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Abstract: This paper considered divergence-free basis methods to solve the viscous Stokes equations.
A discrete divergence-free subspace was constructed to reduce the saddle point problem of the Stokes
problem to a smaller-sized symmetric and positive definite system solely depending on the velocity
components. Then, the system could decouple the unknowns in velocity and pressure and solve them
independently. However, such a scheme may not ensure an accurate numerical solution to the velocity.
In order to obtain satisfactory accuracy, we used a velocity reconstruction technique to enhance the
divergence-free scheme to achieve the desired pressure and viscosity robustness. Numerical results
were presented to demonstrate the robustness and accuracy of this discrete divergence-free method.
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1. Introduction

The viscous Stokes problem seeks unknown functions u and p that fulfill the following equations,

−ν∆u + ∇p = f in Ω, (1.1)
∇ · u = 0 in Ω, (1.2)

u = g on ∂Ω, (1.3)

where Ω is a polygonal domain in R2. For the nonhomogeneous boundary condition u = g on ∂Ω,
one can use the standard procedure by letting u = u0 + ug. ug is a known function satisfying ug = g
on ∂Ω and u0 is zero at ∂Ω and satisfies (1.1) and (1.2) with different righthand sides. For the sake
of simplicity, we only consider the homogeneous boundary condition, i.e., g = 0. The scheme can
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be extended to the nonhomogeneous boundary condition. Using the standard notation for the Sobolev
spaces, the weak formulation for the Stokes problems (1.1)–(1.3), in the primary velocity-pressure
form, we seek u ∈ [H1

0(Ω)]2 and p ∈ L2
0(Ω) such that,(ν∇u,∇v) − (∇ · v, p) = (f, v), ∀ v ∈ [H1

0(Ω)]2,

(∇ · u, q) = 0, ∀ q ∈ L2
0(Ω).

In the standard finite element discretization schemes, pressure and velocity unknowns are approx-
imated simultaneously via a saddle-point system. To avoid solving such an indefinite system, the
divergence-free finite element methods have been proposed to compute the numerical velocity by solv-
ing a symmetric positive-definite system in a divergence-free subspace. Due to the discrete or exact
divergence-free property, such a method eliminates the pressure from the coupled systems, resulting in
a symmetric positive definite system with a smaller size. Previously, a divergence-free basis was con-
structed for different finite element methods, e.g., [1–4]. The original divergence-free weak Galerkin
(WG) method was proposed in [3].

Unlike most existing divergence-free finite element methods, the discrete divergence-free WG
method considered in this paper allows the meshes to consist of a mix of general polygons and hanging
nodes. However, although the basis functions are discrete divergence-free, they may not guarantee
good velocity approximation since the velocity error may depend on viscosity and pressure. This is
because the div-free scheme is non-pressure-robust; thus, the velocity error bound depends on viscosity
and pressure. Small viscosity values or inaccurate pressure approximations may produce an incorrect
velocity solution to ruin the simulation.

This paper shows that the numerical pollution mentioned above, caused by small viscosities or large
pressure errors, also appears for the previous discrete divergence-free WG method. In this paper, we
contribute to modify the original scheme and investigate the technique to remove viscosity and pressure
effects in the velocity approximations with minimal effort. The technique follows the previous work
of the authors and employs the velocity-reconstruction operator to modify the load term. This recon-
struction technique was first proposed by Linke [5,6] and was then widely used to modify the existing
finite element scheme for Stokes problems [7–16] and other incompressible fluid problems due to the
minimal efforts required to achieve the desired good quality in numerical solutions [17–22]. Unlike
using the H(div) basis functions in H(div) finite element methods, the velocity reconstruction opera-
tor is designed to map the original velocity basis functions to a suitable subspace of the H(div) space.
Then, this modification only changes the load term assembly, but the stiffness matrix remains the same.
In addition to the velocity reconstruction operator, we also mention that there are other advanced ap-
proaches to achieve the desired pressure-robustness [17,23,24]. Due to the page limitation, we only cite
an incomplete list of the previous schemes featuring pressure-robustness. For example, Zhang [25,26]
constructed divergence-free pairs of finite element spaces and used it to solve incompressible fluid
problems [27, 28]. Another successful strategy is to employ the Stokes complex of the lowest regu-
larity [29] and the approximate velocity in the H(div) space [30]. A similar approach has been used
in hybrid discontinuous Galerkin methods (HDG) to achieve the desired pressure-robustness [31–33].
More details on divergence-free and pressure-robust schemes can be found in the review paper [34].
Recently, there is another approach to achieve the desired robustness by enriching the Raviart-Thomas
(RT) basis functions into the H1 -finite element spaces [35, 36]. In this paper, we focus on designing
the proper velocity-reconstruction operator and modifying the source term assembly to achieve robust-
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ness. The advantages of this modification lie in the potential to recycle the researchers’ previous codes
and enhance the former work with minimal changes to the reliable numerical approximation. We also
demonstrate the pressure recovery procedure for the case that requires a pressure approximation.

The rest of this paper is organized as follows. In Section 2, we first introduce the notation and
two existing numerical algorithms and then propose the robust pressure algorithm and the pressure
recovery scheme. In Section 3, we demonstrate the main error estimates for the Stokes problem.
Several numerical experiments are presented in Section 4. We conclude this paper in Section 5.

2. Numerical scheme

This section recalls the standard WG method and proposes our new divergence-free and pressure-
robust WG methods. Let Th be a partition of the domain Ω consisting of a mix of polygons satisfying
the set of conditions specified in [37]. Let Eh denote the set of all edges in Th and E0

h = Eh\∂Ω be the
set of all interior edges. Based on the partition Th, we introduce the following finite element spaces Wh

and Vh for the pressure and velocity variables, respectively,

Wh =
{
q : q ∈ L2

0(Ω), q|T ∈ P0(T )
}
,

Vh =
{
v = {v0, vb} : {v0, vb}|T ∈ [P1(T )]2 × [P0(e)]2, e ⊂ ∂T , vb = 0 on ∂Ω

}
,

where Pk(ω) denotes the space of polynomials of degree at most k restricted to ω = e or T .
The discrete weak gradient and divergence operators are defined locally on each T ∈ Th as follows.

Definition 2.1. The discrete weak gradient ∇w : Vh 7→ [P0(T )]2×2 and weak divergence operator
∇w· : Vh 7→ P0(T ) are defined as follows,

(∇wv, q)T = ⟨vb, q · n⟩∂T , ∀q ∈ [P0(T )]2×2,

(∇w · v, φ)T = ⟨vb · n, φ⟩∂T , ∀φ ∈ P0(T ).

For each edge e ∈ Eh, let Qb be the L2 projection from [L2(e)]2 onto [P0(e)]2. Then, we define

a(v,w) :=
∑
T∈Th

(ν∇wv, ∇ww)T +
∑
T∈Th

ν

hT
⟨Qbv0 − vb, Qbw0 − wb⟩∂T ,

b(v, q) :=
∑
T∈Th

(∇w · v, q)T .

Here, hT denotes the mesh size for the element T . Then, a standard WG algorithm (see [38]) is
as follows.

Algorithm 2.1. Standard weak Galerkin algorithm (SWG) A numerical approximation for (1.1)–(1.3)
is to seek uh = {u0,ub} ∈ Vh and ph ∈ Wh such that

a(uh, v) − b(v, ph) = (f, v0), ∀ v = {v0, vb} ∈ Vh,

b(uh, q) = 0, ∀ q ∈ Wh.

Algorithm 2.1 produces a saddle system, which can be challenging due to its indefiniteness, strong
coupling between velocity and pressure, and large size. In some cases, linear solvers for this large sys-
tem involving both velocity and pressure may not be effective. Instead, we use the divergence-free basis
to decouple the velocity and pressure and solve a smaller system, which is symmetric positive definite.
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2.1. Divergence-free finite element basis

In this section, we introduce the divergence-free basis. First, we define the discrete divergence-free
subspace Dh of Vh in the usual way (see [1–3]) as follows,

Dh = {v ∈ Vh; b(v, q) = 0, ∀q ∈ Wh}. (2.1)

Following the techniques introduced in [3] and using the definition (2.1), we explicitly construct the
basis functions as the following three types.

Dh = span{Φ1, · · · ,Φ6NK︸          ︷︷          ︸
Ψ0

,Υ1, · · · ,ΥNE︸         ︷︷         ︸
Ψt

,Λ1, · · · ,ΛNV︸         ︷︷         ︸
ΨV

}. (2.2)

1) Type 1 (Ψ0): For each Ti ∈ Th, i = 1, · · · ,NK with NK being the number of elements, all the six lin-
early independent linear functions Φ6(i−1)+1,Φ6(i−1)+2, · · · ,Φ6(i−1)+6 in Vh are discrete divergence-
free since they are nonzero only in the interior of element Ti.

2) Type 2 (Ψt): For each ei ∈ E
0
h, i = 1, · · · ,NE with NE being the number of interior edges, let tei

be its tangential vector and Ψei,1 and Ψei,2 be the two basis functions of Vh that are nonzero only
on ei. Define Υi := C1Ψei,1 + C2Ψei,2 such that Υi|ei = tei . It is easy to verify that Υi is discrete
divergence-free using the divergence theorem. Note that Υi is nonzero only on ei.

3) Type 3 (ΨV): For each interior vertex Pi ∈ Vh, i = 1, · · · ,NV with NV being the number of
interior vertices, there are r elements sharing Pi which form a hull HPi as shown in Figure 1.
Consequently, there are r interior edges e j ( j = 1, · · · , r) incident with Pi. Let ne j be a normal
vector on e j, and we assume that the normal vectors ne j j = 1, · · · , r are counterclockwise around
the vertex Pi as shown in Figure 1. For each e j, let Ψe j,1 and Ψe j,2 be the two basis functions of
Vh, which are nonzero only on e j. Define Θ j = C1Ψe j,1 + C2Ψe j,2 ∈ Vh such that Θ j|e j = ne j and
then define Λi =

∑r
j=1

1
|e j |
Θ j, which is discrete divergence-free by the divergence theorem. The

construction can be applied to triangular and polygonal grids, as shown in Figure 1.
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Figure 1. HullHPi for triangular grids and polygonal grids.

The dimension of Vh is 6NK + 2NE. Since we use a piecewise constant space Wh for the pressure,
there are NK − 1 divergence-free constraints. Subtracting the number of divergence-free constraints
from the total degrees of freedom (DoFs), (6NK + 2NE)− (NK − 1) = 6NK +NE +NV (where we use the
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Euler’s formula in 2D), we get the dimension of the discrete divergence-free subspace Dh. Note that the
total number of the three types of divergence-free basis functions is exactly 6NK + NE + NV , indicating
that we found all the basis functions that are supported locally. Specifically, the above basis functions
correspond to the components of u0 and ub = {ut,uV}. The basis functions for u0, i.e., {Ψ0}, are defined
only on the interior of each element T , which is the same as the previous SWG element. The basis
functions for ut, that is, {Ψt}, are defined only on each edge e ∈ E0

h along the tangential direction, and
the basis functions for uV , i.e., {ΨV}, are defined only on the edges incident with the vertex V .

Using the divergence-free basis (2.2), the decoupled algorithm can be proposed to solely solve the
velocity uh as follows; see [3] for more details.

Algorithm 2.2. Divergence-free WG algorithm A discrete divergence free approximation for (1.1)–
(1.3) is to find uh = {u0,ub} ∈ Dh such that

a(uh, v) = (f, v0), ∀ v = {v0, vb} ∈ Dh.

Although this algorithm decouples the unknown variables in u and p, it is essentially equivalent to
the SWG Algorithm 2.1. Thus, the velocity error still depends on the pressure error (see Theorem 3.1
and Table 2). This may cause inaccuracy and instability when problems occur with a low viscosity
and a pressure singularity. This computational challenge can be resolved using the pressure-robust
enhancement, which will be discussed in the next section.

2.2. Pressure robust enhancement

We shall employ the velocity reconstruction operator to enhance Algorithm 2.2. The reconstruction
operator Πhv : Dh → D̃h ⊂ H(div;Ω) is defined as∫

e
Πhv · nds =

∫
e

v · nds. (2.3)

Let D̃h|T = RT0(T )∩H(div;Ω). As the fact that Ψt is aligning the tangential direction on each edge,
we only need to compute the reconstruction operator corresponding to ΨV = {Λ1 · · ·ΛNV }. It gives

Πhv =


0, if v = v0 ∈ Ψ0,

0, if v = vb ∈ Ψt,

ΠhΛ j, if v = vb ∈ ΨV = span{Λi, i = 1, · · · ,NV}.

Here, it is easy to verify that in (2.3): ΠhΛi =
∑r

j=1 signe j
ϕRT0

e j , where ϕRT0
e j is the corresponding RT0

basis on the edge e. We associate a unit normal vector ne with e ∈ E0
h, which is assumed to be oriented

from T+ to T−. If e is a boundary edge/face, then ne is the unit outward normal vector to ∂Ω. For the
outer normal n, if [n|T ]e j = ne j , we assign signe j

= 1; if [n|T ]e j = −ne j , we assign signe j
= −1. Thus, by

employing Πh, we propose the following pressure-robust scheme.

Algorithm 2.3. Pressure-robust divergence-free WG algorithm A pressure-robust divergence-free
approximation for (1.1)–(1.3) is to find uh = {u0,ub} ∈ Dh satisfying

a(uh, v) = (f,Πhv), ∀ v = {v0, vb} ∈ Dh.
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As we can see from the discretization, the stiffness matrix is the same as Algorithm 2.2, but only
the load vector changes. By this minor modification, the desired pressure-robustness can be achieved.
The results will be demonstrated in Theorem 3.2 and validated in numerical experiments.

Remark 2.1. For triangular, rectangular, tetrahedral, and cubic meshes, we can directly employ the
associated RT0 or RT[0] basis functions to perform the velocity reconstruction. For polygonal / polyhe-
dral meshes, the techniques in [7, 8] can be used to build the operator Πhv.

2.3. Pressure recovering

In Algorithms 2.2 and 2.3, we decouple the unknowns and only compute the velocity solution uh.
In some cases, the pressure variable is also needed. In this section, we propose the following procedure
that computes the pressure after obtaining the velocity uh.

Algorithm 2.4. Pressure recovering algorithm The pressure can be obtained by solving the following
equation: find ph ∈ Wh such that

b(v, ph) = ℓ(v) − a(uh, v), ∀ v ∈ Vh\Dh.

Here, ℓ(v) = (f, v0) for Algorithm 2.2 and ℓ(v) = (f,Πhv) for Algorithm 2.3. As v ∈ Vh\Dh, let us
assume p−h = ph|T is already known, and we can choose v = {v0 = 0, vb = ne} with e ∈ ∂T and the
value of p+h = ph on the adjacent element sharing the edge e is not computed. Then, the definition of
b(·, ·) implies b(v, ph) = (∇w · v, ph) =

∑
T ⟨vb · ne, ph⟩∂T = ⟨vb · ne, [[ph]]⟩e = |e|

(
p+h − p−h

)
. Here, ne

denotes the normal direction from the current element T to its adjacent element that shares the edge e.
In the implementation, we can assume ph|T1 = 0 to start and compute all the values in ph|T as above
sequentially and locally. There is no need to form the global matrix explicitly.

2.4. Further DoFs reduction by eliminating u0 unknowns

In the above proposed algorithms, we can do further DoFs enhancement by eliminating the un-
knowns corresponding to u0 to obtain a smaller system. This elimination can be done locally when the
global matrix is assembled via static condensation. To state the local elimination procedure, denote by
Dh(T ) the restriction of Dh on T , i.e.,

Dh(T ) = {v = {v0, vb} ∈ Dh, v(x) = 0, for x < T }.

Algorithm 2.5. An approximation to the problem (1.1)–(1.3) is given by seeking uh = {u0,ut,ub} ∈ Dh

satisfying a global equation

a(uh, v) = 0, ∀v = {0,Ψt,Ψb} ∈ Dh,

and a local system on each element T ∈ Th,

a(uh, v) = (f, v0), ∀v = {Ψ0, 0, 0} ∈ Dh(T ).

Remark 2.2. The above algorithm consists of a local system solved on each element T ∈ Th to elim-
inate u0 and a global system for ub, and a global system has ub as its only unknowns that will reduce
the number of unknowns of the WG system. The comparison of DoFs is shown in Figure 2.
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Figure 2. Sparsity pattern for Algorithm 2.2/2.3 (left) and Algorithm 2.5 (right) for uniform
mesh with h = 1/16.

3. Convergence results

In this section, we present the error analysis of Algorithm 2.3 to demonstrate its advantages. Denote
by Q0 the L2 projection operator from [L2(T )]2 onto [P1(T )]2. Define Qhu = {Q0u,Qbu} ∈ Vh and let
Qh p be the local L2 projections onto P0(T ). Furthermore, we define the following norm corresponding
to the WG finite element methods:

|||v||| :=

∑
T∈Th

(
∥∇wv∥2T + h−1

T ∥Qbv0 − vb∥
2
∂T

)
1/2

.

The following optimal error estimates have been derived in [3, 38].

Theorem 3.1. (Non-pressure robust scheme) Let (u; p) ∈ [H1
0(Ω) ∩ H2(Ω)]2 × (L2

0(Ω) ∩ H1(Ω)) be
the solution of (1.1)–(1.3) and (uh; ph) ∈ Vh ×Wh be the solutions of (1.1)–(1.3) and Algorithm 2.1 or
Algorithms 2.2–2.4, respectively. Then, the following error estimate holds true,

|||Qhu − uh||| ≤ Ch(∥u∥2 +
1
ν
∥p∥1), ∥Qh p − ph∥ ≤ Ch(ν∥u∥2 + ∥p∥1). (3.1)

Proof. The proofs can be found in [3].

Theorem 3.2. (Pressure-robust scheme) Let (u; p) ∈ [H1
0(Ω) ∩ H2(Ω)]2 × (L2

0(Ω) ∩ H1(Ω)) be the
solution of (1.1)–(1.3) and (uh; ph) ∈ Vh×Wh be the solution of (1.1)–(1.3) and Algorithms 2.3 and 2.4,
respectively. Then, the following error estimate holds true,

|||Qhu − uh||| ≤ Ch∥u∥2, ∥Qh p − ph∥ ≤ Chν∥u∥2. (3.2)

Proof. By estimating the inconsistent errors caused by changing the righthand load vector and follow-
ing the techniques in [3], the theorem can be proved.
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Remark 3.1. Although the divergence-free scheme only needs to solve the velocity component, the
velocity error may still depend on the pressure, which is a non-pressure-robust scheme as shown in
Theorem 3.1. By modifying the load vector, we completely remove the pressure dependence in the
error estimate to achieve the desired pressure robustness. Besides, the pressure-robust error analysis
can be obtained similarly to the rigorous analysis in [7].

4. Numerical experiments

In this section, we test several benchmark problems to report numerical performance and validate
the convergence results shown in Theorems 3.1 and 3.2. In all numerical tests, triangular meshes have
been used.

4.1. Example 1. Homogeneous Dirichlet boundary condition.

Let Ω = (0, 1) × (0, 1) and the exact solution u and p be,

u =
(

10x2y(x − 1)2(2y − 1)(y − 1)
−10xy2(2x − 1)(x − 1)(y − 1)2

)
and p = 10(2x − 1)(2y − 1).

Denote the errors e = {(Q0u−u0,Qbu−ub)} and ϵ = Qh p− ph. We first compare the computational
cost corresponding to Algorithm 2.1, Algorithm 2.2/2.3, and Algorithm 2.5. Since the stiffness matrix
corresponding to Algorithms 2.2 and 2.3 is identical, we only compute the DoFs for Algorithm 2.2.
The profiles for DoFs are reported in Table 1. Here, we exclude the unknowns for ub for the Dirichlet
boundary as computing the required DoFs.

Table 1. Example 4.1: Comparison of DoFs for different algorithms. Here, “DoFs” denotes
the degrees of freedom and “nnz” denotes the number of nonzeros of the stiffness matrix.

Algorithm 2.1 Algorithm 2.2/2.3 Algorithm 2.5
N DoFsu DoFsp DoFs DoFs nnz DoFs nnz
4 272 32 304 241 1861 49 360
8 1120 128 1248 993 8805 225 1984
16 4544 512 5056 4033 38,245 961 9168
32 18,304 2048 20,352 16,257 159,333 3969 39,280
64 73,472 8192 81,664 65,281 650,341 16,129 162,480
128 294,400 32,768 327,168 261,633 2,627,685 65,025 660,784
256 1,178,624 131,072 1,309,696 1,047,553 10,563,685 261,121 2,665,008

In this table, we first observe that the required DoFs can be significantly reduced by employing
the divergence-free basis. Since we only modify the assembly of the source term in Algorithm 2.3,
the required DoFs in Algorithms 2.2 and 2.3 remain the same. As static condensation is employed
(Algorithm 2.5), the DoFs of the global system can be further reduced. For example, when N = 256,
the size of the global system is reduced from 1 M to 0.2 M, while the density of the matrix increased
from 1E-5 to 4E-5.

Next, we will test the performance corresponding to non-pressure-robust scheme, Algorithm 2.2/Al-
gorithm 2.4, and pressure-robust scheme, Algorithm 2.3/Algorithm 2.4, for a sequence of meshes and
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varying values in ν. In Table 2, we report the error profiles and the convergence results. We ob-
served that:

• All the error profiles produced by Algorithm 2.2/Algorithm 2.4 and Algorithm 2.3/Algorithm 2.4
result in the optimal convergence rate: the velocity error measured in H1-norm and pressure error
measured in L2-norm are of order O(h); the velocity error measured in L2-norm is of order O(h2).
The convergence rates stay the same for different viscosity values ν.
• The velocity errors produced by the non-pressure-robust scheme Algorithms 2.2–2.4 depend on

the viscosity ν. When ν decreases, the velocity error measured in the norms H1- and L2- increases
on the order of 1

ν
. In contrast, the pressure errors measured in L2-norm stay the same as ν varies.

These observations agree with (3.1).
• The velocity errors produced by pressure-robust scheme Algorithms 2.3 and 2.4 do not depend on

the viscosity ν. When ν decreases, the velocity error measured in the norms H1- and L2- remains
the same. In contrast, the pressure error measured in L2-norm decreases at the order ν. These
observations agree with (3.2).
• The above observations validate that, although the scheme can decouple the unknowns in veloc-

ity and pressure and solve them independently, the div-free finite element space is sometimes
insufficient to ensure the accuracy of numerical solutions with satisfaction.

4.2. Example 2 - Nonhomogeneous Dirichlet boundary condition

In this test, we shall consider the nonhomogeneous Dirichlet boundary conditions. Let Ω = (0, 1) ×
(0, 1) and the exact solution is taken as

u =
(

sin(πx) sin(πy)
cos(πx) cos(πy)

)
, and p = sin x.

It is easy to see that u|∂Ω , 0. Thus, one needs to modify the method in order to deal with nonho-
mogeneous Dirichlet boundary conditions.

Table 3 reports the error profiles and convergence results. We compare the performance of Algo-
rithm 2.2/2.4 and Algorithm 2.3/2.4 on a sequence of meshes with different values of ν. To start, non-
pressure-robust scheme Algorithm 2.2 and pressure-robust scheme Algorithm 2.3 have been employed
to simulate the numerical velocity component. Then, when the velocity approximation is available,
Algorithm 2.4 is used to recover the unknown pressure. As in the above test, though Algorithm 2.2 can
decouple velocity/pressure and solely solve the unknown velocity, Algorithm 2.2 fails to produce reli-
able numerical solutions when the viscosity values are small. In contrast, the pressure-robust scheme
Algorithm 2.3 is able to produce a viscosity-independent simulation for the velocity. As viscosity val-
ues vary, velocity errors (measured in the L2-norm and the H1-norm) remain the same. Furthermore,
reducing viscosity values ν produces a more accurate numerical pressure, which gives a convergence
rate for the pressure measured in the L2-norm as O(h). These numerical results confirm the theoretical
conclusions in the above section.
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Table 2. Example 4.1: Error profiles and convergence results.

1/h ∥e0∥ order ∥∇e0∥ order ∥ϵ∥ order ∥e0∥ order ∥∇e0∥ order ∥ϵ∥ order
Algorithm 2.2/Algorithm 2.4 Algorithm 2.3/Algorithm 2.4

ν = 1
8 6.30E-2 5.23E-1 1.29E+0 8.27E-3 1.70E-1 2.71E-2

16 1.72E-2 1.9 2.84E-1 0.9 6.31E-1 1.0 2.17E-3 1.9 8.74E-2 1.0 1.17E-2 1.2
32 4.47E-3 1.9 1.47E-1 0.9 3.00E-1 1.1 5.50E-4 2.0 4.41E-2 1.0 5.32E-3 1.1
64 1.13E-3 2.0 7.44E-2 1.0 1.44E-1 1.1 1.38E-4 2.0 2.21E-2 1.0 2.57E-3 1.0

128 2.84E-4 2.0 3.74E-2 1.0 6.98E-2 1.0 3.46E-5 2.0 1.10E-2 1.0 1.27E-3 1.0
ν = 1E-2

8 6.21E+0 5.10E+1 1.29E+0 8.27E-3 1.70E-1 2.71E-4
16 1.70E+0 1.9 2.79E+1 0.9 6.31E-1 1.0 2.17E-3 1.9 8.74E-2 1.0 1.17E-4 1.2
32 4.41E-1 1.9 1.45E+1 0.9 3.00E-1 1.1 5.50E-4 2.0 4.41E-2 1.0 5.32E-5 1.1
64 1.12E-1 2.0 7.32E+0 1.0 1.44E-1 1.1 1.38E-4 2.0 2.21E-2 1.0 2.57E-5 1.0

128 2.80E-2 2.0 3.68E+0 1.0 6.98E-2 1.0 3.46E-5 2.0 1.10E-2 1.0 1.27E-5 1.0
ν = 1E-4

8 6.21E+2 5.10E+3 1.29E+0 8.27E-3 1.70E-1 2.71E-6
16 1.70E+2 1.9 2.79E+3 0.9 6.31E-1 1.0 2.17E-3 1.9 8.74E-2 1.0 1.17E-6 1.2
32 4.41E+1 1.9 1.45E+3 0.9 3.00E-1 1.1 5.50E-4 2.0 4.41E-2 1.0 5.32E-7 1.1
64 1.12E+1 2.0 7.32E+2 1.0 1.44E-1 1.1 1.38E-4 2.0 2.21E-2 1.0 2.57E-7 1.0

128 2.80E+0 2.0 3.68E+2 1.0 6.98E-2 1.0 3.46E-5 2.0 1.10E-2 1.0 1.27E-7 1.0
ν = 1E-6

8 6.21E+4 5.10E+5 1.29E+0 8.27E-3 1.70E-1 2.71E-8
16 1.70E+4 1.9 2.79E+5 0.9 6.31E-1 1.0 2.17E-3 1.9 8.74E-2 1.0 1.17E-8 1.2
32 4.41E+3 1.9 1.45E+5 0.9 3.00E-1 1.1 5.50E-4 2.0 4.41E-2 1.0 5.32E-9 1.1
64 1.12E+3 2.0 7.32E+4 1.0 1.44E-1 1.1 1.38E-4 2.0 2.21E-2 1.0 2.57E-9 1.0

128 2.80E+2 2.0 3.68E+4 1.0 6.98E-2 1.0 3.46E-5 2.0 1.10E-2 1.0 1.27E-9 1.0
ν = 1E-8

8 6.21E+6 5.10E+7 1.29E+0 8.27E-3 1.70E-1 2.71E-10
16 1.70E+6 1.9 2.79E+7 0.9 6.31E-1 1.0 2.17E-3 1.9 8.74E-2 1.0 1.17E-10 1.2
32 4.41E+5 1.9 1.45E+7 0.9 3.00E-1 1.1 5.50E-4 2.0 4.41E-2 1.0 5.32E-11 1.1
64 1.12E+5 2.0 7.32E+6 1.0 1.44E-1 1.1 1.38E-4 2.0 2.21E-2 1.0 2.57E-11 1.0

128 2.80E+4 2.0 3.68E+6 1.0 6.98E-2 1.0 3.46E-5 2.0 1.10E-2 1.0 1.27E-11 1.0
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Table 3. Example 4.2: Error profiles and convergence results.

1/h ∥e0∥ order ∥∇e0∥ order ∥ϵ∥ order ∥e0∥ order ∥∇e0∥ order ∥ϵ∥ order
Algorithm 2.2/Algorithm 2.4 Algorithm 2.3/Algorithm 2.4

ν = 1
8 5.12E-2 5.83E-1 4.57E-1 2.81E-2 8.76E-1 7.62E-1

16 1.28E-2 2.0 2.91E-1 1.0 2.36E-1 1.0 7.69E-3 1.9 4.54E-1 0.9 4.41E-1 0.8
32 3.18E-3 2.0 1.46E-1 1.0 1.19E-1 1.0 2.00E-3 1.9 2.30E-1 1.0 2.37E-1 0.9
64 7.95E-4 2.0 7.29E-2 1.0 5.95E-2 1.0 5.06E-4 2.0 1.15E-1 1.0 1.23E-1 0.9

128 1.99E-4 2.0 3.65E-2 1.0 2.98E-2 1.0 1.27E-4 2.0 5.78E-2 1.0 6.29E-2 1.0
ν = 1E-2

8 3.80E-1 2.87 1.99E-2 2.81E-2 8.76E-1 7.43E-3
16 9.79E-2 2.0 1.47 1.0 1.01E-2 1.0 7.69E-3 1.9 4.54E-1 0.9 4.36E-3 0.8
32 2.47E-2 2.0 7.44E-1 1.0 5.16E-3 1.0 2.00E-3 1.9 2.30E-1 1.0 2.36E-3 0.9
64 6.20E-3 2.0 3.73E-1 1.0 2.63E-3 1.0 5.06E-4 2.0 1.15E-1 1.0 1.23E-3 0.9

128 1.55E-3 2.0 1.87E-1 1.0 1.33E-3 1.0 1.27E-4 2.0 5.78E-2 1.0 6.28E-4 1.0
ν = 1E-4

8 3.51E+1 2.91E+2 2.41E-2 2.81E-2 8.76E-1 1.43E-4
16 9.06 2.0 1.51E+2 0.9 1.24E-2 1.0 7.69E-3 1.9 4.54E-1 0.9 2.40E-5 2.6
32 2.29 2.0 7.65E+1 1.0 6.36E-3 1.0 2.00E-3 1.9 2.30E-1 1.0 1.29E-5 0.9
64 5.74E-1 2.0 3.84E+1 1.0 3.24E-3 1.0 5.06E-4 2.0 1.15E-1 1.0 9.36E-6 0.5

128 1.44E-1 2.0 1.92E+1 1.0 1.64E-3 1.0 1.27E-4 2.0 5.78E-2 1.0 5.53E-6 0.8
ν = 1E-6

8 3.50E+3 2.92E+4 2.41E-2 2.81E-2 8.76E-1 2.08E-4
16 9.05E+2 2.0 1.51E+4 0.9 1.24E-2 1.0 7.69E-3 1.9 4.54E-1 0.9 5.40E-5 1.9
32 2.29E+2 2.0 7.65E+3 1.0 6.37E-3 1.0 2.00E-3 1.9 2.30E-1 1.0 1.37E-5 2.0
64 5.74E+1 2.0 3.84E+3 1.0 3.25E-3 1.0 5.06E-4 2.0 1.15E-1 1.0 3.40E-6 2.0

128 1.44E+1 2.0 1.92E+3 1.0 1.64E-3 1.0 1.27E-4 2.0 5.78E-2 1.0 8.26E-7 2.0
ν = 1E-8

8 3.50E+5 2.92E+6 2.41E-2 2.81E-2 8.76E-1 2.09E-4
16 9.05E+4 2.0 1.51E+6 0.9 1.24E-2 1.0 7.69E-3 1.9 4.54E-1 0.9 5.44E-5 1.9
32 2.29E+4 2.0 7.65E+5 1.0 6.37E-3 1.0 2.00E-3 1.9 2.30E-1 1.0 1.39E-5 2.0
64 5.74E+3 2.0 3.84E+5 1.0 3.25E-3 1.0 5.06E-4 2.0 1.15E-1 1.0 3.50E-6 2.0

128 1.44E+3 2.0 1.92E+5 1.0 1.64E-3 1.0 1.27E-4 2.0 5.78E-2 1.0 8.80E-7 2.0

4.3. Example 3 - Mixed boundary condition

In this test, let Ω = (0, 1) × (0, 1) and the exact solution u and p be,

u =
(

3π sin(πx)3 sin(πy)2 cos(πy)
−3π sin(πx)2 sin(πy)3 cos(πx)

)
and p = sin(πx).

In this test, the top (y = 1), left (x = 0), and bottom (y = 0) boundaries are assumed to be the
Dirichlet boundary conditions. The right boundary (x = 1) employs the Neumann boundary condition.
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We perform convergence tests on a sequence of meshes with varying viscosity values ν. The error
profiles for the velocity and pressure solutions are plotted in Figures 3–5, in which we vary the mesh
size h. The numerical results are similar to the two examples above. Figure 3 demonstrates the velocity
errors measured in the L2-norm. When we use the non-pressure-robust scheme Algorithm 2.2/2.4, the
errors converge at the second order for different values of ν. However, the velocity error depends on
ν and the pressure. As the pressure error does not dominate the velocity errors, the error increases
as a factor 1ν. This means that Algorithm 2.2/2.4 fails to produce reliable numerical solutions for the
velocity. In contrast, Algorithm 2.3/2.4 outperforms Algorithm 2.2/2.4 and produces a robust numerical
simulation. The velocity errors show an invariant behavior for varying viscosity values ν.
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Figure 3. Example 4.3: Convergence results for Algorithm 2.2/2.4 (Left) and Algorithm
2.3/2.4 (Right) for velocity errors measured in L2-norm.

The H1-error of the velocity is plotted in Figure 4. We observe the same behavior and can draw the
same conclusion as above.

Lastly, the L2-error of the pressure is plotted in Figure 5. Algorithm 2.2/2.4 first produces a bet-
ter pressure approximation before the dominance of pressure error h∥p∥1. However, as the viscosity
variable ν decreases, the pressure term will dominate the error, i.e., h∥p∥1 ≫ hν∥u∥2. Thus, pressure
errors show a constant behavior on the same mesh with decreasing values of ν. On the other hand, Al-
gorithm 2.3/2.4 outperforms Algorithm 2.2/2.4. For small ν, Algorithm 2.3/2.4 produces much better
pressure solutions. All of the above tests validate our theoretical conclusions.
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Figure 4. Example 4.3: Convergence results for Algorithm 2.2/2.4 (Left) and Algorithm
2.3/2.4 (Right) for velocity errors measured in H1-norm.
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Figure 5. Example 4.3: Convergence results for Algorithm 2.2/2.4 (Left) and Algorithm
2.3/2.4 (Right) for pressure errors measured in L2-norm.

5. Conclusions

In this paper, we enhanced the divergence-free WG finite element method proposed in [3] by mod-
ifying the load function via the velocity reconstruction operator. Our proposed algorithm results in a
symmetric positive definite matrix, and the velocity error is pressure-robust. Moreover, we illustrated
the procedure for recovering the pressure variables. Numerical experiments are presented to validate
the theoretical results. As a future work plan, we will consider the development of an effective precon-
ditioner, which may improve the efficiency further. In addition, the construction of a high-order (k > 2)
divergence-free basis will be given and analyzed in our future work.
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