Citation: Jagan Mohan Jonnalagadda. On a nabla fractional boundary value problem with general boundary conditions[J]. AIMS Mathematics, 2020, 5(1): 204-215. doi: 10.3934/math.2020012
[1] | T. Abdeljawad, F. M. Atici, On the definitions of nabla fractional operators, Abstr. Appl. Anal., 2012 (2012), 406757. |
[2] | K. Ahrendt, L. Castle, M. Holm, et al. Laplace transforms for the nabla-difference operator and a fractional variation of parameters formula, Commun. Appl. Anal., 16 (2012), 317-347. |
[3] | F. M. Atici, P. W. Eloe, Discrete fractional calculus with the nabla operator, Electron. J. Qual. Theory Differ. Eq., 2009 (2009), 1-12. |
[4] | M. Bohner, A. C. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Boston: Birkhäuser Boston, Inc., 2001. |
[5] | A. Brackins, Boundary value problems of nabla fractional difference equations, Thesis (Ph.D.)-The University of Nebraska-Lincoln, 2014. |
[6] | Y. Gholami, K. Ghanbari, Coupled systems of fractional ▽-difference boundary value problems, Differ. Eq. Appl., 8 (2016), 459-470. |
[7] | C. Goodrich, A. C. Peterson, Discrete Fractional Calculus, Cham: Springer, 2015. |
[8] | A. Ikram, Lyapunov inequalities for nabla Caputo boundary value problems, J. Differ. Eq. Appl., 25 (2019), 757-775. doi: 10.1080/10236198.2018.1560433 |
[9] | J. M. Jonnalagadda, An ordering on Green's function and a Lyapunov-type inequality for a family of nabla fractional boundary value problems, Fract. Differ. Calc., 9 (2019), 109-124. |
[10] | J. M. Jonnalagadda, Analysis of a system of nonlinear fractional nabla difference equations, Int. J. Dyn. Syst. Differ. Eq., 5 (2015), 149-174. |
[11] | J. M. Jonnalagadda, Lyapunov-type inequalities for discrete Riemann-Liouville fractional boundary value problems, Int. J. Differ. Eq., 13 (2018), 85-103. |
[12] | J. M. Jonnalagadda, On two-point Riemann-Liouville type nabla fractional boundary value problems, Adv. Dyn. Syst. Appl., 13 (2018), 141-166. |
[13] | W. G. Kelley, A. C. Peterson, Theory and Applications of Fractional Differential Equations, 2 Eds., San Diego: Harcourt/Academic Press, 2001. |
[14] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Difference Equations: An Introduction with Applications, Amsterdam: Elsevier Science B.V., 2006. |
[15] | I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, San Diego: Academic Press, Inc., 1999. |