Review Special Issues

A survey on state-of-the-art experimental simulations for privacy-preserving federated learning in intelligent networking

  • Received: 12 October 2023 Revised: 19 January 2024 Accepted: 23 January 2024 Published: 01 February 2024
  • Federated learning (FL) provides a collaborative framework that enables intelligent networking devices to train a shared model without the need to share local data. FL has been applied in communication networks, which offers the dual advantage of preserving user privacy and reducing communication overhead. Networking systems and FL are highly complementary. Networking environments provide critical support for data acquisition, edge computing capabilities, round communication/connectivity, and scalable topologies. In turn, FL can leverage capabilities to achieve learning adaptation, low-latency operation, edge intelligence, personalization, and, notably, privacy preservation. In our review, we gather relevant literature and open-source platforms that point out the feasibility of conducting experiments at the confluence of FL and intelligent networking. Our review is structured around key sections, including the introduction of FL concepts, the background of FL applied in networking, and experimental simulations covering networking for FL and FL for networking. Additionally, we delved into case studies showcasing FL potential in optimizing state-of-the-art network optimization objectives, such as learning performance, quality of service, energy, and cost. We also addressed the challenges and outlined future research directions that provide valuable guidance to researchers and practitioners in this trending field.

    Citation: Seyha Ros, Prohim Tam, Inseok Song, Seungwoo Kang, Seokhoon Kim. A survey on state-of-the-art experimental simulations for privacy-preserving federated learning in intelligent networking[J]. Electronic Research Archive, 2024, 32(2): 1333-1364. doi: 10.3934/era.2024062

    Related Papers:

  • Federated learning (FL) provides a collaborative framework that enables intelligent networking devices to train a shared model without the need to share local data. FL has been applied in communication networks, which offers the dual advantage of preserving user privacy and reducing communication overhead. Networking systems and FL are highly complementary. Networking environments provide critical support for data acquisition, edge computing capabilities, round communication/connectivity, and scalable topologies. In turn, FL can leverage capabilities to achieve learning adaptation, low-latency operation, edge intelligence, personalization, and, notably, privacy preservation. In our review, we gather relevant literature and open-source platforms that point out the feasibility of conducting experiments at the confluence of FL and intelligent networking. Our review is structured around key sections, including the introduction of FL concepts, the background of FL applied in networking, and experimental simulations covering networking for FL and FL for networking. Additionally, we delved into case studies showcasing FL potential in optimizing state-of-the-art network optimization objectives, such as learning performance, quality of service, energy, and cost. We also addressed the challenges and outlined future research directions that provide valuable guidance to researchers and practitioners in this trending field.



    加载中


    [1] N. Gruschka, V. Mavroeidis, K. Vishi, M. Jensen, Privacy issues and data protection in big data: A case study analysis under GDPR, in IEEE International Conference on Big Data (Big Data), (2018), 5027–5033. https://doi.org/10.1109/BigData.2018.8622621
    [2] M. Rhahla, T. Abdellatif, R. Attia, W. Berrayana, A GDPR controller for IoT systems: Application to e-Health, in IEEE 28th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE), (2019), 170–173. https://doi.org/10.1109/wetice.2019.00044
    [3] X. Yu, Y. Yang, W. Wang, Y. Zhang, Whether the sensitive information statement of the IoT privacy policy is consistent with the actual behavior, in Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W), (2021), 85–92. https://doi.org/10.1109/dsn-w52860.2021.00025
    [4] P. Liu, S. Ji, L. Fu, K. Lu, X, Zhang, J. Qin, et al., How IoT re-using threatens your sensitive data: Exploring the user-data disposal in used IoT devices, in IEEE Symposium on Security and Privacy (SP), (2023), 3365–3381. https://doi.org/10.1109/sp46215.2023.10179294 doi: 10.1109/sp46215.2023.10179294
    [5] C. Thirumalai, H. S. Kar, Memory efficient multi key (MEMK) generation scheme for secure transportation of sensitive data over cloud and IoT devices, in Innovations in Power and Advanced Computing Technologies (i-PACT), (2017), 1–6. https://doi.org/10.1109/ipact.2017.8244948
    [6] W. Xu, T. Xiao, J. Zhang, W. Liang, Z. Xu, X. Liu, et al., Minimizing the deployment cost of UAVs for delay-sensitive data collection in IoT networks, IEEE/ACM Trans. Networking, 30 (2022), 812–825. https://doi.org/10.1109/tnet.2021.3123606 doi: 10.1109/tnet.2021.3123606
    [7] R. Parasnis, S. Hosseinalipour, Y. W. Chu, M. Chiang, C. G. Brinton, Connectivity-aware semi-decentralized federated learning over time-varying D2D networks, in ACM on Mobile Computing and Communications (MobileCom), (2023), 31–40. https://doi.org/10.1145/3565287.3610278
    [8] P. Qi, D. Chiaro, A. Guzzo, M. Ianni, G. Fortino, F. Piccialli, Model aggregation techniques in federated learning: A comprehensive survey, Future Gener. Comput. Syst., 150 (2024), 272–293. https://doi.org/10.1016/j.future.2023.09.008 doi: 10.1016/j.future.2023.09.008
    [9] M. Chahoud, S. Otoum, A. Mourad, On the feasibility of federated learning towards on-demand client deployment at the edge, Inf. Process. Manage., 60 (2023), 103150. https://doi.org/10.1016/j.ipm.2022.103150 doi: 10.1016/j.ipm.2022.103150
    [10] A. Rahan, K. Hasan, D. Kundu, Md. J. Islam, T. Debnath, S. S. Band, et al., On the ICN-IoT with federated learning integration of communication: Concepts, security-privacy issues, applications, and future perspectives, Future Gener. Comput. Syst., 138 (2023), 61–88. https://doi.org/10.1016/j.future.2022.08.004 doi: 10.1016/j.future.2022.08.004
    [11] G. Lan, X. Y. Liu, Y. Zhang, X. Wang, Communication-efficient federated learning for resource-constrained edge devices, IEEE Trans. Mach. Learn. Commun. Networking, 1 (2023), 210–224. https://doi.org/10.1109/TMLCN.2023.3309773 doi: 10.1109/TMLCN.2023.3309773
    [12] C. Zhang, J. Sun, X. Zhu, Y. Fang, Privacy and security for online social networks: Challenges and opportunities, IEEE Network, 24 (2010), 13–18. https://doi.org/10.1109/mnet.2010.5510913 doi: 10.1109/mnet.2010.5510913
    [13] K. Yang, K. Zhang, J. Ren, X. Shen, Security and privacy in mobile crowdsourcing networks: Challenges and opportunities, IEEE Commun. Mag., 53 (2015), 75–81. https://doi.org/10.1109/mcom.2015.7180511 doi: 10.1109/mcom.2015.7180511
    [14] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, B. Arcas, Communication-efficient learning of deep networks from decentralized data, arXiv preprint, (2023), arXiv: 1602.05629. https://doi.org/10.48550/arXiv.1602.05629
    [15] N. Shan, X. Cui, Z. Gao, "DRL+FL": An intelligent resource allocation model based on deep reinforcement learning for mobile edge computing, Comput. Commun., 160 (2020), 14–24. https://doi.org/10.1016/j.comcom.2020.05.037 doi: 10.1016/j.comcom.2020.05.037
    [16] X. Wang, Y. Han, C. Wang, Q. Zhao, X. Chen, M. Chen, In-edge AI: Intelligentizing mobile edge computing, caching and communication by federated learning, IEEE Network, 33 (2019), 156–165. https://doi.org/10.1109/mnet.2019.1800286 doi: 10.1109/mnet.2019.1800286
    [17] Z. Xu, J. Li, M. Zhang, A surveillance video real-time analysis system based on edge-cloud and FL-YOLO cooperation in coal mine, IEEE Access, 9 (2021), 68482–68497. https://doi.org/10.1109/access.2021.3077499 doi: 10.1109/access.2021.3077499
    [18] S. Ye, L. Zeng, Q. Wu, K. Luo, Q. Fang, X. Chen, Eco-FL: Adaptive federated learning with efficient edge collaborative pipeline training, in Proceedings of the 51st International Conference on Parallel Processing, (2022), 1–11. https://doi.org/10.1145/3545008.3545015
    [19] S. S. Musa, M. Zennaro, M. Libsie, E. Pietrosemoli, Convergence of information-centric networks and edge intelligence for IoV: Challenges and future directions, Future Internet, 14 (2022), 192. https://doi.org/10.3390/fi14070192 doi: 10.3390/fi14070192
    [20] Q. Qi, X. Chen, Robust design of federated learning for edge-intelligent networks, IEEE Trans. Commun., 70 (2022), 4469–4481. https://doi.org/10.1109/tcomm.2022.3175921 doi: 10.1109/tcomm.2022.3175921
    [21] S. Peng, Y. Yang, M. Mao, D. Park, Centralized machine learning versus federated averaging: A comparison using mnist dataset, KSII Trans. Internet Inf. Syst., 16 (2022), 742–756. https://doi.org/10.3837/tiis.2022.02.020 doi: 10.3837/tiis.2022.02.020
    [22] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y. Liang, Q. Yang, et al., Federated learning in mobile edge networks: A comprehensive survey, IEEE Commun. Surv. Tutorials, 22 (2020), 2031–2063. https://doi.org/10.1109/COMST.2020.2986024 doi: 10.1109/COMST.2020.2986024
    [23] D. C. Nguyen, M. Ding, P. N. Pathirana, A. Seneviratne, J. Li, H. V. Poor, Federated learning for Internet of Things: A comprehensive survey, IEEE Commun. Surv. Tutorials, 23 (2021), 1622–1658. https://doi.org/10.1109/COMST.2021.3075439 doi: 10.1109/COMST.2021.3075439
    [24] R. Gupta, T. Alam, Survey on federated-learning approaches in distributed environment, Wireless Pers. Commun., 125 (2022), 1631–1652. https://doi.org/10.1007/s11277-022-09624-y doi: 10.1007/s11277-022-09624-y
    [25] L. Witt, M. Heyer, K. Toyoda, W. Samek, D. Li, Decentral and incentivized federated learning frameworks: A systematic literature review, IEEE Internet Things J., 10 (2023), 3642–3663. https://doi.org/10.1109/JIOT.2022.3231363 doi: 10.1109/JIOT.2022.3231363
    [26] H. Chen, H. Wang, Q. Long, D. Jin, Y. Li, Advancements in federated learning: Models, methods, and privacy, arXiv preprint, (2023), arXiv: 2302.11466. https://doi.org/10.48550/arXiv.2302.11466
    [27] M. Al-Quraan, L. Mohjazi, L. Bariah, A. Centeno, A. Zoha, K. Arshad, et al., Edge-native intelligence for 6G communications driven by federated learning: A survey of trends and challenges, IEEE Trans. Emerging Top. Comput. Intell., 7 (2023), 957–979. https://doi.org/10.1109/TETCI.2023.3251404 doi: 10.1109/TETCI.2023.3251404
    [28] B. Soltani, V. Haghighi, A. Mahmood, Q. Z. Sheng, L. Yao, A survey on participant selection for federated learning in mobile networks, in ACM Workshop on Mobility in the Evolving Internet Architecture, (2022), 19–24. https://doi.org/10.1145/3556548.3559633
    [29] L. Fu, H. Zhang, G. Gao, M. Zhang, X. Liu, Client selection in federated learning: Principles, challenges, and opportunities, IEEE Internet of Things J., 10 (2023), 21811–21819. https://doi.org/10.1109/jiot.2023.3299573. doi: 10.1109/jiot.2023.3299573
    [30] Y. Jin, L. Jiao, Z. Qian, S. Zhang, S. Lu, X. Wang, Resource-efficient and convergence-preserving online participant selection in federated learning, in IEEE 40th International Conference on Distributed Computing Systems (ICDCS), (2020), 606–616. https://doi.org/10.1109/ICDCS47774.2020.00049
    [31] Y. J. Cho, J. Wang, G. Joshi, Client selection in federated learning: Convergence analysis and power-of-choice selection strategies, arXiv preprint, (2020), arXiv: 2010.01243. https://doi.org/10.48550/arXiv.2010.01243
    [32] C. Li, X. Zeng, M. Zhang, Z. Cao, PyramidFL: A fine-grained client selection framework for efficient federated learning, in Annual International Conference on Mobile Computing and Networking, (2022), 158–171. https://doi.org/10.1145/3495243.3517017
    [33] T. Huang, W. Lin, L. Shen, K. Li, A. Y. Zomaya, Stochastic client selection for federated learning with volatile clients, IEEE Internet of Things J., 9 (2022), 20055–20070. https://doi.org/10.1109/jiot.2022.3172113 doi: 10.1109/jiot.2022.3172113
    [34] J. Zhao, P. Vandenhove, P. Xu, H. Tao, L. Wang, C. H. Liu, et al., Parallel and memory-efficient distributed edge learning in B5G IoT networks, IEEE J. Sel. Top. Signal Process., 17 (2022), 222–233. https://doi.org/10.1109/jstsp.2022.3223759 doi: 10.1109/jstsp.2022.3223759
    [35] C. Briggs, Z. Fan, P. Andras, Federated learning with hierarchical clustering of local updates to improve training on non-ⅡD data, in 2020 International Joint Conference on Neural Networks (IJCNN), (2020), 1–9. https://doi.org/10.1109/IJCNN48605.2020.9207469
    [36] W. Q. Shi, S. Zhou, Z. Niu, Device scheduling with fast convergence for wireless federated learning, in IEEE International Conference on Communications (ICC), (2020), 1–6. https://doi.org/10.1109/icc40277.2020.9149138
    [37] Z. Ji, L. Chen, N. Zhao, Y. Chen, G. Wei, F. R. Yu, Computation offloading for edge-assisted federated learning, IEEE Trans. Veh. Technol., 70 (2021), 9330–9344. https://doi.org/10.1109/tvt.2021.3098022 doi: 10.1109/tvt.2021.3098022
    [38] S. Wu, H. Xue, L. Zhang, Q-learning-aided offloading strategy in edge-assisted federated learning over industrial IoT, Electronics, 12 (2023), 1706. https://doi.org/10.3390/electronics12071706 doi: 10.3390/electronics12071706
    [39] C. Yu, S. Shen, K. Zhang, Z. Hai, Y. Shi, Energy-aware device scheduling for joint federated learning in edge-assisted internet of agriculture things, in IEEE Wireless Communications and Networking Conference (WCNC), (2022), 1140–1145. https://doi.org/10.1109/wcnc51071.2022.9771547
    [40] X. Yao, T. Huang, R. X. Zhang, R. Li, L. Sun, Federated learning with unbiased gradient aggregation and controllable meta updating, arXiv preprint, (2020), arXiv: 1910.08234. https://doi.org/10.48550/arXiv.1910.08234
    [41] A. R. Elkordy, A. S. Avestimehr, HeteroSAg: Secure aggregation with heterogeneous quantization in federated learning, IEEE Trans. Commun., 70 (2022), 2372–2386. https://doi.org/10.1109/tcomm.2022.3151126 doi: 10.1109/tcomm.2022.3151126
    [42] C. H. Hu, Z. Chen, E. G. Larsson, Device scheduling and update aggregation policies for asynchronous federated learning, arXiv preprint, (2021), arXiv: 2107.11415. https://doi.org/10.48550/arXiv.2107.11415
    [43] L. Wang, W. Wang, B. Li, CMFL: Mitigating communication overhead for federated learning, in IEEE 39th International Conference on Distributed Computing Systems (ICDCS), (2019), 954–964. https://doi.org/10.1109/ICDCS.2019.00099
    [44] S. Truex, N. Baracaldo, A. Anwar, T. Steinke, H. Ludwig, R. Zhang, et al., A hybrid approach to privacy-preserving federated learning, in ACM Workshop on Artificial Intelligence and Security, (2019), 1–11. https://doi.org/10.1145/3338501.3357370 doi: 10.1145/3338501.3357370
    [45] P. Liu, S. Xie, Z. Shen, H. Wang, Enhancing location privacy through P2P network and caching in anonymizer, KSII Trans. Internet Inf. Syst., 16 (2022), 1653–1670. https://doi.org/10.3837/tiis.2022.05.013 doi: 10.3837/tiis.2022.05.013
    [46] Y. Zhu, C. Liu, Y. Zhang, W. You, Research on 5G core network trust model based on NF interaction behavior, KSII Trans. Internet Inf. Syst., 16 (2022), 3333–3354. http://doi.org/10.3837/tiis.2022.10.007
    [47] Network simulation version3, 2008. Available from: https://www.nsnam.org/.
    [48] G. F. Riley, T. R. Henderson, The ns-3 network simulator, in Modeling and Tools for Network Simulation, Springer, (2021), 15–34. https://doi.org/10.1007/978-3-642-12331-3_2
    [49] Gawłowicz, A. Zubow, ns3-gym: Extending OpenAI gym for networking research, arXiv preprint, (2018), arXiv: 1810.03943. https://doi.org/10.48550/arXiv.1810.03943
    [50] Network simulation version2, 1997. Available from: https://www.isi.edu/nsnam/ns/.
    [51] Mininet: Network emulator/simulator, 2010. Available from: http://mininet.org/.
    [52] Mininet WiFi, 2021. Available from: https://mininet-wifi.github.io/.
    [53] MATLAB. Available from: https://www.mathworks.com/help/index.html?s_tid = CRUX_lftnav.
    [54] OMNET++. Available from: https://omnetpp.org/download/models-and-tools.
    [55] OpenDaylight. Available from: https://www.opendaylight.org.
    [56] Floodlight. Available from: https://github.com/floodlight/floodlight.
    [57] Ryu-Controller. Available from: https://ryusdn.org/index.html.
    [58] OpenStack. Available from: https://www.openstack.org/.
    [59] Iperf. Available from: https://iperf.fr/.
    [60] S. Avallone, S. Guadagno, D. Emma, A. Pescapé, G. Ventre, D-ITG distributed internet traffic generator, in First International Conference on the Quantitative Evaluation of Systems, 2004. QEST 2004. Proceedings, (2004), 316–317. https://doi.org/10.1109/qest.2004.1348045
    [61] Open network foundation. Available from: https://opennetworking.org/.
    [62] D. J. Beutel, T. Topal, A. Mathur, X. Qiu, T. Parcollet, P. de Gusmao, et al., Flower: A friendly federated learning research framework, arXiv preprint, (2022), arXiv: 2007.14390. https://doi.org/10.48550/arXiv.2007.14390
    [63] C. He, S. Li, J. So, X. Zeng, M. Zhang, H. Wang, et al., FedML: A research library and benchmark for federated machine learning, arXiv preprint, (2020), arXiv: 2007.13518. https://doi.org/10.48550/arXiv.2007.13518
    [64] FederatedAi/FATE. Available from: https://github.com/FederatedAI/FATE.
    [65] Tensorflow/federated. Available from: https://github.com/tensorflow/federated.
    [66] A. Ziller, A. Trask, A, Loardo, B. Wagner, J. Nounahon, J. Passerat-Palmach, et al., PySyft: A library for easy federated learning, in Federated Learning Systems, Springer, (2021), 111–139. https://doi.org/10.1007/978-3-030-70604-3_5
    [67] M. H. Garcia, A. Manoel, D. M. Diaz, F. Mireshghallah, R. Sim, D. Dimitriadis, Flute: A scalable, extensible framework for high-performance federated learning simulations, arXiv preprint, (2022), arXiv: 2203.13789. https://doi.org/10.48550/arXiv.2203.13789
    [68] E. Ekaireb, X. Yu, K. Ergun, Q. Zhao, K. Lee, M. Huzaifa, et al., ns3-fl: Simulating federated learning with ns-3, (2022), 99–104. https://doi.org/10.1145/3532577.3532591
    [69] H. Ludwig, N. Baracaldo, G. Thomas, Y. Zhou, A. Anwar, S. Rajamoni, et al., IBM federated learning: An enterprise framework white paper V0.1, arXiv preprint, (2020), arXiv: 2007.10987. https://doi.org/10.48550/arXiv.2007.10987
    [70] G. Ulm, E. Gustavsson, M. Jirstrand, Functional federated learning in Erlang (ffl-erl), in Functional and Constraint Logic Programming, Springer, (2018), 162–178. https://doi.org/10.1007/978-3-030-16202-3_10
    [71] M. Daole, A. Schiavo, J. Bárcena, P. Ducange, F. Marcelloni, A. Renda, OpenFL-XAI: Federated learning of explainable artificial intelligence models in Python, SoftwareX, 23 (2023), 101505. https://doi.org/10.1016/j.softx.2023.101505 doi: 10.1016/j.softx.2023.101505
    [72] B. Knott, S. Venkataraman, A. Hannun, S. Sengupta, M. Ibrahim, L. van der Maaten, CrypTen: Secure multi-party computation meets machine learning, arXiv preprint, (2022), arXiv: 2109.00984. https://doi.org/10.48550/arXiv.2109.00984
    [73] Y. Xie, Z. Wang, D. Chen, D. Gao, L. Yao, W. Kuang, et al., FederatedScope: A flexible federated learning platform for heterogeneity, in Proceedings of the VLDB Endowment, (2023), 1059–1072. https://doi.org/10.14778/3579075.3579081 doi: 10.14778/3579075.3579081
    [74] H. R. Roth, Y. Chen, Y. Wen, I. Yang, Z. Xu, Y. Hsieh, et al., Nvidia flare: Federated learning from simulation to real-world, arXiv preprint, (2023), arXiv: 2210.13291. https://doi.org/10.48550/arXiv.2210.13291
    [75] W. Zhuang, X. Gan, Y. Wen, S. Zhang, EasyFL: A low-code federated learning platform for dummies, IEEE Internet of Things J., 9 (2022), 13740–13754. https://doi.org/10.1109/jiot.2022.3143842 doi: 10.1109/jiot.2022.3143842
    [76] S. Caldas, S. Duddu, P. Wu, T. Li, J. Konecny, H. B. McMahan, et al., LEAF: A benchmark for federated settings, arXiv preprint, (2019), arXiv: 1812.01097. https://doi.org/10.48550/arXiv.1812.01097
    [77] PaddlePaddle/PaddleFL. Available from: https://github.com/PaddlePaddle/PaddleFL.
    [78] L. Sani, P. Porto, A. lacob, W. Zhao, X. Qiu, Y. Gao, et al., IBM federated learning: An enterprise framework white paper V0.1, arXiv preprint, (2020), arXiv: 2007.10987v1. https://doi.org/10.48550/arXiv.2007.10987
    [79] P. Tam, S. Math, C. Nam, S. Kim, Adaptive resource optimized edge federated learning in real-time image sensing classifications, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 14 (2021), 10929–10940. https://doi.org/ 10.1109/JSTARS.2021.3120724 doi: 10.1109/JSTARS.2021.3120724
    [80] V. Balasubramanian, M. Aloqaily, M. Reisslein, A. Scaglione, Intelligent resource management at the edge for ubiquitous IoT: An SDN-based federated learning approach, IEEE Network, 35 (2021), 114–121. https://doi.org/10.1109/MNET.011.2100121 doi: 10.1109/MNET.011.2100121
    [81] R. Uddin, S. Kumar, SDN-based federated learning approach for satellite-iot framework to enhance data security and privacy in space communication, in 2022 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE), (2022), 71–76. https://doi.org/10.1109/WiSEE49342.2022.9926943
    [82] V. Balasubramanian, M. Aloqaily, M. Reisslein, FedCo: A federated learning controller for content management in multi-party edge systems, in 2021 International Conference on Computer Communications and Networks (ICCCN), (2021), 1–9. https://doi.org/10.1109/ICCCN52240.2021.9522153
    [83] A. R. Mahmod, G. Caliciuri, P. Pace, A. Iera, Improving the quality of federated learning processes via software defined networking, in International Workshop on Networked AI Systems (NetAISys'23), (2023), 1–6. https://doi.org/10.1145/3597062.3597281
    [84] G. Li, J. Wu, S. Li, W. Yang, C. Li, Multi-tentacle federated learning over software-defined industrial internet of things against adaptive poisoning attacks, IEEE Trans. Ind. Inf., 19 (2022), 1260–1269. https://doi.org/10.1109/tii.2022.3173996 doi: 10.1109/tii.2022.3173996
    [85] L. Chen, H. Tang, Y. Zhao, W. You, K. Wang, A privacy-preserving and energy-efficient offloading algorithm based on lyapunov optimization, KSII Trans. Internet Inf. Syst., 16 (2022), 2490–2506. https://doi.org/10.3837/tiis.2022.08.002 doi: 10.3837/tiis.2022.08.002
    [86] K. M. M. Fathima, M. Suganthi, N. Santhiyakumari, Enhancing the quality of service by GBSO splay tree routing framework in wireless sensor network, KSII Trans. Internet Inf. Syst., 17 (2023), 2188–2208. https://doi.org/10.3837/tiis.2023.08.013 doi: 10.3837/tiis.2023.08.013
    [87] P. Tam, S. Math, S. Kim, Intelligent massive traffic handling scheme in 5G bottleneck backhaul networks, KSII Trans. Internet Inf. Syst., 15 (2021), 874–890. https://doi.org/10.3837/tiis.2021.03.004 doi: 10.3837/tiis.2021.03.004
    [88] X. Huang, Z. Chen, Q. Chen, J. Zhang, Federated learning based QoS-aware caching decisions in fog-enabled internet of things networks, Digital Commun. Networks, 9 (2023), 580–589. https://doi.org/10.1016/j.dcan.2022.04.022 doi: 10.1016/j.dcan.2022.04.022
    [89] P. Tam, S. Math, S. Kim, Optimized multi-service tasks offloading for federated learning in edge virtualization, IEEE Trans. Network Sci. Eng., 9 (2022), 4363–4378. https://doi.org/10.1109/TNSE.2022.3200057 doi: 10.1109/TNSE.2022.3200057
    [90] J. Xu, J. Lin, Y. Li, Z. Xu, MultiFed: A fast converging federated learning framework for services QoS prediction via cloud–edge collaboration mechanism, Knowledge-Based Syst., 268 (2023), 110463. https://doi.org/10.1016/j.knosys.2023.110463 doi: 10.1016/j.knosys.2023.110463
    [91] V. Gugueoth, S. Safavat, S. Shetty, Security of internet of things (IoT) using federated learning and deep learning-recent advancements, issues and prospects, ICT Express, 9 (2023), 941–960. https://doi.org/10.1016/j.icte.2023.03.006 doi: 10.1016/j.icte.2023.03.006
    [92] S. Zarandi, H. Tabassum, Federated double deep Q-learning for joint delay and energy minimization in IoT networks, in IEEE International Conference on Communications Workshops (ICC Workshops), (2021), 1–6. https://doi.org/10.1109/iccworkshops50388.2021.9473821
    [93] Y. Ren, A. Guo, C. Song, Multi-slice joint task offloading and resource allocation scheme for massive mimo enabled network, KSII Trans. Internet Inf. Syst., 17 (2023), 794–815. https://doi.org/10.3837/tiis.2023.03.007 doi: 10.3837/tiis.2023.03.007
    [94] Y. Xu, H. Zhou, J. Chen, T. Ma, S. Shen, Cybertwin assisted wireless asynchronous federated learning mechanism for edge computing, in IEEE Global Communications Conference (GLOBECOM), (2021), 1–6. https://doi.org/10.1109/globecom46510.2021.9685076
    [95] A. Alferaidi, K. Yadav, Y. Alharbi, W. Viriyasitavat, S. Kautish, G. Dhiman, Federated learning algorithms to optimize the client and cost selections, Math. Probl. Eng., 2022 (2022), 1–9. https://doi.org/10.1155/2022/8514562 doi: 10.1155/2022/8514562
    [96] S. Tang, W. Zhou, L. Chen, L. Lai, J. Xia, L. Fan, Battery-constrained federated edge learning in UAV-enabled IoT for B5G/6G networks, Phys. Commun., 47 (2021), 101381. https://doi.org/10.1016/j.phycom.2021.101381 doi: 10.1016/j.phycom.2021.101381
    [97] D. J. Han, M. Choi, J. Park, J. Moon, FedMes: Speeding up federated learning with multiple edge servers, IEEE J. Sel. Areas Commun., 39 (2021), 3870–3885. https://doi.org/10.1109/JSAC.2021.3118422 doi: 10.1109/JSAC.2021.3118422
    [98] W. Liu, L. Chen, Y. Chen, W. Zhang, Accelerating federated learning via momentum gradient descent, IEEE J. Sel. Areas Commun., 31 (2020), 1754–1766. https://doi.org/10.1109/TPDS.2020.2975189 doi: 10.1109/TPDS.2020.2975189
    [99] R. Chen, D. Shi, X. Qin, D. Liu, M. Pan, S. Cui, Service delay minimization for federated learning over mobile devices, IEEE J. Sel. Areas Commun., 41 (2023), 990–1006. https://doi.org/10.1109/JSAC.2023.3242711 doi: 10.1109/JSAC.2023.3242711
    [100] S. Caldas, J. Konečny, H. B. McMahan, A. Talwalkar, Expanding the reach of federated learning by reducing client resource requirements, arXiv preprint, (2019), arXiv: 1812.07210. https://doi.org/10.48550/arXiv.1812.07210
    [101] M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, S. Cui, A joint learning and communications framework for federated learning over wireless networks, IEEE Trans. Wireless Commun., 20 (2021), 269–283. https://doi.org/10.1109/TWC.2020.3024629 doi: 10.1109/TWC.2020.3024629
    [102] C. Ma, Distributed optimization with arbitrary local solvers, Optim. Methods Software, 32 (2017), 813–848. https://doi.org/10.1080/10556788.2016.1278445 doi: 10.1080/10556788.2016.1278445
    [103] X. Yao, C. Huang, L. Sun, Two-stream federated learning: Reduce the communication costs, in 2018 IEEE Visual Communications and Image Processing (VCIP), (2018), 1–4. https://doi.org/10.1109/VCIP.2018.8698609
    [104] B. Luo, X. Li, S. Wang, J. Huang, L. Tassiulas, Cost-effective federated learning in mobile edge networks, IEEE J. Sel. Areas Commun., 39 (2021), 3606–3621. https://doi.org/10.1109/JSAC.2021.3118436 doi: 10.1109/JSAC.2021.3118436
    [105] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, D. Bacon, Federated learning: Strategies for improving communication efficiency, arXiv preprint, (2019), arXiv: 1610.05492. https://doi.org/10.48550/arXiv.1610.05492
    [106] J. Xu, H. Wang, L. Chen, Bandwidth allocation for multiple federated learning services in wireless edge networks, IEEE Trans. Wireless Commun., 21 (2022), 2534–2546. https://doi.org/10.1109/TWC.2021.3113346 doi: 10.1109/TWC.2021.3113346
    [107] A. K. Abasi, M. Aloqaily, M. Guizani, Grey wolf optimizer for reducing communication cost of federated learning, in GLOBECOM 2022 - 2022 IEEE Global Communications Conference, (2022), 1049–1054. https://doi.org/10.1109/GLOBECOM48099.2022.10001681
    [108] D. Gurung, S. R. Pokhrel, G. Li, Quantum federated learning: Analysis, design and implementation challenges, arXiv preprint, (2023), arXiv: 2306.15708. https://doi.org/10.48550/arXiv.2306.15708
    [109] N. Bouacida, P. Mohapatra, Vulnerabilities in federated learning, IEEE Access, 9 (2021), 63229–63249. https://doi.org/10.1109/ACCESS.2021.3075203 doi: 10.1109/ACCESS.2021.3075203
    [110] F. K. Dankar, K. E. Emam, Practicing differential privacy in health care: A review, IEEE Intell. Inf. Bull., 6 (2013), 35–67. https://dl.acm.org/doi/10.5555/2612156.2612159
    [111] V. Mothukuri, R. M. Parizi, S. Pouriyeh, Y. Huang, A. Dehghantanha, G. Srivastava, A survey on security and privacy of federated learning, Future Gener. Comput. Syst., 115 (2020), 619–640. https://doi.org/10.1016/j.future.2020.10.007 doi: 10.1016/j.future.2020.10.007
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1284) PDF downloads(120) Cited by(5)

Article outline

Figures and Tables

Figures(6)  /  Tables(9)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog