This paper considered divergence-free basis methods to solve the viscous Stokes equations. A discrete divergence-free subspace was constructed to reduce the saddle point problem of the Stokes problem to a smaller-sized symmetric and positive definite system solely depending on the velocity components. Then, the system could decouple the unknowns in velocity and pressure and solve them independently. However, such a scheme may not ensure an accurate numerical solution to the velocity. In order to obtain satisfactory accuracy, we used a velocity reconstruction technique to enhance the divergence-free scheme to achieve the desired pressure and viscosity robustness. Numerical results were presented to demonstrate the robustness and accuracy of this discrete divergence-free method.
Citation: Jay Chu, Xiaozhe Hu, Lin Mu. A pressure-robust divergence free finite element basis for the Stokes equations[J]. Electronic Research Archive, 2024, 32(10): 5633-5648. doi: 10.3934/era.2024261
This paper considered divergence-free basis methods to solve the viscous Stokes equations. A discrete divergence-free subspace was constructed to reduce the saddle point problem of the Stokes problem to a smaller-sized symmetric and positive definite system solely depending on the velocity components. Then, the system could decouple the unknowns in velocity and pressure and solve them independently. However, such a scheme may not ensure an accurate numerical solution to the velocity. In order to obtain satisfactory accuracy, we used a velocity reconstruction technique to enhance the divergence-free scheme to achieve the desired pressure and viscosity robustness. Numerical results were presented to demonstrate the robustness and accuracy of this discrete divergence-free method.
[1] | S. C. Brenner, A nonconforming multigrid method for the stationary Stokes equations, Math. Comput., 55 (1990), 411–437. https://doi.org/10.1090/S0025-5718-1990-1035927-5 doi: 10.1090/S0025-5718-1990-1035927-5 |
[2] | F. Thomasset, Implementation of Finite Element Methods for Navier-Stokes equations, Springer-Verlag, New York-Berlin, 1981. |
[3] | L. Mu, J. Wang, X. Ye, S. Zhang, A discrete divergence free weak Galerkin finite element method for the Stokes equations, Appl. Numer. Math., 125 (2018), 172–182. https://doi.org/10.1016/j.apnum.2017.11.006 doi: 10.1016/j.apnum.2017.11.006 |
[4] | J. H. Adler, Y. He, X. Hu, S. MacLachlan, P. Ohm, Monolithic multigrid for a reduced-quadrature discretization of poroelasticity, SIAM J. Sci. Comput., 45 (2023), S54–S81. https://doi.org/10.1137/21M1429072 doi: 10.1137/21M1429072 |
[5] | A. Linke, A divergence-free velocity reconstruction for incompressible flows, C.R. Math., 350 (2012), 837–840. https://doi.org/10.1016/j.crma.2012.10.010 doi: 10.1016/j.crma.2012.10.010 |
[6] | A. Linke, On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime, Comput. Methods Appl. Mech. Eng., 268 (2014), 782–800. https://doi.org/10.1016/j.cma.2013.10.011 doi: 10.1016/j.cma.2013.10.011 |
[7] | L. Mu, Pressure robust weak Galerkin finite element methods for Stokes problems, SIAM J. Sci. Comput., 42 (2020), 608–629. https://doi.org/10.1137/19M1266320 doi: 10.1137/19M1266320 |
[8] | L. Mu, X. Ye, S. Zhang, A stabilizer-free, pressure-robust, and superconvergence weak Galerkin finite element method for the Stokes equations on polytopal mesh, SIAM J. Sci. Comput., 43 (2021), 2614–2637. https://doi.org/10.1137/20M1380405 doi: 10.1137/20M1380405 |
[9] | X. Hu, S. Lee, L. Mu, S. Y. Yi, Pressure-robust enriched Galerkin methods for the Stokes equations, J. Comput. Appl. Math., 436 (2024), 115449. https://doi.org/10.1016/j.cam.2023.115449 doi: 10.1016/j.cam.2023.115449 |
[10] | P. L. Lederer, A. Linke, C. Merdon, J. Schóoberl, Divergence-free reconstruction operators for pressure-robust Stokes discretizations with continuous pressure finite elements, SIAM J. Numer. Anal., 55 (2017), 1291–1314. https://doi.org/10.1137/16M1089964 doi: 10.1137/16M1089964 |
[11] | A. Linke, C. Merdon, W. Wollner, Optimal $L^2$ velocity error estimate for a modified pressure-robust Crouzeix–Raviart Stokes element, IMA J. Numer. Anal., 37 (2017), 354–374. https://doi.org/10.1093/imanum/drw019 doi: 10.1093/imanum/drw019 |
[12] | A. Linke, G. Matthies, L. Tobiska, Robust arbitrary order mixed finite element methods for the incompressible Stokes equations with pressure independent velocity errors, ESAIM. Math. Model. Numer. Anal., 50 (2016), 289–309. https://doi.org/10.1051/m2an/2015044 doi: 10.1051/m2an/2015044 |
[13] | D. Frerichs, C. Merdon, Divergence-preserving reconstructions on polygons and a really pressure-robust virtual element method for the Stokes problem, IMA J. Numer. Anal., 42 (2022), 597–619. https://doi.org/10.1093/imanum/draa073 doi: 10.1093/imanum/draa073 |
[14] | P. L. Lederer, S. Rhebergen, A pressure-robust embedded discontinuous Galerkin method for the Stokes problem by reconstruction operators, SIAM J. Numer. Anal., 58 (2020), 2915–2933. https://doi.org/10.1137/20M1318389 doi: 10.1137/20M1318389 |
[15] | G. Wang, L. Mu, Y. Wang, Y. He, A pressure-robust virtual element method for the Stokes problem, Comput. Methods Appl. Mech. Eng., 382 (2021), 113879. https://doi.org/10.1016/j.cma.2021.113879 doi: 10.1016/j.cma.2021.113879 |
[16] | A. Linke, C. Merdon, M. Neilan, F. Neumann, Quasi-optimality of a pressure-robust nonconforming finite element method for the Stokes-problem, Math. Comput., 87 (2018), 1543–1566. https://doi.org/10.1090/mcom/3344 doi: 10.1090/mcom/3344 |
[17] | K. L. Kirk, S. Rhebergen, Analysis of a pressure-robust hybridized discontinuous Galerkin method for the stationary Navier–Stokes equations, J. Sci. Comput., 81 (2019), 881–897. https://doi.org/10.1007/s10915-019-01040-y doi: 10.1007/s10915-019-01040-y |
[18] | D. Yang, Y. He, Y. Zhang, Analysis and computation of a pressure-robust method for the rotation form of the incompressible Navier–Stokes equations with high-order finite elements, Comput. Math. Appl., 112 (2022), 1–22. https://doi.org/10.1016/j.camwa.2022.02.017 doi: 10.1016/j.camwa.2022.02.017 |
[19] | C. Merdon, W. Wollner, Pressure-robustness in the context of optimal control, SIAM J. Control Optim., 61 (2023), 342–360. https://doi.org/10.1137/22M1482603 doi: 10.1137/22M1482603 |
[20] | X. Liu, Y. Nie, Pressure-independent velocity error estimates for (Navier-)Stokes nonconforming virtual element discretization with divergence free, Numerical Algorithms, 90 (2022), 477–506. https://doi.org/10.1007/s11075-021-01195-6 doi: 10.1007/s11075-021-01195-6 |
[21] | Y. Wang, G. Wang, Y. Shen, A pressure-robust virtual element method for the Navier-Stokes problem on polygonal mesh, Comput. Math. Appl., 131 (2023), 124–137. https://doi.org/10.1016/j.camwa.2022.12.013 doi: 10.1016/j.camwa.2022.12.013 |
[22] | S. Lee, L. Mu, A uniform and pressure-robust enriched Galerkin method for the Brinkman equations, J. Sci. Comput., 99 (2024), 39. https://doi.org/10.1007/s10915-024-02503-7 doi: 10.1007/s10915-024-02503-7 |
[23] | S. Rhebergen, G. N. Wells, Preconditioning for a pressure-robust HDG discretization of the Stokes equations, SIAM J. Sci. Comput., 44 (2022), 583–604. https://doi.org/10.1137/21M1420964 doi: 10.1137/21M1420964 |
[24] | D. Kim, L. Zhao, E. Chung, E. J. Park, Pressure-robust staggered DG methods for the Navier-Stokes equations on general meshes, preprint, arXiv: 2107.09226. |
[25] | S. Zhang, A new family of stable mixed finite elements for the 3D Stokes equations, Math. Comput., 74 (2005), 543–554. https://doi.org/10.1090/S0025-5718-04-01711-9 doi: 10.1090/S0025-5718-04-01711-9 |
[26] | S. Zhang, A family of Qk+1, k × Qk, k+1 divergence-free finite elements on rectangular grids, SIAM J. Numer. Anal., 47 (2009), 2090–2107. https://doi.org/10.1137/080728949 doi: 10.1137/080728949 |
[27] | J. Guzman, M. Neilan, Conforming and divergence-free Stokes elements on general triangular meshes, Math. Comput., 83 (2014), 15–36. https://doi.org/10.1090/S0025-5718-2013-02753-6 doi: 10.1090/S0025-5718-2013-02753-6 |
[28] | J. Guzman, M. Neilan, Inf-sup stable finite elements on barycentric refinements producing divergence-free approximations in arbitrary dimensions, SIAM J. Numer. Anal., 56 (2018), 2826–2844. https://doi.org/10.1137/17M1153467 doi: 10.1137/17M1153467 |
[29] | S. H. Christiansen, K. Hu, Generalized finite element systems for smooth differential forms and Stokes' problem, Numer. Math., 140 (2018), 327–371. https://doi.org/10.1007/s00211-018-0970-6 doi: 10.1007/s00211-018-0970-6 |
[30] | J. Wang, X. Ye, New finite element methods in computational fluid dynamics by H(div) elements, SIAM J. Numer. Anal., 45 (2007), 1269–1286. https://doi.org/10.1137/060649227 doi: 10.1137/060649227 |
[31] | C. Lehrenfeld, J. Schoberl, High order exactly divergence-free hybrid discontinuous Galerkin methods for unsteady incompressible flows, Comput. Methods Appl. Mech. Eng., 307 (2016), 339–361. https://doi.org/10.1016/j.cma.2016.04.025 doi: 10.1016/j.cma.2016.04.025 |
[32] | J. Carrero, B. Cockburn, D. Schotzau, Hybridized globally divergence-free LDG methods. Part I: The Stokes problem, Math. Comput., 75 (2006), 533–563. https://doi.org/10.1090/S0025-5718-05-01804-1 doi: 10.1090/S0025-5718-05-01804-1 |
[33] | G. Fu, Y. Jin, W. Qiu, Parameter-free superconvergent H(div)-conforming HDG methods for the Brinkman equations, IMA J. Numer. Anal., 39 (2019), 957–982. https://doi.org/10.1093/imanum/dry001 doi: 10.1093/imanum/dry001 |
[34] | V. John, A. Linke, C. Merdon, M. Neilan, L. G. Rebholz, On the divergence constraint in mixed finite element methods for incompressible flows, SIAM Rev., 59 (2017), 492–544. https://doi.org/10.1137/15M1047696 doi: 10.1137/15M1047696 |
[35] | X. Li, H. Rui, A low-order divergence-free H (div)-conforming finite element method for Stokes flows, IMA J. Numer. Anal., 42 (2022), 3711–3734. https://doi.org/10.1093/imanum/drab080 doi: 10.1093/imanum/drab080 |
[36] | V. John, X. Li, C. Merdon, H. Rui, Inf–sup stabilized Scott–Vogelius pairs on general shape-regular simplicial grids by Raviart–Thomas enrichment, Math. Models Methods Appl. Sci., 34 (2024), 919–949. https://doi.org/10.1142/S0218202524500180 doi: 10.1142/S0218202524500180 |
[37] | J. Wang, X. Ye, A weak Galerkin mixed finite element method for second-order elliptic problems, Math. Comput., 83 (2014), 2101–2126. https://doi.org/10.1090/S0025-5718-2014-02852-4 doi: 10.1090/S0025-5718-2014-02852-4 |
[38] | J. Wang, X. Ye, A weak Galerkin finite element method for the Stokes equations, Adv. Comput. Math., 42 (2016), 155–174. https://doi.org/10.1007/s10444-015-9415-2 doi: 10.1007/s10444-015-9415-2 |