Citation: Murat O. Mamchuev. Non-local boundary value problem for a system of fractional partial differential equations of the type I[J]. AIMS Mathematics, 2020, 5(1): 185-203. doi: 10.3934/math.2020011
[1] | A. M. Nakhushev, Fractional Calculus and Its Applications, Moscow: Fizmatlit, 2003. |
[2] | P. Clement, G. Gripenberg, S. O. Londen, Schauder estimates for equations with fractional derivatives, T. Am. Math. Soc., 352 (2000), 2239-2260. doi: 10.1090/S0002-9947-00-02507-1 |
[3] | M. O. Mamchuev, Boundary value problem for a multidimensional system of equations with Riemann-Liouville fractional derivatives, Sib. Electron. Math. Rep., 16 (2019), 732-747. |
[4] | P. Clement, G. Gripenberg, S. O. Londen, Hölder regularity for a linear fractional evolution equation, In: Topics in Nonlinear Analysis, Basel: Birkhäuser, 1999, 62-82. |
[5] | A. V. Pskhu, Solution of a boundary value problem for a fractional partial differential equation, Differ. Eq., 39 (2003), 1150-1158. doi: 10.1023/B:DIEQ.0000011289.79263.02 |
[6] | A. V. Pskhu, Fractional Partial Differential Equations, Moscow: Nauka, 2005. |
[7] | M. O. Mamchuev, A boundary value problem for a first-order equation with a partial derivative of a fractional order with variable coefficients, Reports of Adyghe (Circassian) International Academy of Sciences, 11 (2009), 32-35. |
[8] | M. O. Mamchuev, Cauchy problem in non-local statement for first order equation with partial derivatives of fractional order with variable coefficients, Reports of Adyghe (Circassian) International Academy of Sciences, 11 (2009), 21-24. |
[9] | M. O. Mamchuev, Boundary Value Problems for Equations and Systems with the Partial Derivatives of Fractional Order, Nalchik: Publishing house KBSC of RAS, 2013. |
[10] | R. Gorenflo, A. Iskenderov, Y. Luchko, Mapping between solutions of fractional diffusion-wave equations, Fract. Calc. Appl. Anal., 3 (2000), 75-86. |
[11] | V. F. Morales-Delgado, M. A. Taneco-Hern'andez, J. F. G'omez-Aguilar, On the solutions of fractional order of evolution equations, EPJ Plus, 132 (2017), 47. |
[12] | M. O. Mamchuev, Boundary value problem for a system of fractional partial differential equations, Differ. Eq., 44 (2008), 1737-1749. doi: 10.1134/S0012266108120100 |
[13] | M. O. Mamchuev, Boundary value problem for a linear system of equations with the partial derivatives of fractional order, Chelyabinsk Phys. Math. J., 2 (2017), 295-311. |
[14] | A. Heibig, Existence of solutions for a fractional derivative system of equations, Integr. Equat. Oper. Th., 72 (2012), 483-508. doi: 10.1007/s00020-012-1950-3 |
[15] | A. N. Kochubei, Fractional-parabolic systems, Potential Anal., 37 (2012), 1-30. doi: 10.1007/s11118-011-9243-z |
[16] | A. N. Kochubei, Fractional-hyperbolic systems, Fract. Calc. Appl. Anal., 16 (2013), 860-873. |
[17] | M. O. Mamchuev, Cauchy problem for the system of fractional partial equations of fractional order, Bulletin KRASEC. Phys. Math. Sci., 23 (2018), 76-82. |
[18] | M. O. Mamchuev, Boundary value problems for a system of differential equations with partial derivatives of fractional order for unlimited domains, Reports of Adyghe (Circassian) International Academy of Sciences, 6 (2003), 64-67. |
[19] | M. O. Mamchuev, Fundamental solution of a system of fractional partial differential equations, Differ. Eq., 46 (2010), 1123-1134. doi: 10.1134/S0012266110080069 |
[20] | M. O. Mamchuev, Cauchy problem in non-local statement for a system of fractional partial differential equations, Differ. Eq., 48 (2012), 354-361. doi: 10.1134/S0012266112030068 |
[21] | M. O. Mamchuev, Mixed problem for loaded system of equations with Riemann-Liouville derivatives, Math. Notes, 97 (2015), 412-222. doi: 10.1134/S0001434615030128 |
[22] | M. O. Mamchuev, Mixed problem for a system of fractional partial differential equations, Differ. Eq., 52 (2016), 133-138. doi: 10.1134/S0012266116010122 |
[23] | M. O. Mamchuev, Non-local boundary value problem for a system of equations with the partial derivatives of fractional order, Math. Notes NEFU, 26 (2019), 23-31. |
[24] | E. M. Wright, On the coefficients of power series having exponential singularities, J. London Math. Soc., 8 (1933), 71-79. |
[25] | E. M. Wright, The asymptotic expansion of the generalized Bessel function, Proc. London Math. Soc. Ser. II, 38 (1934), 257-270. |
[26] | R. Gorenflo, Y. Luchko, F. Mainardi, Analytical properties and applications of the Wright function, Fract. Calc. Appl. Anal., 2 (1999), 383-414. |