Citation: Arsalan D. Mizhidon. A generalized mathematical model for a class of mechanical systems with lumped and distributed parameters[J]. AIMS Mathematics, 2019, 4(3): 751-762. doi: 10.3934/math.2019.3.751
[1] | A. D. Mizhidon, K. A. Mizhidon, Eigenvalues of boundary value problem for a hybrid system of differential equations, Siberian Electronic Mathematical Reports, 13 (2016), 911-922. |
[2] | D. W. Chen, The exact solution for free vibration of uniform beams carrying multiple two-degree-of-freedom spring-mass systems, J. Sound Vib., 295 (2006), 342-361. doi: 10.1016/j.jsv.2006.01.011 |
[3] | T. P. Chang, C. Y. Chang, Vibration analysis of beams with a two-degree-of-freedom spring-mass system, Int. J. Solids Struct., 35 (1998), 383-401. doi: 10.1016/S0020-7683(97)00037-1 |
[4] | P. D. Cha, Free vibrations of a uniform beam with multiple elastically mounted two-degree-of-freedom systems, J. Sound Vib., 307 (2007), 386-392. doi: 10.1016/j.jsv.2007.06.063 |
[5] | J.-J. Wu, A. R. Whittaker, The natural frequencies and mode shapes of a uniform cantilever beam with multiple two-DOF spring-mass systems, J. Sound Vib., 227 (1999), 361-381. doi: 10.1006/jsvi.1999.2324 |
[6] | S. Naguleswaran, Transverse vibrations of an Euler-Bernoulli uniform beam carrying several particles, Int. J. Mech. Sci., 44 (2002), 2463-2478. doi: 10.1016/S0020-7403(02)00182-0 |
[7] | S. Naguleswaran, Transverse vibration of an Euler-Bernoulli uniform beam on up a five resilient supports including ends, J. Sound Vib., 261 (2003), 372-384. doi: 10.1016/S0022-460X(02)01238-5 |
[8] | H. Su, J. R. Banerjee, Exact natural frequencies of structures consisting of two part beam-mass systems, Struct. Eng. Mech., 19 (2005), 551-566. doi: 10.12989/sem.2005.19.5.551 |
[9] | J.-S. Wu, Alternative approach for free vibration of beams carrying a number of two-degree of freedom spring-mass systems, J. Struct.Eng., 128 (2002), 1604-1616. doi: 10.1061/(ASCE)0733-9445(2002)128:12(1604) |
[10] | J.-S. Wu, H.-M. Chou, A new approach for determining the natural frequencies and mode shapes of a uniform beam carrying any number of spring masses, J. Sound Vib., 220 (1999), 451-468. doi: 10.1006/jsvi.1998.1958 |
[11] | J.-S. Wu, D.-W. Chen, Dynamic analysis of a uniform cantilever Beam carrying a number of elastically mounted point masses with dampers, J. Sound Vib., 229 (2000), 549-578. doi: 10.1006/jsvi.1999.2504 |
[12] | S. Kukla, B. Posiadala, Free vibrations of beams with elastically mounted masses, J. Sound Vib., 175 (1994), 557-564. doi: 10.1006/jsvi.1994.1345 |
[13] | S. Kukla, The green function method in frequency analysis of a beam with intermediate elastic supports, J. Sound Vib., 149 (1991), 154-159. doi: 10.1016/0022-460X(91)90920-F |
[14] | A. D. Mizhidon, Theoretical foundations of the study of a certain class of hybrid systems of differential equations, Itogi Nauki i Tekhniki. Seriya "Sovrem. Mat. Pril. Temat. Obz.", 155 (2018), 38-64. |