Research article Special Issues

Convergence of finite element solution of stochastic Burgers equation


  • Received: 26 November 2023 Revised: 23 January 2024 Accepted: 06 February 2024 Published: 20 February 2024
  • We explore the numerical approximation of the stochastic Burgers equation driven by fractional Brownian motion with Hurst index $ H\in(1/4, 1/2) $ and $ H\in(1/2, 1) $, respectively. The spatial and temporal regularity properties for the solution are obtained. The given problem is discretized in time with the implicit Euler scheme and in space with the standard finite element method. We obtain the strong convergence of semidiscrete and fully discrete schemes, performing the error estimates on a subset $ \Omega_{k, h} $ of the sample space $ \Omega $ with the Gronwall argument being used to overcome the difficulties, caused by the subtle interplay of the nonlinear convection term. Numerical examples confirm our theoretical findings.

    Citation: Jingyun Lv, Xiaoyan Lu. Convergence of finite element solution of stochastic Burgers equation[J]. Electronic Research Archive, 2024, 32(3): 1663-1691. doi: 10.3934/era.2024076

    Related Papers:

  • We explore the numerical approximation of the stochastic Burgers equation driven by fractional Brownian motion with Hurst index $ H\in(1/4, 1/2) $ and $ H\in(1/2, 1) $, respectively. The spatial and temporal regularity properties for the solution are obtained. The given problem is discretized in time with the implicit Euler scheme and in space with the standard finite element method. We obtain the strong convergence of semidiscrete and fully discrete schemes, performing the error estimates on a subset $ \Omega_{k, h} $ of the sample space $ \Omega $ with the Gronwall argument being used to overcome the difficulties, caused by the subtle interplay of the nonlinear convection term. Numerical examples confirm our theoretical findings.



    加载中


    [1] Y. S. Mishura, Stochastic Calculus for Fractional Brownian Motion and Related Processes, Springer, 2008. https://doi.org/10.1007/978-3-540-75873-0
    [2] Y. Shi, X. H. Yang, Pointwise error estimate of conservative difference scheme for supergeneralized viscous Burgers’ equation, Electron. Res. Arch., 32 (2024), 1471–1497. https://doi.org/10.3934/era.2024068 doi: 10.3934/era.2024068
    [3] J. W. Wang, X. X. Jiang, X. H. Yang, H. X. Zhang, A nonlinear compact method based on double reduction order scheme for the nonlocal fourth-order PDEs with Burgers’ type nonlinearity, J. Appl. Math. Comput., 70 (2024), 489–511. https://doi.org/10.1007/s12190-023-01975-4
    [4] J. W. Wang, H. X. Zhang, X. H. Yang, A predictor-corrector compact difference scheme for a class of nonlinear Burgers equations, J. Hunan Univ. Technol., 38 (2024), 98–104. https://doi.org/10.3969/j.issn.1673-9833.2024.01.014 doi: 10.3969/j.issn.1673-9833.2024.01.014
    [5] J. W. Wang, X. X. Jiang, H. X. Zhang, A BDF3 and new nonlinear fourth-order difference scheme for the generalized viscous Burgers' equation, Appl. Math. Lett., (2024), 109002. https://doi.org/10.1016/j.aml.2024.109002
    [6] L. Bertini, N. Cancrini, G. Jona-Lasinio, The stochastic Burgers equation, Commun. Math. Phys., 165 (1994), 211–232. https://link.springer.com/article/10.1007/BF02099769
    [7] Z. Brzeźniak, M. Capinski, F. Flandoli, Stochastic partial differential equations and turbulence, Math. Models Methods Appl. Sci., 1 (1991), 41–59. https://doi.org/10.1142/S0218202591000046 doi: 10.1142/S0218202591000046
    [8] J. U. Kim, On the stochastic Burgers equation with a polynomial nonlinearity in the real line, Discrete Contin. Dyn. Syst., Ser. A., 6 (2006), 835–866. https://doi.org/10.3934/dcdsb.2006.6.835 doi: 10.3934/dcdsb.2006.6.835
    [9] P. Catuogno, C. Olivera, Strong solution of the stochastic Burgers equation, Appl. Anal., 93 (2014), 646–652. https://doi.org/10.1080/00036811.2013.797074 doi: 10.1080/00036811.2013.797074
    [10] K. Twardowska, J. Zabczyk, Qualitative properties of solutions to stochastic Burgers' system of equations, Stoch. Partial Differ. Equations Appl. VII, 245 (2006), 311–322. https://doi.org/10.1201/9781420028720.ch25 doi: 10.1201/9781420028720.ch25
    [11] B. Goldys, B. Maslowski, Exponential ergodicity for stochastic Burgers and 2D Navier-Stokes equations, J. Funct. Anal., 226 (2005), 230–255. https://doi.org/10.1016/j.jfa.2004.12.009 doi: 10.1016/j.jfa.2004.12.009
    [12] E. Weinan, K. M. Khanin, A. E. Mazel, Y. G. Sinai, Invariant measure for Burgers equation with stochastic forcing, Ann. Math., 151 (2000), 877–960. https://doi.org/10.48550/arXiv.math/0005306 doi: 10.48550/arXiv.math/0005306
    [13] G. Zou, B. Wang, Stochastic Burgers' equation with fractional derivative driven by multiplicative noise, Comput. Math. Appl., 74 (2017), 3195–3208. https://doi.org/10.1016/j.camwa.2017.08.023 doi: 10.1016/j.camwa.2017.08.023
    [14] G. Zhou, L. Wang, J. L. Wu, Global well-posedness of 2D stochastic Burgers equations with multiplicative noise, Statist. Probab. Lett., 182 (2022), 109315. https://doi.org/10.1016/j.spl.2021.109315 doi: 10.1016/j.spl.2021.109315
    [15] C. J. Li, H. X. Zhang, X. H. Yang, A new $\alpha$-robust nonlinear numerical algorithm for the time fractional nonlinear KdV equation, Commun. Anal. Mech., 16 (2024), 147–168. https://doi.org/10.3934/cam.2024007 doi: 10.3934/cam.2024007
    [16] H. X. Zhang, X. X. Jiang, F. R. Wang, X. H. Yang, The time two-grid algorithm combined with difference scheme for 2D nonlocal nonlinear wave equation, J. Appl. Math. Comput., (2024), 1–25. https://doi.org/10.1007/s12190-024-02000-y
    [17] F. Wang, X. H. Yang, H. X. Zhang, L. Wu, A time two-grid algorithm for the two dimensional nonlinear fractional PIDE with a weakly singular kernel, Math. Comput. Simulat., 199 (2022), 38–59. https://doi.org/10.1016/j.matcom.2022.03.004 doi: 10.1016/j.matcom.2022.03.004
    [18] W. Xiao, X. H. Yang, Z. Z. Zhou, Pointwise-in-time $\alpha$-robust error estimate of the ADI difference scheme for three-dimensional fractional subdiffusion equations with variable coefficients, Commun. Anal. Mech., 16 (2024), 53–70. https://doi.org/10.3934/cam.2024003 doi: 10.3934/cam.2024003
    [19] X. H. Yang, W. Qiu, H. Chen, H. X. Zhang, Second-order BDF ADI Galerkin finite element method for the evolutionary equation with a nonlocal term in three-dimensional space, Appl. Numer. Math., 172 (2022), 497–513. https://doi.org/10.1016/j.apnum.2021.11.004 doi: 10.1016/j.apnum.2021.11.004
    [20] Z. Y. Zhou, H. X. Zhang, X. H. Yang, J. Tang, An efficient ADI difference scheme for the nonlocal evolution equation with multi-term weakly singular kernels in three dimensions, Int. J. Comput. Math., 100 (2023), 1719–1736. https://doi.org/10.1080/00207160.2023.2212307
    [21] Q. Q. Tian, H. X. Zhang, X. H. Yang, X. X. Jiang, An implicit difference scheme for the fourthorder nonlinear non-local PIDEs with a weakly singular kernel, Comput. Appl. Math., 41 (2022), 328. https://doi.org/10.1007/s40314-022-02040-9
    [22] L. Wu, H. X. Zhang, X. H. Yang, F. Wang, A second-order finite difference method for the multi-term fourth-order integral-differential equations on graded meshes, Comput. Appl. Math., 41 (2022), 313. https://doi.org/10.1007/s40314-022-02026-7 doi: 10.1007/s40314-022-02026-7
    [23] X. H. Yang, L. Wu, H. X. Zhang, A space-time spectral order sinc-collocation method for the fourth-order nonlocal heat model arising in viscoelasticity, Appl. Math. Comput., 457 (2023), 128192. https://doi.org/10.1016/j.amc.2023.128192
    [24] X. H. Yang, Z. M. Zhang, On conservative, positivity preserving, nonlinear FV scheme on distorted meshes for the multi-term nonlocal Nagumo-type equations, Appl. Math. Lett., 150 (2024), 108972. https://doi.org/10.1016/j.aml.2023.108972 doi: 10.1016/j.aml.2023.108972
    [25] X. H. Yang, H. X. Zhang, Q. Zhang, G. Y. Yuan, Simple positivity-preserving nonlinear finite volume scheme for subdiffusion equations on general non-conforming distorted meshes, Nonlinear Dyn., 108 (2022), 3859–3886. https://doi.org/10.1007/s11071-022-07399-2 doi: 10.1007/s11071-022-07399-2
    [26] C. J. Li, H. X. Zhang, X. H. Yang, A high-precision Richardson extrapolation method for a class of elliptic Dirichlet boundary value calculation, J. Hunan Univ. Technol., 38 (2024), 91–97. https://doi.org/10.3969/j.issn.1673-9833.2024.01.013 doi: 10.3969/j.issn.1673-9833.2024.01.013
    [27] M. Hairer, J. Voss, Approximations to the stochastic Burgers equation, J. Nonlinear Sci., 21 (2011), 897–920. https://doi.org/10.1007/s00332-011-9104-3 doi: 10.1007/s00332-011-9104-3
    [28] M. Hairer, K. Matetski, Optimal rate of convergence for stochastic Burgers-type equations, Stoch. Partial Differ. Equations: Anal. Comput., 4 (2016), 402–437. https://doi.org/10.1007/s40072-015-0067-5 doi: 10.1007/s40072-015-0067-5
    [29] D. Blömker, A. Jentzen, Galerkin approximations for the stochastic Burgers equation, SIAM J. Numer. Anal., 51 (2013), 694–715. https://doi.org/10.1137/110845756 doi: 10.1137/110845756
    [30] A. Jentzen, D. Salimova, T. Welti, Strong convergence for explicit space-time discrete numerical approximation methods for stochastic Burgers equations, J. Math. Anal. Appl., 469 (2019), 661–704. https://doi.org/10.1016/j.jmaa.2018.09.032 doi: 10.1016/j.jmaa.2018.09.032
    [31] D. Uma, H. Jafari, S. R. Balachandar, S. G. Venkatesh, An approximate solution for stochastic Burgers equation driven by white noise, Comput. Appl. Math., 41 (2022), 1–26. https://doi.org/10.1007/s40314-022-02018-7 doi: 10.1007/s40314-022-02018-7
    [32] G. Wang, M. Zeng, B. Guo, Stochastic Burgers' equation driven by fractional Brownian motion, J. Math. Anal. Appl., 371 (2010), 210–222. https://doi.org/10.1016/j.jmaa.2010.05.015 doi: 10.1016/j.jmaa.2010.05.015
    [33] Y. Jiang, T. Wei, X. Zhou, Stochastic generalized Burgers equations driven by fractional noises, J. Differ. Equations, 252 (2012), 1934–1961. https://doi.org/10.1016/j.jde.2011.07.032 doi: 10.1016/j.jde.2011.07.032
    [34] M. Hinz, Burgers' system with a fractional Brownian random force, Stochastics, 83 (2011), 67–106. https://doi.org/10.1080/17442508.2010.514050 doi: 10.1080/17442508.2010.514050
    [35] B. Pei, Y. Xu, J. L. Wu, Stochastic averaging for stochastic differential equations driven by fractional Brownian motion and standard Brownian motion, Appl. Math. Lett., 100 (2020), 106006. https://doi.org/10.1016/j.aml.2019.106006 doi: 10.1016/j.aml.2019.106006
    [36] M. Yang, H. B. Gu, Riemann-Liouville fractional stochastic evolution equations driven by both Wiener process and fractional Brownian motion, J. Inequal. Appl., 8 (2021), 1–19. https://doi.org/10.1186/s13660-020-02541-3 doi: 10.1186/s13660-020-02541-3
    [37] G. Zou, G. Lv, J. Wu, Stochastic Navier-Stokes equations with Caputo derivative driven by fractional noises. J. Math. Anal. Appl., 461 (2018), 595–609. https://doi.org/10.1016/j.jmaa.2018.01.027
    [38] Y. Cao, J. Hong, Z. Liu, Finite element approximations for second-order stochastic differential equation driven by fractional Brownian motion, IMA J. Numer. Anal., 38 (2018), 184–197. https://doi.org/10.1093/imanum/drx004 doi: 10.1093/imanum/drx004
    [39] C. Tudor, Wong-Zakai type approximations for stochastic differential equations driven by a fractional Brownian motion, Z. Anal. Anwend., 28 (2009), 165–182. https://doi.org/10.4171/ZAA/1378 doi: 10.4171/ZAA/1378
    [40] R. Qi, Q. Lin, Time-stepping error bound for a stochastic parabolic volterra equation disturbed by fractional Brownian motions, Numer. Math. Theor. Meth. Appl., 12 (2019), 778–796. https://doi.org/10.4208/nmtma.OA-2017-0153 doi: 10.4208/nmtma.OA-2017-0153
    [41] J. Hong, C. Huang, Super-convergence analysis on exponential integrator for stochastic heat equation driven by additive fractional Brownian motion, preprint, arXiv: 2007.02223v1. https://doi.org/10.48550/arXiv.2007.02223
    [42] R. Kruse, Strong and Weak Approximation of Semilinear Stochastic Evolution Equations, Springer, 2014. https://doi.org/10.1007/978-3-319-02231-4
    [43] B. B. Mandelbrot, J. W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10 (1968), 422–437. https://doi.org/10.1137/1010093 doi: 10.1137/1010093
    [44] T. E. Duncan, B. Maslowski, B. Pasik-Duncan, Semilinear stochastic equations in a Hilbert space with a fractional Brownian motion, SIAM J. Math. Anal., 40 (2009), 2286–2315. DOI:10.1137/08071764X doi: 10.1137/08071764X
    [45] C. Prévôt, M. Röckner, A Concise Course on Stochastic Partial Differential Equations, Springer, 2007. https://doi.org/10.1007/978-3-540-70781-3
    [46] R. Témam, Navier-Stokes Equations and Nonlinear Functional Analysis, CBMS-NSF Regional Conference Series in Applied Mathematics, 1983. https://doi.org/10.1137/1.9781611970050.fm
    [47] Z. Dong, T. G. Xu, One-dimensional stochastic Burgers' equation driven by Lévy processes, J. Funct. Anal., 243 (2007), 631–678. https://doi.org/10.1016/j.jfa.2006.09.010 doi: 10.1016/j.jfa.2006.09.010
    [48] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, Springer-Verlag, Berlin, 1984. https://doi.org/10.1007/3-540-33122-0
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(803) PDF downloads(93) Cited by(0)

Article outline

Figures and Tables

Figures(2)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog