces Γ

(d)
j of dimensions d: 1 < d 6 2n + s − 1. Intersection S

⋂
Γ

(d)
j = S(d)

j is the
boundary subset of set S. To each generalized face Γ

(d)
j (including vertices and edges) there correspond:

• normal cone U(d)
j in space R2n+s

∗ , which is dual to space R2n+s;
• truncated sum

ĥ(d)
j =

∑
hpqrxpyqµr over Q = (p,q, r) ∈ S(d)

j .

It is the first approximation to the sum (2.1), when

(log |x1|, . . . , log |xn|, log |y1|, . . . , log |yn|, log |µ1|, . . . , log |µs|)→ ∞

near U(d)
j .

So by truncated Hamiltonian function we can describe the approximate problems.

2.2. Restricted 3-body problem [8, Ch. 4, Section 4]

Let the two bodies P1 and P2 with masses 1 − µ and µ respectively turn in circular orbits around
their common mass center with the period T . The plane circular restricted three-body problem consists
in the study of the plane motion of the body P3 of infinitesimal mass under the influence of the Newton
gravitation of bodies P1 and P2. In the rotating (synodical) standardized coordinate system the problem
is described by the Hamiltonian system with two degrees of freedom and with one parameter µ. The
Hamiltonian function has the form

h def
=

1
2

(
y2

1 + y2
2

)
+ x2y1 − x1y2 −

1 − µ√
x2

1 + x2
2

−
µ√

(x1 − 1)2 + x2
2

+ µx1. (2.2)

Here the body P1 = {X,Y : x1 = x2 = 0} and the body P2 = {X,Y : x1 = 1, x2 = 0}, where X = (x1, x2),
Y = (y1, y2). We consider the small values of the mass ratio µ > 0. When µ = 0 the problem turns into
the two-body problem for P1 and P3. But here the points corresponding to collisions of the bodies P2

and P3 must be excluded from the phase space. The points of collisions split in parts solutions to the
two-body problem for P1 and P3. For small µ > 0 there is a singular perturbation of the case µ = 0
near the body P2. In order to find all the first approximations to the restricted three-body problem, it is
necessary to introduce the local coordinates near the body P2

ξ = x1 − 1, ξ2 = x2, η1 = y1, η2 = y2 − 1
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and to expand the Hamiltonian function in these coordinates. After the expansion of 1/
√

(ξ1 + 1)2 + ξ2
2

in the Maclaurin series, the Hamiltonian function (2.2) takes the form

h +
3
2
− 2µ def

=
1
2

(η2
1 + η2

2) + ξ2η1 − ξ1η2 − ξ
2
1 +

1
2
ξ2

2+

+ f (ξ1, ξ
2
2) + µ

ξ2
1 −

1
2
ξ2

2 −
1√

ξ2
1 + ξ2

2

− f (ξ1, ξ
2
2)

 ,
(2.3)

where f is the convergent power series, where the terms of order less then three are absent. Let for
each term of sum (2.3) we put

p = ord ξ1 + ord ξ2, q = ord η1 + ord η2, r = ord µ.

Then support S of the expansion (2.3) consists of the points

(0, 2, 0), (1, 1, 0), (2, 0, 0), (k, 0, 0), (2, 0, 1), (−1, 0, 1), (k, 0, 1),

where k = 3, 4, 5, . . . The convex hull of the set S is the polyhedron Γ ⊂ R3. The surface ∂Γ of the
polyhedron Γ consists of faces Γ(2)

j , edges Γ(1)
j and vertices Γ(0)

j . To each of the elements Γ(d)
j there

corresponds the truncated Hamiltonian ĥ(d)
j , that is the sum of those terms of Series (2.3), the points

Q = (p, q, r) of which belong to Γ(d)
j . Figure 1 shows the polyhedron Γ, which is the semi-infinite

trihedral prism with an oblique base. It has four faces and six edges. Let us consider them.

Figure 1. The polyhedron Γ for the Hamiltonian function (2.3) in coordinates p, q, r.

The face Γ(2)
1 , which is the oblique base of the prism Γ, contains vertices

(0, 2, 0), (2, 0, 0), (−1, 0, 1) and the point (1, 1, 0) ∈ S.

To the face there corresponds the truncated Hamiltonian function

ĥ(2)
1 =

1
2

(
η2

1 + η2
2

)
+ ξ2η1 − ξ1η2 − ξ

2
1 +

1
2
ξ2

2 −
µ√

ξ2
1 + ξ2

2

. (2.4)
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It describes the Hill problem [23], which is a non-integrable one. The power transformation

ξ̃i = ξiµ
−1/3, η̃i = ηiµ

−1/3, i = 1, 2, (2.5)

reduces the corresponding Hamiltonian system to the Hamiltonian system with the Hamiltonian func-
tion of the form (2.4), where ξi, ηi, µ must be substituted by ξ̃i, η̃i, 1 respectively.

The face Γ(2)
2 contains points

(0, 2, 0), (1, 1, 0), (2, 0, 0) and (k, 0, 0) ⊂ S.

To the face there corresponds the truncated Hamiltonian function ĥ(2)
2 , which is obtained from the

function h when µ = 0. It describes the two-body problem for P1 and P3, which is an integrable one.
The edge Γ(1)

1 . It includes points (0, 2, 0) and (−1, 0, 1) ⊂ S. The corresponding truncated Hamilto-
nian function is

ĥ(1)
1 =

1
2

(η2
1 + η2

2) −
µ√

ξ2
1 + ξ2

2

. (2.6)

It describes the two-body problem for P2 and P3. The power transformation (2.5) transforms it into the
Hamiltonian system with the Hamiltonian function of the form (2.6), where ξi, ηi, µ must be substituted
by ξ̃i, η̃i, 1 respectively.

The edge Γ(1)
2 includes points (2, 2, 0), (1, 1, 0), (0, 2, 0) ⊂ S. To it there corresponds the truncated

Hamiltonian function (2.4) with µ = 0. It describes the intermediate problem (between the Hill problem
and the two-body problem for P1 and P3), which is an integrable one. This first approximation was
introduced by Hénon [20].Thus, the first approximation to the original restricted problem with the
Hamiltonian function (2.3) depends on the distance from the body P2 in the following manner:

• very close to the body P2, it is the two-body problem for bodies P2 and P3 with the Hamiltonian
function (2.6);
• simply close, it is the Hill problem with Hamiltonian (2.4);
• farther from the body P2, it is the intermediate Hénon problem;
• and far from the body P2, it is the two-body problem for bodies P1 and P3.

Near the body P2, the periodic solutions to the restricted problem are either perturbations of periodic
solutions to all four mentioned first approximations or they are results of the matching of the hyperbolic
orbits of the two-body problem for P2 and P3 with arc-solutions to the two-body problem for P1 and
P3, or to the intermediate problem. In [3, 24–27] the periodic solutions to the intermediate problem
were used as the generating ones in order to find quasi-satellite orbits of the restricted problem.

2.3. Truncated systems

Now we consider the aggregate of polynomials

f1(X), . . . , fm(X), X ∈ Rm′ or Cm′ . (2.7)

To each fi there corresponds its support and all the accompanying objects: polyhedrons Γ j, faces Γ(d j)
jk j

,

normal cones U(d j)
jk j

, boundary subsets S(d j)
jk j

, truncated polynomials f̂ (d j)
jk j

. Besides, to each non-empty
intersection

U(d1)
1k1

⋂
. . .

⋂
U(dm)

mkm
(2.8)
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there corresponds the aggregate of truncations of the form

f̂ (d1)
1k1

, . . . , f̂ (dm)
mkm

, (2.9)

which is the first approximation to the aggregate (2.7), when log |X| → ∞ near the intersection (2.8);
and it is named the truncation of the aggregate (2.7). We consider now the system of equations

f j = 0, j = 1, . . . ,m, (2.10)

corresponding to the aggregate (2.7). To System (2.10) there correspond all objects indicated for the
aggregate (2.7), and also the truncated systems of equations

f̂ (d j)
jk j

= 0, j = 1, . . . ,m, (2.11)

each of which corresponds to one aggregate of truncations (2.9). We say that the truncated system
(2.11) is the truncation of System (2.10) with respect to the order P , 0 if the vector P lies in the cone
(2.8). Every truncated system (2.11) is one of the first approximations to complete system (2.10).

2.4. Periodic solutions to periodic Hamiltonian system [9, 10]

Normal form of a periodic Hamiltonian function with n degrees of freedom near zero solution is
reduced to a stationary Hamiltonian function

h(u, v,µ) =
∑

hpqrmupvqµr, (2.12)

where p,q ∈ Zn, r ∈ Zs, m ∈ Z, p,q, r > 0 and

〈λ,p − q〉 = −im.

For µ = 0, expansion of h (2.12) begins from terms of order 3. Local families of periodic solutions
to the initial system correspond to local families of stationary points of the reduced normal form with
Hamiltonian (2.12). These stationary points satisfy system of equations

∂h
∂v j

= 0,
∂h
∂u j

= 0, j = 1, . . . , n. (2.13)

To solve the system, we must to consider truncated systems and find their solutions, which gives the
first approximations to solutions of the system (2.13). Other applications: the Beletskii equation for
oscillation of a satellite [11]; the problem of periodic orbits with close approach to a planet and to
Earth [5].

3. Generating families of periodic solutions

3.1. Method

Let a Hamiltonian function H(µ) analytically depend from small parameters µ = (µ1, . . . , µs) and
corresponding Hamiltonian system has families F j(µ) of periodic solutions. Some of these families
can have limits F j(0), when µ → 0. Families F j(0) are called as generating. Their solutions are
compositions of parts of solutions of the limiting Hamiltonian system with µ = 0.

If that limiting system is integrable, than generating families can be described analytically. That
approach was proposed by Hénon [20] and was used for the Hill problem, for the restricted three-body
problem [7, 19, 21, 22], for the Belletskii equation [11].
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3.2. The Hill problem

Its Hamiltonian function is

H =
1
2

(
η2

1 + η2
2

)
+ ξ2η1 − ξ1η2 − ξ

2
1 +

1
2
ξ2

2 −
1√

ξ2
1 + ξ2

2

. (3.1)

The corresponding system

ξ̇ j =
∂H
∂η j

, η̇ j = −
∂H
∂ξ j

, j = 1, 2

describes the motion of Moon (P3) with zero mass under attraction of Sun (P1) disposed at infinity and
Earth (P2) with mass 1 disposed in origin. Hamiltonian (3.1) is analytic in

ξ, η ∈ R4\{ξ1 = ξ2 = 0}.

We make canonical transformation of coordinates

ξ j = εX j, η j = εY j, j = 1, 2.

Then we obtain the Hamiltonian system

Ẋ j =
∂h
∂Y j

, Ẏ j = −
∂h
∂X j

, j = 1, 2, (3.2)

where
h =

1
2

(
Y2

1 + Y2
2

)
+ X2Y1 − X1Y2 − X2

1 +
1
2

X2
2 −

1

ε3
√

X2
1 + X2

2

.

We put ε =
√

2|H| and H → −∞. Then in limit we obtain system (3.2) with

h = h0 =
1
2

(
Y2

1 + Y2
2

)
+ X2Y1 − X1Y2 − X2

1 +
1
2

X2
2 .

It is the Hénon’s problem. For h0 system (3.2) is linear and hence integrable. It is enough to consider

it for h0 =
1
2

. It has one regular periodic solution

X1(t) = cos t, X2(t) = −2 sin t.

If the orbit (X1(t), X2(t)) of a solution of the Hénon problem comes through the point

X1 = X2 = 0, (3.3)

then the body P3 collides with body P2 and the solution cannot be continued through that collision.
So solutions are divided into independent parts by the point (3.3). Hénon [20] found all arc-solutions,
which begin and end by such collisions. They form the countable set of two types. The arc-solutions
of the first type were denoted by symbol ± j, j ∈ N, and are epicycloids. In Figure 2 they are shown for
j = 1, 2, 3.
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Figure 2. Arc-solutions of the first type j: +1, +2 and +3.

The arcs with negative values of j are symmetric with respect to the axis X2. The arc-solutions of
the second type are denoted by symbols i and e and their orbits are ellipses passing through the origin
(Figure 3).
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Figure 3. Arc-solutions of the second type i and e.

A sequence of arc-solutions which does not contain two identical arcs of the second type in suc-
cession is a generating solution and it is called generating sequence for the Hill problem. All known
families of periodic solutions of the Hill problem include at most one generating sequence.
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4. Generalized problems

Usually in celestial mechanics we consider bodies with non-negative masses. But Batkhin [1] pro-
posed to consider problems, where some masses are negative. In the Hill problem with mass of the
body P2 equal to −1 (so-called anti-Hill problem), families of periodic solutions are continuations of
families of periodic solutions of the usual Hill’s problem. So computation of families of periodic so-
lutions more convenient to make for both Hill’s and anti-Hill’s problems. Such approach gave new
families for the Hill’s problem.

Figure 4 shows diagram of connection between families of the Hill’s (left part) and the anti-Hill’s
problems (right part). Central column gives generating sequences of the families.

O

L1

L2

{i, e}

T

{+1}

{−1}

{+2}

{−2}

{+3}

{−3}

{+1, e, i}
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+∞ −∞0 0

C

Hill’s problem Anti-Hill’s problem
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3

f̃A
3

g
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c

g′

g′

ã

c̃

g̃′

g̃′

He

He

H ′
e

H̃e

H̃ ′
e

g̃

f3

f3
H̃e

Figure 4. Diagram of connection between families.

5. Sceletons

In some parts of the phase space of a Hamiltonian system there are a lot of families of periodic
solutions. These families form a “skeleton” of the phase space. So computation of such families is
very useful for study the structure of the phase space. Batkhin [2] mentioned that in systems with
a finite group of symmetries, the majority of such families consists of periodic solutions, with are
invariant under all symmetries of the group.

There are a lot of computed families of periodic solutions in different problems of celestial mechan-
ics, but their number is not enough to form a skeleton. Recent results in that directions for the restricted
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three-body problem see in [12–18].
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