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Abstract: In this article, we consider a nabla fractional boundary value problem with general boundary
conditions. Brackins & Peterson [5] gave an explicit expression for the corresponding Green’s function.
Here, we show that this Green’s function is nonnegative and obtain an upper bound for its maximum
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not be straightforward. For this purpose, we use a few properties of fractional nabla Taylor monomials.
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1. Introduction

Let a, b ∈ R with b − a ∈ N1. Consider the homogeneous nabla fractional boundary value problem
with general boundary conditions:

−
(
∇ν−1

a
(
∇u

))
(t) = 0, t ∈ Nb

a+2,

αu(a + 1) − β(∇u)(a + 1) = 0,
γu(b) + δ(∇u)(b) = 0,

(1.1)

where 1 < ν < 2, α2 + β2 > 0 and γ2 + δ2 > 0. Brackins & Peterson [5] proved that the boundary value
problem (1.1) has only the trivial solution if, and only if

ξ = (β − α)γ + αγHν−1(b, a) + αδHν−2(b, a) , 0. (1.2)
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In the following theorem, Brackins & Peterson [5] gave an explicit expression for its Green’s
function.

Theorem 1.1 (See [5]). Assume (1.2) holds. The Green’s function for the boundary value problem
(1.1) is given by

G(t, s) =

u(t, s), t ≤ s − 1,
v(t, s), t ≥ s,

(1.3)

where

u(t, s) =
1
ξ

[
αγHν−1(t, a)Hν−1(b, ρ(s)) + αδHν−1(t, a)Hν−2(b, ρ(s))

+ (β − α)γHν−1(b, ρ(s)) + (β − α)δHν−2(b, ρ(s))
]
, (1.4)

and
v(t, s) = u(t, s) − Hν−1(t, ρ(s)). (1.5)

We show that this Green’s function is nonnegative and obtain an upper bound for its maximum
value. Using the Green’s function, we will then develop a Lyapunov-type inequality for the nabla
fractional boundary value problem

(
∇ν−1

a
(
∇u

))
(t) + q(t)u(t) = 0, t ∈ Nb

a+2,

αu(a + 1) − β(∇u)(a + 1) = 0,
γu(b) + δ(∇u)(b) = 0,

(1.6)

where q : Nb
a+1 → R.

2. Preliminaries

We shall use the following notations, definitions and known results of nabla fractional calculus
throughout the article [1–3,6,9–13]. Denote byNa := {a, a+1, a+2, . . .} andNb

a := {a, a+1, a+2, . . . , b}
for any a, b ∈ R such that b − a ∈ N1.

Definition 2.1 (See [4]). The backward jump operator ρ : Na → Na is defined by

ρ(t) :=

a, t = a,

t − 1, t ∈ Na+1.

Definition 2.2 (See [14, 15]). The Euler gamma function is defined by

Γ(z) :=
∫ ∞

0
tz−1e−tdt, <(z) > 0.

Using its well-known reduction formula, the Euler gamma function can be extended to the half-plane
<(z) ≤ 0 except for z ∈ {. . . ,−2,−1, 0}.
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Definition 2.3 (See [7]). For t ∈ R \ {. . . ,−2,−1, 0} and r ∈ R such that (t + r) ∈ R \ {. . . ,−2,−1, 0},
the generalized rising function is defined by

tr :=
Γ(t + r)

Γ(t)
.

Also, if t ∈ {. . . ,−2,−1, 0} and r ∈ R such that (t + r) ∈ R \ {. . . ,−2,−1, 0}, then we use the convention
that tr := 0.

Definition 2.4 (See [7]). Let µ ∈ R \ {. . . ,−2,−1}. Define the µth-order nabla fractional Taylor
monomial by

Hµ(t, a) :=
(t − a)µ

Γ(µ + 1)
,

provided the right-hand side exists. Observe that Hµ(a, a) = 0 and Hµ(t, a) := 0 for all µ ∈ {. . . ,−2,−1}
and t ∈ Na.

Definition 2.5 (See [4]). Let u : Na → R and N ∈ N1. The first order backward (nabla) difference of u
is defined by (

∇u
)
(t) := u(t) − u(t − 1), t ∈ Na+1,

and the N th-order nabla difference of u is defined recursively by(
∇Nu

)
(t) :=

(
∇
(
∇N−1u

))
(t), t ∈ Na+N .

Definition 2.6 (See [7]). Let u : Na+1 → R and N ∈ N1. The N th-order nabla sum of u based at a is
given by (

∇−N
a u

)
(t) :=

t∑
s=a+1

HN−1(t, ρ(s))u(s), t ∈ Na,

where by convention
(
∇−N

a u
)
(a) = 0. We define

(
∇−0

a u
)
(t) := u(t) for all t ∈ Na+1.

Definition 2.7 (See [7]). Let u : Na+1 → R and ν > 0. The νth-order nabla sum of u based at a is given
by (

∇−νa u
)
(t) :=

t∑
s=a+1

Hν−1(t, ρ(s))u(s), t ∈ Na,

where by convention
(
∇−νa u

)
(a) = 0.

Definition 2.8 (See [7]). Let u : Na+1 → R, ν > 0 and choose N ∈ N1 such that N − 1 < ν ≤ N. The
νth-order nabla difference of u is given by(

∇νau
)
(t) :=

(
∇N(
∇−(N−ν)

a u
))

(t), t ∈ Na+N .

The following properties of gamma function, generalized rising function, and fractional nabla
Taylor monomial will be used in Section 3.

Proposition 1 (See [7]). Assume the following generalized rising functions and fractional nabla Taylor
monomials are well defined.
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1. Γ(t) > 0 for t > 0, and Γ(t) < 0 for −1 < t < 0.
2. tν(t + ν)µ = tν+µ.
3. ∇(ν + t)µ = µ(ν + t)µ−1.
4. ∇(ν − t)µ = −µ(ν − ρ(t))µ−1.
5. ∇Hµ(t, a) = Hµ−1(t, a).
6. Hµ(t, a) − Hµ−1(t, a) = Hµ(t, a + 1).
7.

∑t
s=a+1 Hµ(s, a) = Hµ+1(t, a).

8.
∑t

s=a+1 Hµ(t, ρ(s)) = Hµ+1(t, a).

Proposition 2 (See [7]). Let ν ∈ R+ and µ ∈ R such that µ, µ + ν and µ − ν are nonnegative integers.
Then, for all t ∈ Na,

(i) ∇−νa (t − a)µ =
Γ(µ+1)

Γ(µ+ν+1) (t − a)µ+ν.
(ii) ∇νa(t − a)µ =

Γ(µ+1)
Γ(µ−ν+1) (t − a)µ−ν.

(iii) ∇−νa Hµ(t, a) = Hµ+ν(t, a).
(iv) ∇νaHµ(t, a) = Hµ−ν(t, a).

Proposition 3 (See [8]). Let µ > −1 and s ∈ Na. Then, the following hold:

(a) If t ∈ Nρ(s), then Hµ(t, ρ(s)) ≥ 0, and if t ∈ Ns, then Hµ(t, ρ(s)) > 0.
(b) If t ∈ Nρ(s) and µ > 0, then Hµ(t, ρ(s)) is a decreasing function of s.
(c) If t ∈ Ns and −1 < µ < 0, then Hµ(t, ρ(s)) is an increasing function of s.
(d) If t ∈ Nρ(s) and µ ≥ 0, then Hµ(t, ρ(s)) is a nondecreasing function of t.
(e) If t ∈ Ns and µ > 0, then Hµ(t, ρ(s)) is an increasing function of t.
(f) If t ∈ Ns+1 and −1 < µ < 0, then Hµ(t, ρ(s)) is a decreasing function of t.

Proposition 4 (See [8]). If 0 < ν ≤ µ, then Hν(t, a) ≤ Hµ(t, a), for each fixed t ∈ Na.

Proposition 5 (See [8]). Let f , g be nonnegative real-valued functions on a set S . Moreover, assume
f and g attain their maximum in S . Then, for each fixed t ∈ S ,∣∣∣ f (t) − g(t)

∣∣∣ ≤ max
{
f (t), g(t)

}
≤ max

{
max

t∈S
f (t),max

t∈S
g(t)

}
.

Proposition 6. Let µ > −1, s ∈ Na+1, and t ∈ Ns. Denote by

hµ(t, s) =
Hµ(t, ρ(s))

Hµ(t, a)
.

Then, the following hold:

(I) 0 < hµ(t, s).
(II) If µ > 0, then hµ(t, s) ≤ 1, and if −1 < µ < 0, then hµ(t, s) ≥ 1. In particular, h0(t, s) = 1.

(III) If µ > 0, then hµ(t, s) is a nondecreasing function of t.
(IV) If −1 < µ < 0, then hµ(t, s) is a nonincreasing function of t.

Proof. (I) First, consider

hµ(t, s) =
(t − ρ(s))µ

(t − a)µ
=

Γ(t − s + µ + 1)Γ(t − a)
Γ(t − s + 1)Γ(t − a + µ)

. (2.1)
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Since Γ(t − a), Γ(t − a + µ), Γ(t − s + 1), Γ(t − s + µ + 1) > 0, it follows from (2.1) that hµ(t, s) > 0.
(II) The proof of (II) follows from the monotonicity of Hµ(t, ρ(s)) with respect to s.
(III) Next, consider

∇hµ(t, s) = ∇
[ (t − ρ(s))µ

(t − a)µ
]

=
(t − s + 1)µ

(t − a)µ
−

(t − s)µ

(t − a − 1)µ

=
Γ(t − s + µ + 1)Γ(t − a)
Γ(t − s + 1)Γ(t − a + µ)

−
Γ(t − s + µ)Γ(t − a − 1)
Γ(t − s)Γ(t − a + µ − 1)

=
Γ(t − s + µ)Γ(t − a − 1)
Γ(t − s)Γ(t − a + µ − 1)

[
(t − s + µ)(t − a − 1)
(t − s)(t − a + µ − 1)

− 1
]

= µ(s − a − 1)
[
Γ(t − s + µ)Γ(t − a − 1)
Γ(t − s + 1)Γ(t − a + µ)

]
. (2.2)

Since Γ(t − a − 1), Γ(t − a + µ), Γ(t − s + µ), Γ(t − s + 1) > 0, and (s − a − 1) ≥ 0, it follows from (2.2)
that ∇hµ(t, s) ≥ 0, implying that (III) holds.

(IV) Clearly, from (2.2), we have

∇h−µ(t, s) = −µ(s − a − 1)
[
Γ(t − s − µ)Γ(t − a − 1)
Γ(t − s + 1)Γ(t − a − µ)

]
. (2.3)

Since Γ(t − a − 1), Γ(t − a − µ), Γ(t − s − µ), Γ(t − s + 1) > 0, (s − a − 1) ≥ 0, it follows from (2.3) that
∇h−µ(t, s) ≤ 0, implying that (IV) holds. �

3. Properties of Green’s function

In this section, we obtain a few properties of G(t, s) which we use in the later part of the article.

Lemma 1. Assume α, β, γ, δ ≥ 0 and β ≥ α such that (1.2) holds. Then,

1. ξ > 0 for all t ∈ Nb
a.

2. u(t, s) ≥ 0 for all (t, s) ∈ Nb
a × N

b
a+1 such that t ≤ s − 1.

3. v(t, s) ≥ 0 for all (t, s) ∈ Nb
a × N

b
a+1 such that t ≥ s.

Proof. (1) From Proposition 3, we have Hν−1(b, a), Hν−2(b, a) > 0 implying that

ξ = (β − α)γ + αγHν−1(b, a) + αδHν−2(b, a) > 0.

(2) From Proposition 3, we have Hν−1(b, ρ(s)), Hν−2(b, ρ(s)) > 0 for all s ∈ Nb
a+1, and Hν−1(t, a) ≥ 0 for

all t ∈ Nb
a. Also, from (1), we have ξ > 0 for all t ∈ Nb

a. Thus, we obtain

u(t, s) =
1
ξ

[
αγHν−1(t, a)Hν−1(b, ρ(s)) + αδHν−1(t, a)Hν−2(b, ρ(s))

+ (β − α)γHν−1(b, ρ(s)) + (β − α)δHν−2(b, ρ(s))
]
≥ 0,

for all (t, s) ∈ Nb
a × N

b
a+1 such that t ≤ s − 1.
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(3) Consider

v(t, s) = u(t, s) − Hν−1(t, ρ(s))

=
1
ξ

[
αγHν−1(t, a)Hν−1(b, ρ(s)) + αδHν−1(t, a)Hν−2(b, ρ(s))

+ (β − α)γHν−1(b, ρ(s)) + (β − α)δHν−2(b, ρ(s)) − ξHν−1(t, ρ(s))
]

(3.1)

=
1
ξ

[
(β − α)δHν−2(b, ρ(s)) + (β − α)γ

(
Hν−1(b, ρ(s)) − Hν−1(t, ρ(s))

)
+ αδ

(
Hν−1(t, a)Hν−2(b, ρ(s)) − Hν−1(t, ρ(s))Hν−2(b, a)

)
+ αγ

(
Hν−1(t, a)Hν−1(b, ρ(s)) − Hν−1(b, a)Hν−1(t, ρ(s))

)]
(3.2)

=
1
ξ

[
E1 + E2 + E3 + E4

]
,

where

E1 = (β − α)δHν−2(b, ρ(s)),

E2 = (β − α)γ
(
Hν−1(b, ρ(s)) − Hν−1(t, ρ(s))

)
,

E3 = αδ
(
Hν−1(t, a)Hν−2(b, ρ(s)) − Hν−1(t, ρ(s))Hν−2(b, a)

)
,

E4 = αγ
(
Hν−1(t, a)Hν−1(b, ρ(s)) − Hν−1(b, a)Hν−1(t, ρ(s))

)
.

We already know that ξ > 0 for all t ∈ Nb
a. Now, we show that

Ei ≥ 0, i = 1, 2, 3, 4.

From Proposition 3, we have Hν−2(b, ρ(s)) > 0 for all s ∈ Nb
a+1. So, we obtain

E1 ≥ 0.

Again, from Proposition 3, we have Hν−1(t, ρ(s)) ≤ Hν−1(b, ρ(s)) for all (t, s) ∈ Nb
a × N

b
a+1 such that

t ≥ s, implying that
E2 ≥ 0.

From Proposition 3, we have Hν−1(t, ρ(s)) ≤ Hν−1(t, a), Hν−2(b, a) ≤ Hν−2(b, ρ(s)) for all (t, s) ∈ Nb
a ×

Nb
a+1 such that t ≥ s, implying that

E3 ≥ 0.

Now, consider

Hν−1(t, a)Hν−1(b, ρ(s)) − Hν−1(b, a)Hν−1(t, ρ(s))

= Hν−1(b, a)Hν−1(t, ρ(s))
[Hν−1(b, ρ(s))

Hν−1(b, a)
·

Hν−1(t, a)
Hν−1(t, ρ(s))

− 1
]

= Hν−1(b, a)Hν−1(t, ρ(s))
[hν−1(b, s)

hν−1(t, s)
− 1

]
.
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From Proposition 3, we have Hν−1(b, a), Hν−1(t, ρ(s)) > 0, and hν−1(b, s) ≥ hν−1(t, s) for all (t, s) ∈
Nb

a × N
b
a+1 such that t ≥ s, implying that

E4 ≥ 0.

Therefore, we obtain v(t, s) ≥ 0 for all (t, s) ∈ Nb
a × N

b
a+1 such that t ≥ s. The proof is complete. �

Theorem 3.1. Assume α, β, γ, δ ≥ 0 and β ≥ α such that (1.2) holds. Then, G(t, s) ≥ 0 for all
(t, s) ∈ Nb

a × N
b
a+1.

Proof. The proof follows from the preceding lemma. �

Lemma 2. Assume α, β, γ, δ ≥ 0 and β ≥ α such that (1.2) holds. Then,

1. u(t, s) is an increasing function of t for all (t, s) ∈ Nb
a × N

b
a+1 such that t ≤ s − 1.

2. v(t, s) is a decreasing function of t for all (t, s) ∈ Nb
a × N

b
a+1 such that t ≥ s.

Proof. (1) Consider

∇tu(t, s) =
1
ξ

[
αγHν−2(t, a)Hν−1(b, ρ(s)) + αδHν−2(t, a)Hν−2(b, ρ(s))

]
.

From Proposition 3, we have Hν−1(b, ρ(s)), Hν−2(b, ρ(s)) > 0 for all s ∈ Nb
a+1, and Hν−2(t, a) > 0 for all

t ∈ Nb
a+1. Also, from (1), we have ξ > 0 for all t ∈ Nb

a+1. Thus, we obtain ∇tu(t, s) > 0, implying that
(1) holds.

(2) From (3.2), we obtain

∇tv(t, s) =
1
ξ

[
− (β − α)γHν−2(t, ρ(s))

+ αδ
(
Hν−2(t, a)Hν−2(b, ρ(s)) − Hν−2(t, ρ(s))Hν−2(b, a)

)
+ αγ

(
Hν−2(t, a)Hν−1(b, ρ(s)) − Hν−1(b, a)Hν−2(t, ρ(s))

)]
=

1
ξ

[
E5 + E6 + E7

]
,

where

E5 = −(β − α)γHν−2(t, ρ(s)),

E6 = αδ
(
Hν−2(t, a)Hν−2(b, ρ(s)) − Hν−2(t, ρ(s))Hν−2(b, a)

)
,

E7 = αγ
(
Hν−2(t, a)Hν−1(b, ρ(s)) − Hν−1(b, a)Hν−2(t, ρ(s))

)
.

Clearly, ξ > 0 for all t ∈ Nb
a+1. Now, we show that

Ei ≤ 0, i = 5, 6, 7.

From Proposition 3, we have Hν−2(t, ρ(s)) > 0 for all (t, s) ∈ Nb
a × N

b
a+1 such that t ≥ s, implying that

E5 ≤ 0.
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From Proposition 3, we have Hν−2(t, ρ(s)) ≥ Hν−2(t, a), Hν−1(b, a) ≥ Hν−1(b, ρ(s)) for all (t, s) ∈ Nb
a ×

Nb
a+1 such that t ≥ s, implying that

E7 ≤ 0.

Now, consider

Hν−2(t, a)Hν−2(b, ρ(s)) − Hν−2(t, ρ(s))Hν−2(b, a)

= Hν−2(t, ρ(s))Hν−2(b, a)
[Hν−2(b, ρ(s))

Hν−2(b, a)
·

Hν−2(t, a)
Hν−2(t, ρ(s))

− 1
]

= Hν−2(t, ρ(s))Hν−2(b, a)
[hν−2(b, s)

hν−2(t, s)
− 1

]
.

From Proposition 3, we have Hν−2(b, a), Hν−2(t, ρ(s)) > 0, and hν−2(t, s) ≥ hν−2(b, s) for all (t, s) ∈
Nb

a × N
b
a+1 such that t ≥ s, implying that

E6 ≤ 0.

Therefore, (2) holds. The proof is complete. �

Theorem 3.2. Assume α, β, γ, δ ≥ 0 and β ≥ α such that (1.2) holds. The following inequality holds
for the Green’s function G(t, s):

max
(t,s)∈Nb

a×N
b
a+1

G(t, s) < Ω, (3.3)

where
Ω =

1
ξ

[
αγHν−1(b, a)Hν−1(b, a) + αδHν−1(b, a) + (β − α)γHν−1(b, a) + (β − α)δ

]
. (3.4)

Proof. From Lemma 2, we have

max
(t,s)∈Nb

a×N
b
a+1

G(t, s) = max
s∈Nb

a+1

{
u(ρ(s), s), v(s, s)

}
.

Consider

u(ρ(s), s) =
1
ξ

[
αγHν−1(ρ(s), a)Hν−1(b, ρ(s)) + αδHν−1(ρ(s), a)Hν−2(b, ρ(s))

+ (β − α)γHν−1(b, ρ(s)) + (β − α)δHν−2(b, ρ(s))
]
, s ∈ Nb

a+1.

Denote by

f (s) =
1
ξ

[
αγHν−1(s, a)Hν−1(b, ρ(s)) + αδHν−1(s, a)Hν−2(b, ρ(s))

+ (β − α)γHν−1(b, ρ(s)) + (β − α)δHν−2(b, ρ(s))
]
, s ∈ Nb

a+1.

Then, by Lemma 1 and Proposition 3, we have

0 ≤ u(ρ(s), s) < f (s), s ∈ Nb
a+1. (3.5)

Now, consider

v(s, s) =
1
ξ

[
αγHν−1(s, a)Hν−1(b, ρ(s)) + αδHν−1(s, a)Hν−2(b, ρ(s))
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+ (β − α)γHν−1(b, ρ(s)) + (β − α)δHν−2(b, ρ(s))
]
− 1

= f (s) − 1, s ∈ Nb
a+1. (3.6)

It follows from Lemma 1 that
0 ≤ v(s, s) < f (s), s ∈ Nb

a+1. (3.7)

Since

max
s∈Nb

a+1

Hν−1(s, a) = Hν−1(b, a),

max
s∈Nb

a+1

Hν−1(b, ρ(s)) = Hν−1(b, a), max
s∈Nb

a+1

Hν−2(b, ρ(s)) = 1,

we have
f (s) < Ω, s ∈ Nb

a+1. (3.8)

Thus, by Proposition 3, (3.5), (3.7) and (3.8), we obtain

max
(t,s)∈Nb

a×N
b
a+1

G(t, s) = max
s∈Nb

a+1

{
u(ρ(s), s), v(s, s)

}
≤

{
max
s∈Nb

a+1

u(ρ(s), s), max
s∈Nb

a+1

v(s, s)
}
< max

s∈Nb
a+1

f (s) < Ω.

The proof is complete. �

Theorem 3.3. Assume α, β, γ, δ ≥ 0 and β ≥ α such that (1.2) holds. The following inequality holds
for the Green’s function G(t, s):

b∑
s=a+1

G(t, s) < Λ, (3.9)

for all (t, s) ∈ Nb
a × N

b
a+1, where

Λ =
1
ξ

[
αγHν−1(b, a)Hν(b, a) + αδHν−1(b, a)Hν−1(b, a)

+ (β − α)γHν(b, a) + (β − α)δHν−1(b, a)
]
. (3.10)

Proof. Consider

b∑
s=a+1

G(t, s) =

t∑
s=a+1

v(t, s) +

b∑
s=t+1

u(t, s)

=

b∑
s=a+1

u(t, s) −
t∑

s=a+1

Hν−1(t, ρ(s))

=
1
ξ

[
αγHν−1(t, a)

b∑
s=a+1

Hν−1(b, ρ(s))

+αδHν−1(t, a)
b∑

s=a+1

Hν−2(b, ρ(s)) + (β − α)γ
b∑

s=a+1

Hν−1(b, ρ(s))
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+(β − α)δ
b∑

s=a+1

Hν−2(b, ρ(s))
]
−

t∑
s=a+1

Hν−1(t, ρ(s))

=
1
ξ

[
αγHν−1(t, a)Hν(b, a) + αδHν−1(t, a)Hν−1(b, a)

+(β − α)γHν(b, a) + (β − α)δHν−1(b, a)
]
− Hν(t, a)

=
1
ξ

[
αγ

(
Hν−1(t, a)Hν(b, a) − Hν−1(b, a)Hν(t, a)

)
+αδ

(
Hν−1(t, a)Hν−1(b, a) − Hν(t, a)Hν−2(b, a)

)
+(β − α)γ

(
Hν(b, a) − Hν(t, a)

)
+ (β − α)δHν−1(b, a)

]
.

Since Hν(t, a) ≥ 0 for all t ∈ Nb
a and

max
t∈Nb

a

Hν(t, a) = Hν(b, a), max
t∈Nb

a

Hν−1(t, a) = Hν−1(b, a),

we obtain (3.9). The proof is complete. �

Theorem 3.4 (See [5]). Let h : Nb
a+1 → R. If (1.1) has only the trivial solution, then the

nonhomogeneous boundary value problem
−
(
∇ν−1

a
(
∇u

))
(t) = h(t), t ∈ Nb

a+2,

αu(a + 1) − β(∇u)(a + 1) = 0,
γu(b) + δ(∇u)(b) = 0,

(3.11)

has a unique solution given by

u(t) =

b∑
s=a+1

G(t, s)h(s), t ∈ Nb
a. (3.12)

Now, we are able to establish a Lyapunov-type inequality for the nabla fractional boundary value
problem (1.6).

Theorem 3.5. Assume α, β, γ, δ ≥ 0 and β ≥ α such that (1.2) holds. If the nabla fractional boundary
value problem (1.6) has a nontrivial solution, then

b∑
s=a+1

|q(s)| >
1
Ω
. (3.13)

Proof. Let B be the Banach space of functions endowed with norm

‖u‖ := max
t∈Nb

a

|u(t)|.

It follows from the above Theorem that a solution to (1.6) satisfies the equation

u(t) =

b∑
s=a+1

G(t, s)q(s)u(s), t ∈ Nb
a.
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Hence

‖u‖ = max
t∈Nb

a

|u(t)| = max
t∈Nb

a

∣∣∣∣ b∑
s=a+1

G(t, s)q(s)u(s)
∣∣∣∣

≤ max
t∈Nb

a

[ b∑
s=a+1

G(t, s)|q(s)||u(s)|
]

≤ ‖u‖max
t∈Nb

a

[ b∑
s=a+1

G(t, s)|q(s)|
]

< Ω‖u‖
b∑

s=a+1

|q(s)|, (using Theorem 3.2)

or, equivalently,
b∑

s=a+1

|q(s)| >
1
Ω
.

The proof is complete. �

4. Application

Here, we estimate a lower bound for the eigenvalues of the nabla fractional eigenvalue problem
corresponding to the nabla fractional boundary value problem (1.6).

Theorem 4.1. Assume that 1 < ν < 2 and u is a nontrivial solution of the nabla fractional eigenvalue
problem 

(
∇ν−1

a
(
∇u

))
(t) + λu(t) = 0, t ∈ Nb

a+2,

αu(a + 1) − β(∇u)(a + 1) = 0,
γu(b) + δ(∇u)(b) = 0,

(4.1)

where u(t) , 0 for each t ∈ Nb−1
a+1. Then,

|λ| >
1

(b − a)Ω
. (4.2)
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