Research article Special Issues

Characteristics of metakaolin-based geopolymers using bemban fiber additives

  • Received: 02 July 2024 Revised: 28 August 2024 Accepted: 09 September 2024 Published: 24 September 2024
  • The aim of this study was to investigate the chemical composition and thermal properties of kaolin, the physical properties of metakaolin, and the mechanical properties of metakaolin-based geopolymers using bemban fiber. Kaolin was calcinated to become metakaolin at 600 ℃ for 2 h for optimum conditions. The chemical composition of kaolin mostly consisted of 59.30% SiO2, 34.30% Al2O3, and 3.06% Fe2O3. The transformation of kaolin into metakaolin with temperature was determined through thermal stability tests and analyzed using thermogravimetric analysis (TGA) and differential thermal analysis (DTA). Regarding the thermal properties of kaolin, predehydroxylation occurred at 31.07–92.69 ℃, dihydroxylation occurred at 400–600 ℃, and the endothermic peak in the DTA curve was recorded at 505.63 ℃. This research also analyzed the physical and mechanical characteristics of metakaolin-based geopolymers, with the additional variation percentages of bemban fiber alloys resulting from a 3% NaOH alkalization treatment for 2 h. The test results indicate that the bemban fiber improves the physical and mechanical characteristics of geopolymers. This improvement is related to the enhanced geopolymer characteristics, including a water absorption capacity of 1.10%, porosity of 2.32%, compressive strength of 35.33 MPa, and splitting tensile strength of 11.29 MPa with the addition of 1.5% bemban fiber. Although the split tensile strength increases as the fiber content increases, adding 1.5% of bemban fiber is optimum because a higher content decreases the workability of mixtures.

    Citation: Nursiah Chairunnisa, Ninis Hadi Haryanti, Ratni Nurwidayati, Ade Yuniati Pratiwi, Yudhi Arnandha, Tetti N Manik, Suryajaya, Yoga Saputra, Nur Hazizah. Characteristics of metakaolin-based geopolymers using bemban fiber additives[J]. AIMS Materials Science, 2024, 11(4): 815-832. doi: 10.3934/matersci.2024040

    Related Papers:

  • The aim of this study was to investigate the chemical composition and thermal properties of kaolin, the physical properties of metakaolin, and the mechanical properties of metakaolin-based geopolymers using bemban fiber. Kaolin was calcinated to become metakaolin at 600 ℃ for 2 h for optimum conditions. The chemical composition of kaolin mostly consisted of 59.30% SiO2, 34.30% Al2O3, and 3.06% Fe2O3. The transformation of kaolin into metakaolin with temperature was determined through thermal stability tests and analyzed using thermogravimetric analysis (TGA) and differential thermal analysis (DTA). Regarding the thermal properties of kaolin, predehydroxylation occurred at 31.07–92.69 ℃, dihydroxylation occurred at 400–600 ℃, and the endothermic peak in the DTA curve was recorded at 505.63 ℃. This research also analyzed the physical and mechanical characteristics of metakaolin-based geopolymers, with the additional variation percentages of bemban fiber alloys resulting from a 3% NaOH alkalization treatment for 2 h. The test results indicate that the bemban fiber improves the physical and mechanical characteristics of geopolymers. This improvement is related to the enhanced geopolymer characteristics, including a water absorption capacity of 1.10%, porosity of 2.32%, compressive strength of 35.33 MPa, and splitting tensile strength of 11.29 MPa with the addition of 1.5% bemban fiber. Although the split tensile strength increases as the fiber content increases, adding 1.5% of bemban fiber is optimum because a higher content decreases the workability of mixtures.



    加载中


    [1] Choi YC (2022) Hydration and internal curing properties of plant-based natural fiber-reinforced cement composites. Case Stud Constr Mater 17: e01690. https://doi.org/10.1016/j.cscm.2022.e01690 doi: 10.1016/j.cscm.2022.e01690
    [2] Camargo MM, Taye EA, Roether JA, et al. (2020) A review on natural fiber-reinforced geopolymer and cement-based composites. Materials (Basel) 13: 4603. https://doi.org/10.3390/ma13204603 doi: 10.3390/ma13204603
    [3] Alsalman A, Assi LN, Kareem RS, et al. (2021) Energy and CO2 emission assessments of alkali-activated concrete and ordinary Portland cement concrete: A comparative analysis of different grades of concrete. Clean Environ Syst 3: 100047. https://doi.org/10.1016/j.cesys.2021.100047 doi: 10.1016/j.cesys.2021.100047
    [4] Turner LK, Collins FG (2013) Carbon dioxide equivalent (CO2−e) emissions: A comparison between geopolymer and OPC cement concrete. Constr Build Mater 43: 125–130. http://dx.doi.org/10.1016/j.conbuildmat.2013.01.023 doi: 10.1016/j.conbuildmat.2013.01.023
    [5] Huntzinger DN, Eatmon TD (2009) A life-cycle assessment of Portland cement manufacturing: Comparing the traditional process with alternative technologies. J Clean Prod 17: 668–675. https://doi.org/10.1016/j.jclepro.2008.04.007 doi: 10.1016/j.jclepro.2008.04.007
    [6] Soutsos M, Boyle AP, Vinai R, et al. (2016) Factors influencing the compressive strength of fly ash based geopolymers. Constr Build Mater 110: 355–368. http://dx.doi.org/10.1016/j.conbuildmat.2015.11.045 doi: 10.1016/j.conbuildmat.2015.11.045
    [7] Xue C, Sirivivatnanon V, Nezhad A, et al. (2023) Comparisons of alkali-activated binder concrete (ABC) with OPC concrete—A review. Cem Concr Compos 135: 104851. https://doi.org/10.1016/j.cemconcomp.2022.104851 doi: 10.1016/j.cemconcomp.2022.104851
    [8] Rashad AM, Zeedan SR (2011) The effect of activator concentration on the residual strength of alkali-activated fly ash pastes subjected to thermal load. Constr Build Mater 25: 3098–3107. http://dx.doi.org/10.1016/j.conbuildmat.2010.12.044 doi: 10.1016/j.conbuildmat.2010.12.044
    [9] Verma M, Chouksey A, Meena RK, et al. (2023) Analysis of the properties of recycled aggregates concrete with lime and metakaolin. Mater Res Express 10: 095508. https://doi.org/10.1088/2053-1591/acf983 doi: 10.1088/2053-1591/acf983
    [10] Okoye FN, Prakash S, Singh NB (2017) Durability of fly ash based geopolymer concrete in the presence of silica fume. J Clean Prod 149: 1062–1067. https://doi.org/10.1016/j.jclepro.2017.02.176 doi: 10.1016/j.jclepro.2017.02.176
    [11] Huseien GF, Sam ARM, Shah KW, et al. (2019) Evaluation of alkali-activated mortars containing high volume waste ceramic powder and fly ash replacing GBFS. Constr Build Mater 210: 78–92. https://doi.org/10.1016/j.conbuildmat.2019.03.194 doi: 10.1016/j.conbuildmat.2019.03.194
    [12] Timakul P, Rattanaprasit W, Aungkavattana P (2016) Enhancement of compressive strength and thermal shock resistance of fly ash-based geopolymer composites. Constr Build Mater 121: 653–658. http://dx.doi.org/10.1016/j.conbuildmat.2016.06.037 doi: 10.1016/j.conbuildmat.2016.06.037
    [13] Sá Ribeiro RA, Sá Ribeiro MG, Sankar K, et al. (2016) Geopolymer-bamboo composite—A novel sustainable construction material. Constr Build Mater 123: 501–507. https://doi.org/10.1016/j.conbuildmat.2016.07.037 doi: 10.1016/j.conbuildmat.2016.07.037
    [14] Rumbayan R, Sudarno S (2020) Kuat tekan, kuat lentur dan daya serap air untuk batako dengan penambahan serat sabut kelapa. J Polimdo 2: 145–153. http://dx.doi.org/10.47600/jtst.v2i3.255 doi: 10.47600/jtst.v2i3.255
    [15] Syarief A, Basyir AA, Nugraha A (2021) Pengaruh orientasi serat dan waktu alkalisasi pada laminates composite polyester-serat bemban (donax canniformis) terhadap kekuatan bending, impact dan bentuk patahan. Info-Teknik 22: 209. https://doi.org/10.20527/infotek.v22i2.12387 doi: 10.20527/infotek.v22i2.12387
    [16] Alviyanda A, Sipayung CS (2023) Studi batuan asal (provenance) batupasir formasi simpangaur daerah way krui Lampung. J Sci Appl Technol 7: 26–34. https://journal.itera.ac.id/index.php/jsat/article/view/1086
    [17] Hasfianti FE, Prabawa IGDP, Nurhidayati N, et al. (2021) Potensi pemanfaatan kaolin asal kalimantan selatan sebagai pengganti clay impor pada pembuatan papan semen. J Keramik dan Gelas Indones 30. Available from: https://media.neliti.com/media/publications/453234-potential-utilization-of-kaolin-from-sou-3e5f8942.pdf.
    [18] Sarah KMAS, Géber R, Simon A, et al. (2023) Comparative study of metakaolin-based geopolymer characteristics utilizing different dosages of water glass in the activator solution. Results Eng 20: 101469. https://doi.org/10.1016/j.rineng.2023.101469 doi: 10.1016/j.rineng.2023.101469
    [19] Sá Ribeiro RA, Sá Ribeiro MG, Kriven WM (2017) A review of particle- and fiber-reinforced metakaolin-based geopolymer composites. J Ceram Sci Technol 8: 307–322. https://doi.org/10.4416/JCST2017-00048 doi: 10.4416/JCST2017-00048
    [20] Mohamed OA, Al Khattab R (2022) Fresh properties and sulfuric acid resistance of sustainable mortar using alkali-activated GGBS/fly ash binder. Polymers (Basel) 14: 591. https://doi.org/10.3390/polym14030591 doi: 10.3390/polym14030591
    [21] Mohamed OA (2023) Effects of the curing regime, acid exposure, alkaline activator dosage, and precursor content on the strength development of mortar with alkali-activated slag and fly ash binder: a critical review. Polymers (Basel) 15: 1248. https://doi.org/10.3390/polym15051248 doi: 10.3390/polym15051248
    [22] Kaya M, Köksal F, Bayram M, et al. (2023) The effect of marble powder on physico-mechanical and microstructural properties of kaolin-based geopolymer pastes. Struct Concr 24: 6485–6504. https://doi.org/10.1002/suco.202201010 doi: 10.1002/suco.202201010
    [23] Khaled Z, Mohsen A, Soltan AM, et al. (2023) Optimization of kaolin into Metakaolin: Calcination conditions, mix design and curing temperature to develop alkali activated binder. Ain Shams Eng J 14: 102142. https://doi.org/10.1016/j.asej.2023.102142 doi: 10.1016/j.asej.2023.102142
    [24] Jindal BB, Alomayri T, Hasan A, et al. (2023) Geopolymer concrete with metakaolin for sustainability: a comprehensive review on raw material's properties, synthesis, performance, and potential application. Environ Sci Pollut Res 30: 25299–25324. https://doi.org/10.1007/s11356-021-17849-w doi: 10.1007/s11356-021-17849-w
    [25] Van Deventer JSJ, Provis JL, Duxson P (2012) Technical and commercial progress in the adoption of geopolymer cement. Miner Eng 29: 89–104. http://dx.doi.org/10.1016/j.mineng.2011.09.009 doi: 10.1016/j.mineng.2011.09.009
    [26] Zhang ZH, Zhu HJ, Zhou CH, et al. (2016) Geopolymer from kaolin in China: An overview. Appl Clay Sci 119: 31–41. http://dx.doi.org/10.1016/j.clay.2015.04.023 doi: 10.1016/j.clay.2015.04.023
    [27] Saukani M, Sholehah I, Arief S, et al. (2020) Karakterisasi stabilitas termal kaolin tatakan Kalimantan Selatan. J Fis dan Apl 16: 29–32. https://doi.org/10.12962/j24604682.v16i1.4756 doi: 10.12962/j24604682.v16i1.4756
    [28] Cong PL, Cheng YQ (2021) Advances in geopolymer materials: A comprehensive review. J Traffic Transp Eng (English Ed) 8: 283–314. https://doi.org/10.1016/j.jtte.2021.03.004 doi: 10.1016/j.jtte.2021.03.004
    [29] Abdalla JA, Hawileh RA, Bahurudeen A, et al. (2023) A comprehensive review on the use of natural fibers in cement/geopolymer concrete: A step towards sustainability. Case Stud Constr Mater 19: e02244. https://doi.org/10.1016/j.cscm.2023.e02244 doi: 10.1016/j.cscm.2023.e02244
    [30] Shilar FA, Ganachari SV, Patil VB, et al. (2022) Evaluation of structural performances of metakaolin based geopolymer concrete. J Mater Res Technol 20: 3208–3228. https://doi.org/10.1016/j.jmrt.2022.08.020 doi: 10.1016/j.jmrt.2022.08.020
    [31] Giese Jr. RF (2018) Kaolin minerals: Structures and stabilities, In: Bailey SW, Hydrous Phyllosilicates, Berlin: De Gruyter, 29–66.
    [32] Faqir NM, Shawabkeh R, Al-Harthi M, et al. (2019) Fabrication of geopolymers from untreated kaolin clay for construction purposes. Geotech Geol Eng 37: 129–137. https://doi.org/10.1007/s10706-018-0597-5 doi: 10.1007/s10706-018-0597-5
    [33] Longhi MA, Rodríguez ED, Bernal SA, et al. (2016) Valorisation of a kaolin mining waste for the production of geopolymers. J Clean Prod 115: 265–272. https://doi.org/10.1016/j.jclepro.2015.12.011 doi: 10.1016/j.jclepro.2015.12.011
    [34] Badan Standardisasi Nasional (2017) Persyaratan perancangan geoteknik. Standar Nas Indones 8460.
    [35] Méité N, Konan LK, Tognonvi MT, et al. (2022) Effect of metakaolin content on mechanical and water barrier properties of cassava starch films. South African J Chem Eng 40: 186https://doi.org/10.1016/j.sajce.2022.03.005 doi: 10.1016/j.sajce.2022.03.005
    [36] Kenne Diffo BB, Elimbi A, Cyr M, et al. (2015) Effect of the rate of calcination of kaolin on the properties of metakaolin-based geopolymers. J Asian Ceram Soc 3: 130–138. http://dx.doi.org/10.1016/j.jascer.2014.12.003 doi: 10.1016/j.jascer.2014.12.003
    [37] Oliveira LB, Marvila MT, Fediuk R, et al. (2023) Development of a complementary precursor based on flue gas desulfurization (FGD) for geopolymeric pastes produced with metakaolin. J Mater Res Technol 22: 3489–3501. https://doi.org/10.1016/j.jmrt.2023.01.017 doi: 10.1016/j.jmrt.2023.01.017
    [38] Zunino F, Scrivener K (2021) The reaction between metakaolin and limestone and its effect in porosity refinement and mechanical properties. Cem Concr Res 140: 106307. https://doi.org/10.1016/j.cemconres.2020.106307 doi: 10.1016/j.cemconres.2020.106307
    [39] Sinngu F, Ekolu SO, Naghizadeh A, et al. (2023) Evaluation of metakaolin pozzolan for cement in South Africa. Dev Built Environ 14: 100154. https://doi.org/10.1016/j.dibe.2023.100154 doi: 10.1016/j.dibe.2023.100154
    [40] Ulfiati R, Dhaneswara D, Fatriansyah JF, et al. (2020) The effect of calcination temperature on metakaolin characteristic synthesized from badau belitung kaolin. Key Eng Mater 841: 312–316. https://doi.org/10.4028/www.scientific.net/KEM.841.312 doi: 10.4028/www.scientific.net/KEM.841.312
    [41] Purbasari A, Samadhi TW (2021) Kajian dehidroksilasi termal kaolin menjadi metakaolin menggunakan analisis termogravimetri. Alchemy J Penelit Kim 17: 105–112. https://doi.org/10.20961/alchemy.17.1.47337.105-112 doi: 10.20961/alchemy.17.1.47337.105-112
    [42] Liew YM, Kamarudin H, Mustafa Al Bakri AM, et al. (2012) Processing and characterization of calcined kaolin cement powder. Constr Build Mater 30: 794–802. https://doi.org/10.1016/j.conbuildmat.2011.12.079 doi: 10.1016/j.conbuildmat.2011.12.079
    [43] Stuart BH (2004) Infrared Spectroscopy: Fundamentals and Applications, New York: John Wiley & Sons.
    [44] Essaidi N, Samet B, Baklouti S, et al. (2014) Feasibility of producing geopolymers from two different Tunisian clays before and after calcination at various temperatures. Appl Clay Sci 88–89: 221–227. http://dx.doi.org/10.1016/j.clay.2013.12.006 doi: 10.1016/j.clay.2013.12.006
    [45] Erasmus E (2016) The influence of thermal treatment on properties of kaolin. Hem Ind 70: 66–66. https://doi.org/10.2298/HEMIND150720066E doi: 10.2298/HEMIND150720066E
    [46] Tironi A, Trezza MA, Irassar EF, et al. (2012) Thermal treatment of kaolin: Effect on the pozzolanic activity. Procedia Mater Sci 1: 343–350. https://doi.org/10.1016/j.mspro.2012.06.046 doi: 10.1016/j.mspro.2012.06.046
    [47] Paulus JM, Supit S, Mantiri H (2022) Karakteristik mekanik campuran panel dinding berbahan dasar metakaolin dan serat bambu. J Tek Sipil Terap 4: 1–10. https://doi.org/10.47600/jtst.v4i1.364 doi: 10.47600/jtst.v4i1.364
    [48] Walbrück K, Drewler L, Witzleben S, et al. (2021) Factors influencing thermal conductivity and compressive strength of natural fiber-reinforced geopolymer foams. Open Ceram 5: 100065. https://doi.org/10.1016/j.oceram.2021.100065 doi: 10.1016/j.oceram.2021.100065
    [49] Yanou RN, Kaze RC, Adesina A, et al. (2021) Performance of laterite-based geopolymers reinforced with sugarcane bagasse fibers. Case Stud Constr Mater 15: e00762. https://doi.org/10.1016/j.cscm.2021.e00762 doi: 10.1016/j.cscm.2021.e00762
    [50] Cai JM, Li XP, Tan JW, et al. (2020) Thermal and compressive behaviors of fly ash and metakaolin-based geopolymer. J Build Eng 30: 101307. https://doi.org/10.1016/j.jobe.2020.101307 doi: 10.1016/j.jobe.2020.101307
    [51] Ayeni O, Onwualu AP, Boakye E (2021) Characterization and mechanical performance of metakaolin-based geopolymer for sustainable building applications. Constr Build Mater 272: 121938. https://doi.org/10.1016/j.conbuildmat.2020.121938 doi: 10.1016/j.conbuildmat.2020.121938
    [52] Anwar S, Kusumastuti E (2016) Pemanfaatan serat pohon pisang dalam sintesis geopolimer abu layang batubara. Indo J Chem Sci 5. https://doi.org/10.15294/ijcs.v5i1.9170 doi: 10.15294/ijcs.v5i1.9170
    [53] Mariamah, Chairunnisa N, Nurwidayati R (2023) The effect of natrium hydroxide molarity variation and alkali ratio on the compressive strength of geopolymer paste and mortar. IOP Conf Ser Earth Environ Sci 1184: 012025. https://doi.org/10.1088/1755-1315/1184/1/012025 doi: 10.1088/1755-1315/1184/1/012025
    [54] Haryanti NH, Chairunnisa N, Nurwidayati R, et al. (2023) The potential of bemban fiber as raw material of geopolymer. Int J Geomate 25: 21–31. https://doi.org/10.21660/2023.112.4083 doi: 10.21660/2023.112.4083
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(573) PDF downloads(59) Cited by(0)

Article outline

Figures and Tables

Figures(7)  /  Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog