
ERA, 32(2): 1333–1364.
DOI: 10.3934/era.2024062
Received: 12 October 2023
Revised: 19 January 2024
Accepted: 23 January 2024
Published: 01 February 2024

http://www.aimspress.com/journal/ERA

Review

A survey on state-of-the-art experimental simulations for privacy-

preserving federated learning in intelligent networking

Seyha Ros1, Prohim Tam1, Inseok Song1, Seungwoo Kang1 and Seokhoon Kim1,2,*

1 Department of Software Convergence, Soonchunhyang University, Asan 31538, Republic of Korea
2 Department of Computer Software Engineering, Soonchunhyang University, Asan 31538, Republic

of Korea

* Correspondence: Email: seokhoon@sch.ac.kr.

Abstract: Federated learning (FL) provides a collaborative framework that enables intelligent
networking devices to train a shared model without the need to share local data. FL has been applied
in communication networks, which offers the dual advantage of preserving user privacy and reducing
communication overhead. Networking systems and FL are highly complementary. Networking
environments provide critical support for data acquisition, edge computing capabilities, round
communication/connectivity, and scalable topologies. In turn, FL can leverage capabilities to achieve
learning adaptation, low-latency operation, edge intelligence, personalization, and, notably, privacy
preservation. In our review, we gather relevant literature and open-source platforms that point out the
feasibility of conducting experiments at the confluence of FL and intelligent networking. Our review
is structured around key sections, including the introduction of FL concepts, the background of FL
applied in networking, and experimental simulations covering networking for FL and FL for
networking. Additionally, we delved into case studies showcasing FL potential in optimizing state-of-
the-art network optimization objectives, such as learning performance, quality of service, energy, and
cost. We also addressed the challenges and outlined future research directions that provide valuable
guidance to researchers and practitioners in this trending field.

Keywords: experimentation; federated learning; intelligent networking; network simulation;
privacy preservation

1334

Electronic Research Archive Volume 32, Issue 2, 1333–1364.

1. Introduction

General data protection regulation (GDPR) has steered into a new era of data protection and
privacy awareness [1,2]. As organizations and institutions engage with restricted data privacy
requirements, the necessity to find solutions that oblige the regulation and protect sensitive information
while still leveraging the potentiality of data-driven learning becomes highly significant. In the era of
massive data and internet of things (IoT) heterogeneity, the handling of sensitive data is a complex
objective for both businesses and researchers, which expands to a variety of services including
healthcare systems, home security, wearable personal, payment systems, etc. [3–6]. The consequences
of data breaches and privacy violations include not only legal but also ethical and reputational
problems. Due to this circumstance, researchers and practitioners have pushed to explore new
paradigms that can reconcile the functionality supports for both data-driven intelligence and robust
data protection capability.

Decentralizing data from central servers to individual devices, federated learning (FL) unlocks
the power of artificial intelligence (AI) for domains with sensitive data and diverse equipment [7]. It
addresses data privacy concerns, enhances security, and improves model generalizability while
reducing communication costs and server load [8]. Beyond these general benefits, FL holds enormous
potential for network applications. First, its decentralized nature minimizes data transmission to central
servers, alleviating network congestion and bandwidth demands [9]. Second, it enables personalized
model training on individual devices, leading to contextually relevant models tailored to user behaviors
and preferences. Additionally, by leveraging data diversity from various devices and locations, FL
generates robust and generalized models that improve the overall accuracy and performance of
network applications [10,11]. Ultimately, FL’s decentralized approach not only protects data privacy
but also optimizes network efficiency, empowers personalization, and boosts model performance in
the networking landscape.

For researchers in the networking field, numerous challenges arise as they seek to balance the
demands of optimizing network performance and preserving user privacy [12,13]. The exponential
growth of data volumes, the increasing heterogeneity of networking taxonomies, and the intense
sensitivity surrounding user data all contribute to these challenges. Consequently, researchers are
driven to explore novel techniques that lead to a complementary technique, FL, which promises to
upgrade the way networking systems are designed and optimized in a distributed and collaborative
manner. In 2016, Google researchers released FL as a communication-efficient method of distributed
learning between global servers and local participants through iterative global model broadcasting,
local training, and model averaging [14]. Figure 1 illustrates the overview of FL that integrates in the
networking field, including four main tiers, namely application, network, edge, and cloud. FL (edge)
offers a comprehensive set of contributions to networking by introducing a framework where local
devices can collectively train a shared model without exposing raw data, particularly sensitive
information [15–18]. The framework feature not only enhances privacy preservation but also
reduces the communication overhead that often troubles conventional data-sharing or high-volume
uploading approaches.

1335

Electronic Research Archive Volume 32, Issue 2, 1333–1364.

Figure 1. Illustrates the overview of FL that integrates in networking field.

Beyond privacy, FL (edge) also offers the potential for learning adaptation, low-latency operation,
edge intelligence, personalization, and cost-effective resource utilization, all of which are significant
for intelligent networking systems [19–21]. On the other hand, as researchers begin to explore the
relationship between FL and networking, the selection of experimental simulation tools or platforms
becomes a critical consideration. Therefore, in this survey, we aim to provide a comprehensive
overview of the state-of-the-art experimental simulations for privacy-preserving FL in intelligent
networking. Figure 2 presents the paper structure, and Table 1 gives the abbreviations used in this
paper. Furthermore, to summarize our contributions, we categorize the main points as follows:
• Networking for FL: This section examines network simulation tools to ensure collaboration with

FL frameworks. Simultaneously, network platforms can generate a precise dataset to obtain any
specific applications. Typically, multiple simulation platforms can provide for several aspects (e.g.,
network topology acquisition, distributed computing putting capability, multi-round
communication, and scalability deployment).

• FL for networking: Afterward, we reflect on the abovementioned platforms by reviewing how
the FL framework resource can be utilized to complement networking simulation (e.g., data
privacy, private preservation, bandwidth-efficient updates, latency reduction, learning robustness
in edge intelligence, and converged round communication).

• Objectives of FL case studies: As we discussed, the collaboration between multiple simulation
tools and the FL framework is eligible to accomplish several case studies in terms of learning
performance, QoS, energy efficiency, and cost.

• Challenges and future directions: Simulation tools and the FL framework play a crucial role in
realizing the full potential of various applications while addressing their inherent challenges in

1336

Electronic Research Archive Volume 32, Issue 2, 1333–1364.

the critical areas of the research and development of 5G and beyond networks. However, in
optimizing communication efficiency between the central server and decentralized clients,
especially in constrained network resources, challenges include communication overhead,
operational bandwidth cost, and expansion of multi-awareness learning (resources, delays, and
energy). Additionally, ensuring the privacy of sensitive data during the FL process remains a
paramount concern, prompting investigations into techniques such as secure multi-party
computation and differential privacy. The scalability of FL in intelligent networking, mainly when
dealing with a vast number of clients and diverse network conditions.

Table 1. List of abbreviations.

Acronym Description
API Application programming interface
CAPEX Capital expenditure
DDQN Double deep Q-network
DFQL Deep federated Q-learning
DL Deep learning
DNN Deep neural network
DRL Deep reinforcement learning
DSRA Device selection and resource allocation
DQL Deep Q-learning
EC Edge cloud
E2E End-to-end
FL Federated learning
HFL-VNE Horizontal federated learning-virtual network embedding
IID Independent-and-identically-distributed
IIoT Industrial internet of things
IoV Internet of vehicles
IoT Internet of things
MEC Multi-access edge computing
MFL Multilevel federated learning
ML Machine learning
MTFL Multi-tentacle federated learning
NFV Network functions virtualization
NFVeEC NFV-enabled EC
QoE Quality of experience
QoS Quality of service
RAN Radio access network
SDN Software-defined networks
VGAE Variational graph autoencoder

1337

Electronic Research Archive Volume 32, Issue 2, 1333–1364.

Figure 2. The overall structure of the surveys.

2. Background of federated learning in intelligent networking

FL enables training on decentralized data sources while keeping the data localized. In practical
FL scenarios, the active coordinator requires a critical focus on communication efficiency, model
aggregation, and security evaluation to ensure its effectiveness. In Table 2, we gather the most relevant
surveys analyzing in relation to FL simulation.

Table 2. Describes the summary of existing FL surveys.

Survey paper IoT
networks

Overview
of FL

Framework
details

Key performance
indicators

Simulation
tools in
networks

Ref. Year

W. Lim et al. ✓ ✓ ✓ ✘ ✘ [22] 2020
D. Nguyen et al. ✓ ✓ ✓ ✘ ✘ [23] 2021
R. Gupta et al. ✘ ✓ ✓ ✓ ✘ [24] 2022
L. Witt et al. ✘ ✓ ✓ ✘ ✘ [25] 2023
H. Chen et al. ✘ ✓ ✓ ✘ ✘ [26] 2023
M. Al-Quraan et al. ✘ ✓ ✓ ✘ ✘ [27] 2023

We started by listing all the processing steps of conventional FL and pointing out the main
functions and literature reviews that are associated with intelligent networking. The execution can be
defined as follows:
1) Initialization: FL begins with server setup as a global central server that is responsible for

coordinating the overall FL process. Then, the coordinator selects the model by creating a model
architecture suitable for the target application. Some use cases initially declare the model random
or even pre-trained on public data. After deciding on the global model, the FL coordinator is

1338

Electronic Research Archive Volume 32, Issue 2, 1333–1364.

required to identify the client batch in that round of communication, namely participant selection.
2) Participant selection: In mobile networks, participant selection is challenging due to bandwidth

limitations and unstable availability or connectivity [28]. Suppose the coordinator sets a policy
with random client selection in each round. In that case, the learning performance will return with
unreliable accuracy, slow convergence, data imbalance, and unfairness [29], which heavily
degrades the practicality in real-world scenarios. The selection approaches tackle the
heterogeneity of device taxonomies in modern networks with diverse data type distributions and
hardware-specific configurations. Table 3 summarizes proposed approaches in this domain,
including targets on resource efficiency, convergence analysis, data heterogeneity handling,
power-of-choice strategies, and unstable clients [30–34].

Table 3. Summary of paper contributions on participant selection.

Summary of execution flows Target objectives Ref. Year
The proposed algorithm features two components: 1)
An online learning component based on previous
resource usage and training results for making
fractional decisions, and 2) An internet-based rounding
tool that transforms fractional choices into whole
number selections.

Prioritization in cumulative utilization of
computation and communication
resources, while ensuring the convergence
of both local and aggregated models.

[30] 2020

The Power-of-Choice selection strategy works as
follows: 1) The central server calculates the local
losses of all clients, 2) The server sorts the clients in
decreasing order of their local losses, and 3) The server
selects the top set of clients to participate in the current
training round.

Improvement of the convergence speed
and accuracy of FL while reducing
communication and computation
overhead (target applications can be
distributed machine learning (ML),
mobile edge computing, and IoT).

[31] 2022

“PyramidFL” is a fine-grained client selection method
that first determines the utility-based client selection
from the global view and then optimizes its utility
profiling locally for further client selection.

Designing to speed up the FL training
while achieving a higher final model
performance, also prioritizing the use of
clients with higher statistical and system
utility.

[32] 2020

1) Deadline-based aggregation: Aggregate client
updates once a fixed deadline is met. 2) Joint
optimization: two subproblems on client selection and
parameter update. 3) E3CS: an exponential-weight
algorithm for exploration and exploitation-based client
selection.

Improvement of the training efficiency
and final model accuracy in FL within a
volatile training context, where clients are
prone to failures.

[33] 2022

“Newt” is an enhanced FL approach that includes a
new client selection utility and fine-grained control on
selection frequency.

Enabling efficient selection in intelligent
transportation systems, which has
challenges such as data and device
heterogeneity and highly dynamic system.

[34] 2022

3) Model distribution: After the server selects the clients that will participate in the training round,
it distributes the current model to all the selected clients. The clients then download the model
onto their local devices and train it on their own data.

1339

Electronic Research Archive Volume 32, Issue 2, 1333–1364.

4) Local model training: Local data is stored on each client device in the FL system, and the clients
train on their local data without sending it to the server. However, there are also some challenges
associated with using local data, including data heterogeneity, insufficient computation resources,
and network connectivity. Due to the problems of local device capability, there are several studies
proposing edge-assisted learning for handling FL local tasks, particularly over resource-
constrained IoT devices.

5) Local model updates: After local training, each client generates the optimal model update for
that round, which consists of the model parameters (e.g., weights). Table 4 presents the relevant
literature that assists the local model training and updates.

Table 4. Summary of paper contributions on local model training and updates.

Summary of execution flows Target objectives Ref. Year
“FL+HC” clusters clients are grouped based on how closely
their local updates match the overall global model. After
this grouping, the clusters are trained autonomously and
simultaneously using dedicated models.

Improvement of the accuracy of the test
set while minimizing the communication
rounds needed to achieve convergence in
FL, especially when dealing with non-
independent and non-identically
distributed (non-IID) data.

[35] 2020

1) Bandwidth allocation: involves assigning additional
bandwidth to devices that experience poorer channel
conditions or possess less robust computational capabilities.
2) Device scheduling: suggests an approach that prioritizes
selecting devices with the shortest model updating time
until a favorable balance is struck between learning
efficiency and round-trip latency.

Maximization of the convergence rate of
FL training with respect to time rather than
rounds, which can be achieved by
minimizing the expected time for FL
training to attain certain model accuracy.

[36] 2020

Each client offloads partial data to the edge server for
processing, and then, the clients update their local models
using the remaining data (Meanwhile, the edge server
updates the global model using the aggregated data).

Mitigation of the straggler effect in FL and
improving the system efficiency (The
method can be used in applications, such
as mobile device training, IoT device
training, or healthcare data training).

[37] 2021

The optimal offloading strategy is derived by minimizing
the FL loss function under the latency constraint and the Q-
learning-based offloading strategy is proposed for the
imperfect channel state information scenario.

Improvement of training efficiency and
mitigating the straggler effect of FL in
industrial IoT networks.

[38] 2023

The greedy algorithm is proposed by iteratively assigning
communication resources to the edge nodes that consume
the least energy for local model training in each round,
which proceeds until the communication resource budget
is finished.

Training machine learning models for
edge-assisted Internet of Agriculture
Things applications, where data are both
vertically and horizontally partitioned,
and resources are limited.

[39] 2022

6) Model updates aggregation and global update: Clients securely transmit their model parameter
updates (e.g., weights) to the central server or even using edge-assisted methods. The central
server aggregates the model updates into a global update. Conventional aggregation methods
include federated averaging and secure multi-party computation. The central server integrates the

1340

Electronic Research Archive Volume 32, Issue 2, 1333–1364.

aggregated global model update into the new-iteration central model. To improve this processing
step, there are several studies that tackle different target objectives. Table 5 presents the literature
reviews for this phase.

Table 5. Summary of paper contributions on update aggregation and global update.

Summary of execution flows Target objectives Ref. Year
1) Unbiased gradient aggregation: Evaluate the
gradients against the global model parameters in the
last local epoch, and 2) FedMeta: Perform meta
updating on the global model parameters using a small
set of data samples indicating the expected target
distribution.

Improvement of the convergence speed
and accuracy (Both unbiased gradient
aggregation and FedMeta can be
applied individually or together and can
be integrated into existing FL).

[40] 2020

1) Partition the network into groups and local model
updates into segments, 2) Apply the aggregation
protocol to segments with specific coordination
between users, and 3) Aggregate the aggregated
segments to obtain the global update.

Enabling secure model aggregation in
FL systems, while allowing users to
adjust the quantization proportional to
their communication resources.

[41] 2022

The method aggregates updates from scheduled
devices using an age-aware weighting design, and the
weights are assigned to each update based on the
freshness of the data, with more recent updates
receiving higher weights.

Development of an asynchronous FL
framework with periodic aggregation
that can support heterogeneous
computation capabilities and training
data distributions.

[42] 2021

The method uses a feedback mechanism to communicate
the estimated global update to each client, which then
calculates the relevance of its local update to the
estimated global update (If the relevance is lower than
a predefined threshold, the client does not update).

Mitigation of communication overhead,
which can be applied to a variety of FL
applications, such as personalized
healthcare, intelligent transportation
systems, and distributed machine
learning for financial services.

[43] 2019

Participants apply linear transformation to the model
update vector, then partially encrypt the transformed
vector using multi-input functional encryption.

Design of an efficient secure
aggregation scheme, which can protect
the security of model updates without
losing efficiency.

[44] 2020

Each processing step helps improve the central model performance, deployed after the
convergence evaluation and application performance requirements are satisfied. The privacy and
security methods (e.g., encryption, secure communication protocols, and access controls) are
converged to protect sensitive data and model interactions between entities [45]. Figure 3 illustrates
the general view of FL’s possible failures in networking. Throughout the overall execution flows, we
point out the background of FL and its relationship with networking architecture. There are several
challenges to handle, and from a researcher’s perspective, complementary simulations of
networking and FL are critical to gaining extensive experience before practically deploying their
proposed approaches.

This section aims to gather comprehensive information related to FL frameworks and
backgrounds studied in networking, especially the execution of FL frameworks in terms of initiate,

1341

Electronic Research Archive Volume 32, Issue 2, 1333–1364.

participatory selection, model distribution, local model training, local mode updates, model update
aggregate, and global update.

Figure 3. FL processing possible failure in round communications.

3. Experimental simulations: Networking for federated learning

In this section, we primarily concentrate on illustrating the critical role of simulation performance
by interacting network components, including user equipment (UE), radio access networks (RAN),
core networks (CN), edge cloud (EC), software-defined networks (SDN), multi-access edge computing
(MEC), and millimeter wave (mmWave). With several aspects given the intuitionistic abstract of
relational network simulation tools, we can tackle representation for network performance in actual
implementation and provide the design, optimization, and testing of 5G networking. Additionally, we
can provide up-to-date trending networking to customized functions for evaluating and analyzing
network performance and results. In this grading, we observe the state of simulation tools to
accomplish scale-up, which assisted FL in ensuring the local data deserves security and privacy in
many communication and computation aspects [46]. As in Table 6, we gather the trending networking
simulation tools, which provide taxonomic and comprehensive information to involve within network
protocol, standardization, management, orchestration, and network topology. Simulation tools can be
specified depending on the use case and research objectives. The trend of network simulation tools and
techniques are listed as follows: network simulation version 3 (NS-3), network simulation version 2
(NS-2), Mininet, Mininet-Wi-Fi, MATLAB, OMNet++, OpenDayLight, Floodlight, Ryu Controller,
and OpenStack.

1342

Electronic Research Archive Volume 32, Issue 2, 1333–1364.

Table 6. Related network simulation tools for networking.

Platform Summary Primary focuses Ref. Year

NS3 (C++,
Python)

A simulator can provide an approach to
enhance the comprehensive and flexible
platform for computer network simulation.
It also provides the ability to analyze and
simulate network behaviors and several
network standardization protocols,
algorithms, scenarios, and topologies.
Available: https://www.nsnam.org/

- Customization and extension of its
functionality

- Supporting comprehensive network
environment and network protocols

- Execution of the simulation using
an XML trace file

- Support with OpenAI Gym

[47–
49]

2008

NS2 (C++) Designing to illustrate the behaviors of
computer networks, which include wired
and wireless communication, routing, and
congest control protocol and transport
(e.g., routing algorithm).
Available: https://www.isi.edu/nsnam/ns/

- Routing
- Switching
- Extending to support IPv6
- Extending to support cloud

computing

[50] 1997

Mininet
(Python)

Open-source network emulator that
provides to create, configure, and test
network topologies, which supports large-
scale network infrastructure and the
integration with SDN controller using
OpenFlow (simplifying the configuration
on node, flow entry, and link).
Available: http://mininet.org/

- Creation and design for a real-world
SDN environment

- Interconnecting API and AI
- Exportation of network topology

into Python script
- Being mini-edit to visualize the

topology

[51] 2010

Mininet-WiFi
(Python)

Designing to evolve rapidly and develop to
emulate wireless network controller
environment that supports several wireless
protocols such as Wi-Fi, ZigBee, and
Bluetooth.
Available: https://mininet-wifi.github.io

- Development of a new scenario of
the network wireless

- Measurement of the performance of
different Wi-Fi channels

- Routing protocol for wireless
connection mesh network

- Providing a high degree of fidelity
- Focusing on the security and

scalability of mobile network

[52] 2021

MATLAB
(Commercial)

Enabling cooperation with other
programming languages and numerical
computing environment, which provides
more functions for modeling and simulating
communication systems, wireless networks,
cellular networks, and optical networks
(enclosing several tools and libraries).
Available: https://www.mathworks.com/
help/index.html?s_tid=CRUX_lftnav

- Simulation for network systems and
protocols

- Simulation for complex networks
- Offering customization and

development
- Specification network function
- areas or behaviors

[53] unde
fined

Continued on next page

1343

Electronic Research Archive Volume 32, Issue 2, 1333–1364.

Platform Summary Primary focuses Ref. Year

OMNet++
(C++)

Designing a component architecture for
models and providing a high degree of
scaling to support an extensive network
with millions of nodes, which is feasible to
obtain a highly accurate result.
Available: https://omnetpp.org/
download/models-and-tools

- Support model completeness
- Simulation from LANs to WANs
- Packet-switched and circuit-

switched networks
- Support for sensor networks and ad-

hoc networks

[54] 1993

OpenDayLig
ht (Java,
Python,
YAML)

Providing an open platform to focus on
customizing and automating networks of
network environment, which makes
familiar with SDN controller scales up of
the network device and network
applications.
Available: https://www.opendaylight.org

- Combination of multiple service
and protocol

- Sustenance of various southbound
APIs with network devices and
protocol

- Feasibly support of a wide range of
standard networking protocols

- Adaptation of NFV and SDN

[55] 2013

Floodlight
(Java)

Offering greater flexibility, agility, and
programmability in network management.
Floodlight makes a rule of network policy
and routing logic.
Available:
https://github.com/floodlight/floodlight

- Support for multiple network
protocols

- Solution for flexible and scalable
approaches

[56] 2014

Ryu-
Controller
(Python)

Supporting several protocols for managing
network devices, such as OpenFlow,
Netconf, and OF-config.
Available: https://ryusdn.org/index.html

- Creation flow table management
- Traffic monitoring
- Packet forwarding

[57] 2014

OpenStack Open source offers a core network
controller to accommodate network
functions virtualization (NFV), it
maintains the feature as a platform for
network automation, orchestration, and
management resources.
Available: https://www.openstack.org

- Network protocols and technologies
- A private cloud platform
- Enhancement of resources

utilization and elastic hypervisors
- RESTful API
- Tools achieved with automation and

integration

[58] 2010

In the 5G perspective, many simulation tools can offer advantages and leverage enhancements to
indicate network performance and analysis. Due to differences in network settings, the platforms might
gain fluctuation between QoS and QoE. Figure 4 shows the overview of simulations regarding setting
scenarios, network environments, and differentiated network tiers; simulation tools can be performed
depending on the characteristics of the network.
• NS3 gains interest from researchers in setting the network topologies to compromise the

availability of RAN, mmWave, and handover processing. On the other hand, NS-3 has intensified
by integrating an Open-AI gym into a collaboration capsule class that allows RL agents.

• MATLAB identifies tools used in many fields that can be simulated and analyzed by various
network systems (e.g., communication networks, wireless networks, and network protocols).

1344

Electronic Research Archive Volume 32, Issue 2, 1333–1364.

Network simulations can be performed on network performance analysis, which consists of
analyzing network performance metrics such as latency, packet loss, packet drop ratio, packet size,
throughput, and network capacity, by capturing the network routing and using a network protocol
to simulate and analyze network routing algorithms such as border gateway protocol (BGP), open
shortest path first (OSPF), and routing information protocol (RIP). Within this, MATLAB
provides a built-in function and toolbox for simulation with transmission protocol control
/internet protocol (TCP/IP), user data gram protocol/ internet protocol (UDP/IP), and Ethernet.

• Mininet is a widely used network emulator and simulator that provides fast simulation speed using
OS-level virtualization function and thus has strengths in terms of scalability. It is a simulator that
fully supports the OpenFlow protocol and works with various SDN devices. Mininet shows
excellent compatibility with various currently released SDN controller open sources. However,
the model diversity cannot simulate natural environments and multiple scenarios. The Mininet
version includes standard switch and router models (the legacy model) alongside SDN-enabled
switches and hosts. Mininet also offers a single link model that can configure detailed parameters
like bandwidth, delay, and loss probability. Notably, Mininet lacks its own built-in traffic model
and performance analysis capabilities. Instead, it relies on external traffic generation tools such
as ping, iperf [59], and D-ITG [60]. Additionally, analyzing performance involves collecting and
assessing packets or relying on other external tools. Consequently, there are limitations when
using Mininet as a simulation tool for experiments to validate the stability and reliability of
networking systems or those requiring a realistic network environment.

• Mininet-WiFi was established early with a wildly supported WiFi modules on the Mininet SDN
network emulator and extended the function of the Mininet network by adding virtualized WiFi
standard and access point (AP). The modules are based on Linux wireless drivers and 80211hwsim
wireless simulation diver. Mininet-WiFi supports the use of spec mode.

• OMNet++ is an open source for academic, non-profit, and industrial purposes. OMNet++ is
similar to NS3 and NS2 in the network simulation of both the wired network and wireless network,
which holds capability to utilize for several objectives, such as queuing network modeling,
mobility, and INET structure. OMNet++ also provides a use case under a graphical interface and
limitation of network topology.

• OpenStack is an open source that allows for the building of a simplified platform. It provides
flexible customization in implementation, fosters interoperability across deployment, and is easily
accessible to meet the requirements of both users and operators (e.g., public and private cloud
resource utilization). However, OpenStack can be considered to build a massively scalable
operating system with elasticity and horizontal scalability in resources. OpenStack leads the
several resource components and orchestration. On the other hand, a web-based application
programmable interface (API) ensures that command and control aspects are computation,
memory, storage, and networking.

• Floodlight is a controller platform that uses a Java-based OpenFlow controller to support
orchestration virtualization and physical infrastructure and manages both OpenFlow and non-
OpenFlow networks.

• OpenDayLight (ODL) was introduced by the open network foundation (ONF) in 2013 [61]. ODL
controller offers enhanced reliability and clustering capabilities and resolves issues in older
controllers. Numerous prominent companies have joined this initiative, aiming to create a resilient
and effective system for large-scale industries. ODL significantly impacts SDN’s business aspect,

1345

Electronic Research Archive Volume 32, Issue 2, 1333–1364.

with most controllers choosing it as their foundation.
With several significant FL frameworks and network simulation tools, the primary purpose of

conducting experimental simulations in networking for FL is to analyze, evaluate, and validate the
performance, behavior, and feasibility of FL algorithms, protocols, and systems within network
environments. Those simulations are vital for gaining into how FL operates in diverse network settings,
considering factors like different device types, varying communication conditions, network
heterogeneity, and privacy concerns. By simulating these scenarios, researchers can fine-tune
algorithms, optimize parameters, and understand the implications of deploying FL in practical
networking environments without real-world experimentation, accelerating research and development.

Figure 4. Network simulation tools for collaboration with networking architecture.

4. Privacy-preserving simulations: Federated learning for networking

FL and networking complement each other by leveraging networking’s data acquisition, edge and
distributed computing capabilities, multi-round communications, and scalability deployment. At the
same time, FL reinforces privacy preservation, model updates, latency reduction, learning robustness,
and edge intelligence. Table 7 lists well-known platforms for conducting FL experiments. Academia
and industry have created numerous platforms to facilitate the widespread adoption of FL, including
Google AI, DeepMind, Facebook Research, WeBank+Linux Foundation, IBM, Microsoft, Intel,
NVIDIA, etc. All platforms have the capability for the general FL with several dataset supports. We
outline the summary specifications and functional focuses as follows:

1346

Electronic Research Archive Volume 32, Issue 2, 1333–1364.

Table 7. Related platforms to FL experiments.

Platform Summary Primary Focuses Ref. Year
Flower
(Python)

Providing a unified approach to FL,
federated evaluation, and federated
analytics, which allows users to jointly
federate different workloads, ML
frameworks, and programming languages.
Available: https://flower.dev

- Offering large-scale experiments
- Emphasis of heterogeneous participants
- Transition to real-world devices
- Integration of multiple ML training

frameworks
- Customizability and extensibility

[62] 2020

FedML
(Python)

Prioritization lightweight, cross-platform,
and secure FL and federated analytics.
Available: https://www.fedml.ai

- Convergence of MLOps tools with
decentralized learning

- Vertical approaches to industries and
applications

- Scalability for data silos and rapid
large model training

[63] 2020

FATE
(Python)

Designing to be industrial-grade with
features such as scalability, security, and
compliance (supports logistic regression,
tree-based algorithms, deep learning,
transfer learning, etc.).
Available: https://fate.fedai.org

- A wide range of secure computation
protocols

- FATE CLI, SDK, and dashboard
- Design with distributed architecture,

message-passing interface, and fault
tolerance

[64] 2019

TFF
(Python)

Providing a flexible programming model for
FL, as well as a variety of tools and libraries
to support the development and deployment
of FL applications.
Available:
https://www.tensorflow.org/federated

- High-level interfaces (FL and FC API)
including datasets, models,
computation builders, client placement
type, etc.

- Integration with TensorFlow+Keras
- Deployment to a variety of runtime

environments (mobile devices, edge
servers, and cloud platforms)

[65] 2019

PySyft
(Python,
Docker)

Supporting a variety of techniques, such as
differential privacy, secure multi-party
computation, and homomorphic encryption.
Available:
https://openmined.github.io/PySyft/

- Extension to more privacy-preserving
techniques

- Support for multiple deployment
environments

- Security and private learning

[66] 2021

FLUTE
(Python)

Enabling rapid prototyping and simulation
of new FL at scale with cloud integration
and multi-GPU support, including novel
optimization, privacy, and communications
strategies.
Available:
https://github.com/microsoft/msrflute

- A modular architecture for framework
customization

- A visualization tool for tracking the
progress of FL

- A possible integration with AzureML
workspaces

[67] 2022

Continued on next page

1347

Electronic Research Archive Volume 32, Issue 2, 1333–1364.

Platform Summary Primary Focuses Ref. Year
ns3-fl
(C++,
Python)

Enhancement of the configuration of
network settings and connecting to FL
simulator, flsim, while implementation
includes client-server ns3 and sync/async FL
process communications.
Available:
https://github.com/eekaireb/ns3-fl

- Emphasis of network settings
- A power model of energy consuming

while training clients
- Enhancement of networking output

reliability

[68] 2022

IBM FL
(Python)

Enabling distribution of machine learning in
enterprise environments, prioritizing privacy,
compliance, and data locality, and supporting
various learning techniques and topologies.
Available: https://ibmfl.res.ibm.com

- Simplification of the adoption with
infrastructure, coordination, and
compatibility with common libraries
and minimizes the learning curve

- Deployment across various computing
environments and designing custom
fusion algorithms

- A deep focus on the enterprise
environment

[69] 2020

FFL-ERL
(Erlang)

Providing Erlang’s suitability for FL,
comparing its performance in two scenarios:
a full Erlang implementation and a hybrid
approach using C for numerical computations.
Available:
https://github.com/gregorulm/fcc_ffl_erl

- Discussion of trade-off between C’s
high performance and Erlang’s
superior programmer productivity

- Excellence in concurrency and
distribution

- Development and coordination
capabilities

[70] 2018

OpenFL-
XAI
(Python,
Docker)

Emphasis privacy and explainability by
focusing on the FL of Fuzzy Rule-Based
Systems.
Available:
https://github.com/Unipisa/OpenFL-XAI

- Intel’s OpenFL framework
- A solution for accurate, private, and

interpretable AI applications
- A trustworthy AI systems, privacy

preservation, and transparency

[71] 2023

CrypTen
(Python)

Enabling privacy-preserving ML with
secure multiparty computation with ML-
centric features, a tensor library, and robust
protocol implementations for real-world use.
Available: https://crypten.ai

abstractions for efficient and secure
model evaluation

- Simplification on secure ML for non-
cryptography experts

- Integration with PyTorch’s familiar
API

[72] 2021

Federated
Scope
(Python,
Docker)

Utilization of an event-based structure to
grant users significant flexibility in
autonomously defining the actions of
distinct participants.
Available: https://github.com/alibaba/
FederatedScope

- Support plug-in operations and
components for enhanced privacy,
attack simulation, and auto-tuning

- Facilitation of the incorporation of
diverse plug-in operations and
components to enhance and streamline
further development

[73] 2022

Continued on next page

1348

Electronic Research Archive Volume 32, Issue 2, 1333–1364.

Platform Summary Primary Focuses Ref. Year
NVIDIA
FLARE
(Python)

Providing an open-source SDK to ease
building workflows with capabilities of
scalable packaging, elastic, and lightweight.
Available:
https://github.com/NVIDIA/NVFlare

- Multiple training and validation
workflows

- Federated analytics and lifecycle
orchestration

- Simplification on dashboard for
management

[74] 2020

EasyFL
(Python)

Targeting beginners with limited prior
knowledge, while offering low-code
platform, API design, and enhancing the
deployment efficiency.
Available: https://github.com/EasyFL-
AI/EasyFL

- Training outputs tracker
- Simulation with statistical and system

heterogeneity
- Design on plug-in for training flow

abstraction

[75] 2022

LEAF
(Python)

Providing an adaptable benchmarking
system designed for evaluating learning in
federated settings with a collection of openly
available federated datasets.
Available:
https://github.com/TalwalkarLab/leaf

- Datasets: FEMNIST (Image
classification), Sentiment140
(Sentiment analysis), Shakespeare
(Next-character prediction), Synthetic
(Classification), and Reddit (Next-
word prediction)

- Emphasis on learning in federated
settings

[76] 2018

PaddleFL
(Python,
C++,
Kubernete
s)

Leveraging distributed training and
Kubernetes-based job scheduling to offer
scalable deployment, also easy replication.
Available: https://github.com/
PaddlePaddle/PaddleFL

- Simplification of the deployment of
FL systems on large-scale distributed
clusters

- A flexible framework with
components for defining tasks,
designing ML models, and handling
distributed training configurations

- Detail with run times on server,
worker, and scheduler

[77] 2020

Figure 5 illustrates the overview of relations between FL for networking and networking for FL.
These platforms provide comprehensive support for FL by offering various tools, libraries, and features
tailored to different use cases and requirements. Flower stands out for its unified approach,
emphasizing large-scale experiments, heterogeneous participant support, and multiple ML training
frameworks. FedML prioritizes lightweight and secure FL, converging MLOps tools, and offering
vertical approaches for various industries. FATE focuses on industrial-grade FL, supporting various
algorithms, secure computation protocols, and a distributed architecture. TFF provides a flexible
programming model, high-level interfaces, and easy deployment to diverse runtime environments.
PySyft specializes in privacy-preserving techniques, offering support for multiple deployment
environments. FLUTE enables rapid prototyping and simulation of FL at scale with modular
architecture and cloud integration. ns3-fl enhances network settings and communications for FL
simulation, while IBM FL focuses on enterprise environments, minimizing the learning curve and
supporting custom fusion algorithms. FFL-ERL leverages Erlang concurrency and distribution

1349

Electronic Research Archive Volume 32, Issue 2, 1333–1364.

capabilities for FL, OpenFL-XAI emphasizes privacy and explainability, and CrypTen bridges secure
multiparty computation and ML. FederatedScope supports plug-in operations and components,
NVIDIA FLARE simplifies workflows, EasyFL targets beginners with low-code and efficient
deployment, and LEAF offers federated benchmarking with openly available datasets. Finally,
PaddleFL simplifies deployment on large-scale clusters, providing flexibility for defining tasks and
handling distributed training configurations, making these platforms valuable assets for the FL
community. The lists of tools in Tables 6 and 7 complement each other in Table 8, which surveys
articles about FL framework and simulation tools.

Figure 5. Federated learning for network simulation.

Table 8. Surveys on utilized FL framework and network simulation tools.

Paper Performance matric Aggregation

approach

FL

framework

Network

simulation

Data acquisition Ref. Year

L. Sami et al. Throughput FedAvg Flower,

FedScale,

Flue

Unspecified Google speech,

OpenImage,

Shakespeare

[78] 2023

P. Tam et al. Drop ratio, delivery

ratio, delay, accuracy

FedAvg TensorFlow

Federated

Mininet,

Ryu

MNIST and

topology

simulation

[79] 2021

V. Balasubramanian

et al.

Cache hit ratio, average

delay

FedCo PyTorch Mininet Simulation [80] 2021

R. Uddin et al. Precision, recall, F1-

score, accuracy

AWS

OpenGrid

OpenMined Mininet,

Ryu

STIN SAT20,

simulation

(SDN)

[81] 2023

V. Balasubramanian

et al.

MNO revenue, cache hit

ratio, average access

latency, percentage error

in placement

FedCo Python Mininet-

Wifi

Simulation [82] 2021

1350

Electronic Research Archive Volume 32, Issue 2, 1333–1364.

5. FL case studies for optimization objectives

In this section, we brought up five primary sector domains that are discussed about learning
performance, QoS, energy consumption, and cost that recent studies have proposed using FL-based
approaches for networking as Figure 6 and Table 9.

Figure 6. FL case studies for optimization.

5.1. Learning performance

FL with networking is an extension of collaborative ML approaches that allows multiple
decentralized devices or servers to collaborate to train shared models while keeping local and private
data. FL has been increased to coordinate with learning performance in terms of computational capacity,
amount of memory, and communication resources, which contribute to the learning process of privacy
preservation for sensitive information.

In [83], authors proposed SDN support to the FL. Implementing the FL framework (FL client and
FL server) is supported at the application level and network layer (SDN controller). SDN is handled
with data empirically in the FL process, and this paper focuses on the less-explored issue of using FL
for high-sensitive application applications. Hence, edge devices have experienced delays due to
communication overload. Lastly, SDN maintains efficiency FL even in meeting heavy conditions.
SDN-assisted FL can significantly reduce processing time with minimal signaling overhead to the form
of the controller. Moreover, the authors aimed to enhance the security and trustworthiness of FL in the
software-defined industrial internet of things (SD-IIoT) [84,85]. Implementing multi-tentacle FL
(MTFL) frameworks assists in solutions to the growing prevalence of poisoning attacks. MTFL groups
participants with similar training data and mode parameters into a “tentacle group”. Along with
impacting adaptive poisoning data, a stochastic tentacle data exchanging (STDE) protocol was utilized.
The protocol involved adding Gaussian noises to exchange data, which differs from traditional defense
mechanisms in that all exchanged data will be processed using differential privacy technology to
safeguard tentacle privacy.

1351

Electronic Research Archive Volume 32, Issue 2, 1333–1364.

5.2. Quality of service

QoS is the major evaluation metrics for both aspects, namely E2E networking and FL multi-round
communications. Each metric is essential for guaranteeing the delivery of services, especially in
mission-critical applications. Several aspects of FL frameworks are to ensure that it can more
effectively and precisely match the QoS requirements of the application. QoS indicates important
things within the premises that as massive data gathering and data transmission [86]. Edge caching
based on the fog computing network is considered a provisioning potential solution to tackle the
latency and further content fetch delay and minimize the QoS of the end-to-end (E2E) delay. To prevent
network congestion, bottlenecks, and the risk of data user privacy leakage, FL is ultimately used to
enable E2E-assisted fog computing networks and edge virtualization [87–89]. In a novel multi-center
FL framework for QoS prediction which utilized the central server from the cloud to the edge and
trains global models in edge regions [90]. This framework employs two gradient aggregation
strategies: 1) internal aggregation for regional users and 2) external aggregation among edge servers
with cloud server assistance.

5.3. Energy consumption

When referring to FL for network environment, energy and power consumption are important
factors as recently demonstrated by the many reviewed studies. Because FL distributes the training
process across devices on the network, interruptions such as power supply issues, network
disconnections, and other disruptions can lead to a device pausing or discontinuing the learning process
after a certain number of epochs. Moreover, when discussing the FL approach, it is essential to
acknowledge the necessity of constructing ML models efficiently. These models should be capable of
acquiring knowledge from historical IoT sensor data, which is employed to enhance energy efficiency
and reduce costs [91]. Therefore, the significance of optimizing the energy consumption objective
becomes more pronounced when taking the entire FL-IoT context. [92] presents the problem as one
that centered on reducing both the delay and energy consumption of IoT devices within FL systems.
The authors considered various factors, including the decision of whether to offload tasks to edge or
cloud resources, the allocation of computation resources, local processing, and transmission power.
Their primary objective is to minimize the long-term delay and energy usage. This problem was a
multi-agent DRL challenge, which they tackled using a double-deep Q-learning (DQL) network
through a DQL agent. To address the decision of whether to offload a task for processing. In the
subsequent phase, they focused on allocating computation and communication resources [93].
Moreover, they employed the FedRL approach, where each IoT device trained its own DQL models,
shared these models with a centralized controller, and updated the models in a central aggregation unit [94].
QoS for tasks and task queue length, exhibited fluctuations, selecting an efficient update frequency for
the target network to stabilize the environment, leading to improved solutions for the agent. It is important
to mention that the authors did not discuss the results related to cost minimization in their study.

1352

Electronic Research Archive Volume 32, Issue 2, 1333–1364.

Table 9. Surveys on utilized simulation tools and the FL framework.

Categorize Methodology Significance Performance matric Simulation/framework Ref. Year
Learning
performance

 Edge client devices. Accuracy and loss. GNS3,
OpenDayLight,
NETCONF and
RESTCONF/Flower,
FedAvg

[83] 2023

TD-EPAD
algorithm

Trustiness of training
data in SD-IIoT.

Accuracy. Mininet, Floodlight [84] 2023

Quality of
service

Supporting
vector
machine

Handling on allocating
the network resource
and controlling massive
communication in
backbone.

Delay, jitter, packet
drop ratio, packet
delivery ratio,
throughput.

NS-3 [87] 2021

CUPE
algorithm

Minimization of the
content fetch delay for
latency- sensitive of
IoT.

Cach hit rate,
content fetch delay.

Unspecified [88] 2023

DDQN Overcoming on the
minimization of energy
consumption,
completion time, and
round communication
between local
participant and node
selection.

Packet drops ratio,
throughput, overall
accuracy, delay, and
packet delivery
ratio.

NS-3, Mininet, mini-
nfv, OASIS TOSCA

[89] 2022

MultiFed, a
multi-center
FL
framework

Acceleration for better
convergence,
heterogeneity handling,
and improvement on
scalability for privacy
preservation in cloud-
edge collaboration.

Total
communication
rounds, total
communication
delay, and total
communication
volume.

Unspecified [90] 2023

Energy
consumption

MIBLP,
DDQN,
FedRL
algorithm

Minimization of the
long-term delay and
energy consumption of
an IoT device.

Cost per user. Unspecified [92] 2021

Cost Fed-average
algorithm

Approvement on client
selection and
optimizing model
aggregation.

Averaging training
accuracy, energy
consumption of unit
loss delay.

Unspecified [95] 2022

1353

Electronic Research Archive Volume 32, Issue 2, 1333–1364.

5.4. Cost

When considering the goal of optimizing network costs, the primary focus is on two components:
operational expenses (OPEX) associated with capital expenditure (CAPEX). For instance, in the
context of FL implementations, communication often acts as a significant bottleneck, and thus,
reducing communication costs involves optimizing connections [95]. Within this section, one can
observe a variety of approaches to representing costs in the FL-IoT environment. Different research
studies have been adopted for various metrics to achieve cost optimization. As a result, we encounter
different terminologies used by different authors in this section. To enhance clarity, we have provided
the specific cost metric for each study. [96] considers the battery-constrained federated edge learning
problem for their operating CPU frequency for both prolonging the battery life and avoiding the
untimely dropping from FL training. The primary objective was to reduce the overall system which
was determined by both latency and energy consumption. To achieve this, the authors devised a
resource allocation scheme to adjust the CPU frequency of devices and allocate wireless bandwidth.
They introduced a DDPG-based allocation strategy to address this issue. Under this approach, clients
were required to report their available resources and the server had to estimate the channel parameters
for communication between users and devices. Additionally, the base station had to inform participants
about the current CPU frequency and available wireless bandwidth. Consequently, the agent received
varying rewards to meet both latency and energy consumption requirements. The proposed DDPG
strategy outperformed E-DDPG (DDPG strategy with even bandwidth allocation) in terms of system
cost. Mainly, it effectively utilized wireless bandwidth resources during the learning process,
resulting in improved system performance. Moreover, DDPG performed better than alternative
methods across various bandwidth values, as it efficiently leveraged system communication and
computational resources.

5.4.1. Key performance indicators of FL in networking

Key performance indicators (KPIs) in FL in networking aim to measure the effectiveness and
overall performance of collaborative model training of FL systems across decentralized devices while
preserving user privacy. Here are the following key aspects:
• Speed and convergence: Introduces a novel framework that optimizes FL by employing multiple

edge servers. This framework likely includes mechanisms for efficient communication,
aggregation of model updates, and strategies to minimize latency during the learning process [97].
It also discusses empirical results and performance evaluations of FedMes, showcasing
improvements in FL speed, convergence rates, and overall efficiency compared to traditional FL
setups. [98] The primary focus is on improving the speed and convergence of FL algorithms,
specifically by leveraging the momentum gradient descent (MGD) technique. MGD can be a
valuable technique for accelerating FL, leading to faster model training, and potentially improving
resource efficiency. The proposed adaptive FedMGD further enhances the performance by
adapting to device heterogeneity.

• Delay: The majority of techniques must be solved to accelerate the model updates and parameters
between the central server and participating devices. [99] The authors propose a dynamic
sampling and adaptive resource allocation (DSARA) framework to minimize service delays in
mobile FL. The algorithm incorporates the latest local model updates and resource constraints to

1354

Electronic Research Archive Volume 32, Issue 2, 1333–1364.

select the optimal device subset for each round. It offers a valuable solution for enabling efficient
and delay-aware FL on mobile devices, paving the way for practical applications in mobile edge
computing and distributed ML.

• Communication round: The backbone of information exchange in FL, enabling collaborative
model training while preserving data privacy on participating devices. 1) infrequent rounds with
compressed updates achieved decent accuracy while minimizing bandwidth usage, 2) strategic
selection of participating devices based on data relevance further improved efficiency, and 3)
federated averaging with weights assigned based on update quality accelerated convergence
towards the optimal model. Furthermore, it demonstrates the importance of optimizing
communication rounds for resource-constrained networks in real-world FL applications.
Moreover, [100] aims to decrease the size of models produced by both the server and clients while
adjusting the FL procedure. Initially, the server creates a smaller sub-model with fewer parameters
using federated dropout. Subsequently, the resulting model undergoes lossy compression on the
server’s end and transmits to the clients. The clients then decompress the model to begin training.
After training, the updates are compressed and sent back to the server, which decompresses and
combines the final model. The communication bottleneck in the federated averaging method is
due to limited bandwidth, causing delays for clients in uploading their updates.

• Resource utilization: In FL-based IoT environments, we observe many heterogeneous IoT
devices that are in nature and process limited resources. Hence, FL trains operated through
efficient client selection and optimized resource utilization. In [101], it tackled the hurdles of
unreliable wireless communication in FL. They built a framework that joins learning tasks with
wireless communication on multiple devices. Recognizing issues like packet errors and limited
bandwidth, they devised an optimization plan to minimize training errors while allocating
resources and wisely choosing participating users. The framework accounts for how wireless
channels affect learning, leading to a precise formula for predicting how well the model will train.
This breakthrough could pave the way for reliable and efficient FL in resource-constrained
settings like wireless networks.
This section focuses on utilizing FL case studies regarding learning performance, QoS, energy

consumption, and cost. Meanwhile, KPIs are primarily impacted by FL to show the effectiveness of
its ability to adapt to speed and convergence, delay, communication round, and resource utilization.

6. Challenges and future directions

This section presents the main research challenges and future directions in this recent review
within several issues to tackle for supporting FL with network simulation tools. However, this field
also faces several challenges and has numerous future directions to explore, as follows:
• Communication overhead: To prevent communication overhead during communication between

simulation tools and other tools for collaborating interactions, which is a critical phase to consider
accurately in network environments of heterogeneous IoT. The primary purpose of maintaining
communication and synchronization among various network components is the interface, nodes,
or entities involved. For instance, where a client faces limited bandwidth, effective
communication with the FL server during model training becomes challenging. Similarly, clients
with insufficient processing capabilities find it impractical to execute assigned local
computational tasks [102–105]. Additionally, when dealing with extensive data across the

1355

Electronic Research Archive Volume 32, Issue 2, 1333–1364.

network, the resulting large model size poses difficulties for resource-constrained clients.
Efficient training in such large data networks necessitates compressing client models,
minimizing the burden on clients with constrained resources. If many FL clients grapple with
resource limitations, the FL process demands increased server-client interactions to achieve
target convergence. However, clients may find bearing the associated high communication
costs prohibitive.

• Operational bandwidth cost: Offering the operational bandwidth cost is one of the concern cases
in networking operations and a critical consideration as FL relies on the exchange of data and
model between participants and global server. The following factors can involve operational
bandwidth costs in FL: 1) exchanging data for local collaboration, 2) the frequency of participant-
server round communications, 3) the distance/mobility between participants, 4) networks with
lower bandwidth capacity [106] (cellular networks) will have higher bandwidth costs than networks
with higher bandwidth capacity [107], and 5) the number of simulators/platforms involved in the
deployment. Therefore, utilizing a (edge) cloud-based FL platform can optimize bandwidth cost
by optimizing data transfer, edge aggregation, and caching capabilities.

• Expansion of multi-awareness learning (MAL): FL framework enables the ML model to learn
from distributed data while preserving privacy and reducing communication costs. Network
simulation offers exciting opportunities for enhancing network performance through innovative
methods. For instance, MAL models can dynamically fine-tune routing algorithms, congestion
control protocols, and power management strategies, improving network throughput, decreasing
latency, and energy conservation. One approach for extending MAL to network simulation is to
adopt a reinforcement learning methodology. In this method, the MAL model is trained to interact
with a simulated network environment, learning to take actions that maximize a predefined reward.
Reward functions can be tailored to represent specific network performance objectives, such as
achieving higher throughput, lower latency, or reduced energy consumption. Another approach
for integrating MAL into network simulation involves using supervised learning. The MAL model
was trained using a historical network data dataset annotated with desired network performance
metrics. The expansion of MAL into network simulation presents a promising avenue of research
with the potential to transform how networks are conceived and administered. MAL can create
more efficient, dependable, and sustainable network infrastructures by empowering ML models
to glean insights from distributed data and adapt to evolving network conditions. The specification
terms of how MAL could optimize network performance are routing optimization, congestion
control, and power management. The limitation emerges when a network characteristic relies on
the models of its components. These models tend to oversimplify the real-world scenario and the
performance of real-world networks is impacted by the variability in conditions, including traffic
loads, hardware failures, and software bugs. These factors can be challenging to model accurately
in a simulator.

• Quantum computing for FL: Quantum computing presents the opportunity for substantial
benefits compared to classical machine learning algorithms [108]. By harnessing quantum
superposition and entanglement, quantum algorithms can conduct computations in parallel,
potentially leading to faster processing and heightened efficiency. Quantum ML (QML) algorithms
exhibit superior effectiveness in managing extensive datasets and intricate patterns, enhancing
learning capabilities. Moreover, quantum algorithms can extract information from quantum state
transformations and interference, resulting in more accurate predictions. While the realization of

1356

Electronic Research Archive Volume 32, Issue 2, 1333–1364.

quantum advantage in QFL is an ongoing area of research and development, the distinctive
features of quantum computing show potential for addressing complex computational tasks and
introducing novel possibilities in data analysis and pattern recognition. It challenges the
following tantalizing options: 1) collaborative learning across a vast network, 2) data privacy, 3)
communication, 4) gradient leakage, 5) compromised client, and 6) compromised server.

• Security vulnerabilities: The distributed training method in FL provides an avenue for engaging
a substantial client base, potentially extending to millions of clients. Within the FL framework,
clients are not inherently trustworthy and each client may possess varying degrees of malicious
or adversarial capabilities. [109] The server employs a random selection process for clients,
allowing them to participate in FL training iterations. Identifying malicious clients in a training
session becomes challenging when dealing with thousands or even millions of clients.
Consequently, malicious clients may exploit the system to gain access to and learn about the
privacy of other clients participating in the same iteration.

• Differential privacy: DP may lead to exposing sensitive data information. FL can preserve
privacy across various applications, including social media, innovative city applications,
healthcare [110], and traffic management. In these applications, sensitive data is stored locally on
mobile or edge devices [111]. Only the model parameters derived from these devices are
transmitted to the global FL to train the overarching machine-learning model. The subsequent
discussion delves into recent studies and efforts to utilize FL to preserve privacy in these contexts.
At the end of this section, FL demonstrates its increasingly significant role in IoT networks and

applications. We also raise several critical research challenges and current issue trends to be considered
for further FL-networking system implementation. We list several challenges concerning FL with
network simulation, such as communication overhead, operation bandwidth cost, expansion of multi-
awareness learning, security vulnerabilities, and differential privacy.

7. Conclusions

In this paper, we presented a survey of experimental simulations for privacy-preserving FL in
intelligent networking. We examined the potential relationship between the network simulation tool
and the FL framework. An introduction with a motivational statement from networking and FL is
gathered comprehensive terms in novelty concepts and technologies recently. Then, we described the
preliminary studies for FL frameworks that can be leveraged to achieve learning approaches with
intelligence networks. Afterward, we provided networking environments that provide critical support
for data acquisition, edge computing capabilities, round communication, connectivity, and scalable
topologies. Moreover, FL can leverage capabilities to achieve learning adaptation, low-latency
operation, edge intelligence, personalization, and privacy preservation. Additionally, we brought up
case studies of FL potential in terms of learning performance, QoS, energy consumption, and cost.
Finally, we discussed potential challenges and future directions that could provide valuable ways for
researchers in the recently trending field development to enhance the application in practical, real-
world systems.

1357

Electronic Research Archive Volume 32, Issue 2, 1333–1364.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This work was supported by Institute of Information & communications Technology Planning &
Evaluation (IITP) grant funded by the Korea government (MSIT) (No. RS-2022-00167197,
Development of Intelligent 5G/6G Infrastructure Technology for The Smart City), in part by the
National Research Foundation of Korea (NRF), Ministry of Education, through Basic Science
Research Program under Grant NRF-2020R1I1A3066543, in part by BK21 FOUR (Fostering
Outstanding Universities for Research) under Grant 5199990914048, and in part by the
Soonchunhyang University Research Fund.

Conflict of interest

The authors declare there is no conflict of interest.

References

1. N. Gruschka, V. Mavroeidis, K. Vishi, M. Jensen, Privacy issues and data protection in big data:
A case study analysis under GDPR, in IEEE International Conference on Big Data (Big Data),
(2018), 5027–5033. https://doi.org/10.1109/BigData.2018.8622621

2. M. Rhahla, T. Abdellatif, R. Attia, W. Berrayana, A GDPR controller for IoT systems:
Application to e-Health, in IEEE 28th International Conference on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE), (2019), 170–173.
https://doi.org/10.1109/wetice.2019.00044

3. X. Yu, Y. Yang, W. Wang, Y. Zhang, Whether the sensitive information statement of the IoT
privacy policy is consistent with the actual behavior, in Annual IEEE/IFIP International
Conference on Dependable Systems and Networks Workshops (DSN-W), (2021), 85–92.
https://doi.org/10.1109/dsn-w52860.2021.00025

4. P. Liu, S. Ji, L. Fu, K. Lu, X, Zhang, J. Qin, et al., How IoT re-using threatens your sensitive data:
Exploring the user-data disposal in used IoT devices, in IEEE Symposium on Security and Privacy
(SP), (2023), 3365–3381. https://doi.org/10.1109/sp46215.2023.10179294

5. C. Thirumalai, H. S. Kar, Memory efficient multi key (MEMK) generation scheme for secure
transportation of sensitive data over cloud and IoT devices, in Innovations in Power and Advanced
Computing Technologies (i-PACT), (2017), 1–6. https://doi.org/10.1109/ipact.2017.8244948

6. W. Xu, T. Xiao, J. Zhang, W. Liang, Z. Xu, X. Liu, et al., Minimizing the deployment cost of
UAVs for delay-sensitive data collection in IoT networks, IEEE/ACM Trans. Networking, 30
(2022), 812–825. https://doi.org/10.1109/tnet.2021.3123606

7. R. Parasnis, S. Hosseinalipour, Y. W. Chu, M. Chiang, C. G. Brinton, Connectivity-aware semi-
decentralized federated learning over time-varying D2D networks, in ACM on Mobile Computing
and Communications (MobileCom), (2023), 31–40. https://doi.org/10.1145/3565287.3610278

1358

Electronic Research Archive Volume 32, Issue 2, 1333–1364.

8. P. Qi, D. Chiaro, A. Guzzo, M. Ianni, G. Fortino, F. Piccialli, Model aggregation techniques in
federated learning: A comprehensive survey, Future Gener. Comput. Syst., 150 (2024), 272–293.
https://doi.org/10.1016/j.future.2023.09.008

9. M. Chahoud, S. Otoum, A. Mourad, On the feasibility of federated learning towards on-demand
client deployment at the edge, Inf. Process. Manage., 60 (2023), 103150.
https://doi.org/10.1016/j.ipm.2022.103150

10. A. Rahan, K. Hasan, D. Kundu, Md. J. Islam, T. Debnath, S. S. Band, et al., On the ICN-IoT with
federated learning integration of communication: Concepts, security-privacy issues, applications,
and future perspectives, Future Gener. Comput. Syst., 138 (2023), 61–88.
https://doi.org/10.1016/j.future.2022.08.004

11. G. Lan, X. Y. Liu, Y. Zhang, X. Wang, Communication-efficient federated learning for resource-
constrained edge devices, IEEE Trans. Mach. Learn. Commun. Networking, 1 (2023), 210–224.
https://doi.org/10.1109/TMLCN.2023.3309773

12. C. Zhang, J. Sun, X. Zhu, Y. Fang, Privacy and security for online social networks: Challenges
and opportunities, IEEE Network, 24 (2010), 13–18. https://doi.org/10.1109/mnet.2010.5510913

13. K. Yang, K. Zhang, J. Ren, X. Shen, Security and privacy in mobile crowdsourcing networks:
Challenges and opportunities, IEEE Commun. Mag., 53 (2015), 75–81.
https://doi.org/10.1109/mcom.2015.7180511

14. H. B. McMahan, E. Moore, D. Ramage, S. Hampson, B. Arcas, Communication-efficient learning
of deep networks from decentralized data, arXiv preprint, (2023), arXiv:1602.05629.
https://doi.org/10.48550/arXiv.1602.05629

15. N. Shan, X. Cui, Z. Gao, “DRL+FL”: An intelligent resource allocation model based on deep
reinforcement learning for mobile edge computing, Comput. Commun., 160 (2020), 14–24.
https://doi.org/10.1016/j.comcom.2020.05.037

16. X. Wang, Y. Han, C. Wang, Q. Zhao, X. Chen, M. Chen, In-edge AI: Intelligentizing mobile edge
computing, caching and communication by federated learning, IEEE Network, 33 (2019), 156–
165. https://doi.org/10.1109/mnet.2019.1800286

17. Z. Xu, J. Li, M. Zhang, A surveillance video real-time analysis system based on edge-cloud and
FL-YOLO cooperation in coal mine, IEEE Access, 9 (2021), 68482–68497.
https://doi.org/10.1109/access.2021.3077499

18. S. Ye, L. Zeng, Q. Wu, K. Luo, Q. Fang, X. Chen, Eco-FL: Adaptive federated learning with
efficient edge collaborative pipeline training, in Proceedings of the 51st International Conference
on Parallel Processing, (2022), 1–11. https://doi.org/10.1145/3545008.3545015

19. S. S. Musa, M. Zennaro, M. Libsie, E. Pietrosemoli, Convergence of information-centric networks
and edge intelligence for IoV: Challenges and future directions, Future Internet, 14 (2022), 192.
https://doi.org/10.3390/fi14070192

20. Q. Qi, X. Chen, Robust design of federated learning for edge-intelligent networks, IEEE Trans.
Commun., 70 (2022), 4469–4481. https://doi.org/10.1109/tcomm.2022.3175921

21. S. Peng, Y. Yang, M. Mao, D. Park, Centralized machine learning versus federated averaging: A
comparison using mnist dataset, KSII Trans. Internet Inf. Syst., 16 (2022), 742–756.
https://doi.org/10.3837/tiis.2022.02.020

22. W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y. Liang, Q. Yang, et al., Federated learning
in mobile edge networks: A comprehensive survey, IEEE Commun. Surv. Tutorials, 22 (2020),
2031–2063. https://doi.org/10.1109/COMST.2020.2986024

1359

Electronic Research Archive Volume 32, Issue 2, 1333–1364.

23. D. C. Nguyen, M. Ding, P. N. Pathirana, A. Seneviratne, J. Li, H. V. Poor, Federated learning for
Internet of Things: A comprehensive survey, IEEE Commun. Surv. Tutorials, 23 (2021), 1622–
1658. https://doi.org/10.1109/COMST.2021.3075439

24. R. Gupta, T. Alam, Survey on federated-learning approaches in distributed environment, Wireless
Pers. Commun., 125 (2022), 1631–1652. https://doi.org/10.1007/s11277-022-09624-y

25. L. Witt, M. Heyer, K. Toyoda, W. Samek, D. Li, Decentral and incentivized federated learning
frameworks: A systematic literature review, IEEE Internet Things J., 10 (2023), 3642–3663.
https://doi.org/10.1109/JIOT.2022.3231363

26. H. Chen, H. Wang, Q. Long, D. Jin, Y. Li, Advancements in federated learning: Models, methods,
and privacy, arXiv preprint, (2023), arXiv:2302.11466.
https://doi.org/10.48550/arXiv.2302.11466

27. M. Al-Quraan, L. Mohjazi, L. Bariah, A. Centeno, A. Zoha, K. Arshad, et al., Edge-native
intelligence for 6G communications driven by federated learning: A survey of trends and
challenges, IEEE Trans. Emerging Top. Comput. Intell., 7 (2023), 957–979.
https://doi.org/10.1109/TETCI.2023.3251404

28. B. Soltani, V. Haghighi, A. Mahmood, Q. Z. Sheng, L. Yao, A survey on participant selection for
federated learning in mobile networks, in ACM Workshop on Mobility in the Evolving Internet
Architecture, (2022), 19–24. https://doi.org/10.1145/3556548.3559633

29. L. Fu, H. Zhang, G. Gao, M. Zhang, X. Liu, Client selection in federated learning: Principles,
challenges, and opportunities, IEEE Internet of Things J., 10 (2023), 21811–21819.
https://doi.org/10.1109/jiot.2023.3299573.

30. Y. Jin, L. Jiao, Z. Qian, S. Zhang, S. Lu, X. Wang, Resource-efficient and convergence-preserving
online participant selection in federated learning, in IEEE 40th International Conference on
Distributed Computing Systems (ICDCS), (2020), 606–616.
https://doi.org/10.1109/ICDCS47774.2020.00049

31. Y. J. Cho, J. Wang, G. Joshi, Client selection in federated learning: Convergence analysis and
power-of-choice selection strategies, arXiv preprint, (2020), arXiv:2010.01243.
https://doi.org/10.48550/arXiv.2010.01243

32. C. Li, X. Zeng, M. Zhang, Z. Cao, PyramidFL: A fine-grained client selection framework for
efficient federated learning, in Annual International Conference on Mobile Computing and
Networking, (2022), 158–171. https://doi.org/10.1145/3495243.3517017

33. T. Huang, W. Lin, L. Shen, K. Li, A. Y. Zomaya, Stochastic client selection for federated learning
with volatile clients, IEEE Internet of Things J., 9 (2022), 20055–20070.
https://doi.org/10.1109/jiot.2022.3172113

34. J. Zhao, P. Vandenhove, P. Xu, H. Tao, L. Wang, C. H. Liu, et al., Parallel and memory-efficient
distributed edge learning in B5G IoT networks, IEEE J. Sel. Top. Signal Process., 17 (2022), 222–
233. https://doi.org/10.1109/jstsp.2022.3223759

35. C. Briggs, Z. Fan, P. Andras, Federated learning with hierarchical clustering of local updates to
improve training on non-IID data, in 2020 International Joint Conference on Neural Networks
(IJCNN), (2020), 1–9. https://doi.org/10.1109/IJCNN48605.2020.9207469

36. W. Q. Shi, S. Zhou, Z. Niu, Device scheduling with fast convergence for wireless federated
learning, in IEEE International Conference on Communications (ICC), (2020), 1–6.
https://doi.org/10.1109/icc40277.2020.9149138

1360

Electronic Research Archive Volume 32, Issue 2, 1333–1364.

37. Z. Ji, L. Chen, N. Zhao, Y. Chen, G. Wei, F. R. Yu, Computation offloading for edge-assisted
federated learning, IEEE Trans. Veh. Technol., 70 (2021), 9330–9344.
https://doi.org/10.1109/tvt.2021.3098022

38. S. Wu, H. Xue, L. Zhang, Q-learning-aided offloading strategy in edge-assisted federated learning
over industrial IoT, Electronics, 12 (2023), 1706. https://doi.org/10.3390/electronics12071706

39. C. Yu, S. Shen, K. Zhang, Z. Hai, Y. Shi, Energy-aware device scheduling for joint federated
learning in edge-assisted internet of agriculture things, in IEEE Wireless Communications and
Networking Conference (WCNC), (2022), 1140–1145.
https://doi.org/10.1109/wcnc51071.2022.9771547

40. X. Yao, T. Huang, R. X. Zhang, R. Li, L. Sun, Federated learning with unbiased gradient
aggregation and controllable meta updating, arXiv preprint, (2020), arXiv:1910.08234.
https://doi.org/10.48550/arXiv.1910.08234

41. A. R. Elkordy, A. S. Avestimehr, HeteroSAg: Secure aggregation with heterogeneous
quantization in federated learning, IEEE Trans. Commun., 70 (2022), 2372–2386.
https://doi.org/10.1109/tcomm.2022.3151126

42. C. H. Hu, Z. Chen, E. G. Larsson, Device scheduling and update aggregation policies for
asynchronous federated learning, arXiv preprint, (2021), arXiv:2107.11415.
https://doi.org/10.48550/arXiv.2107.11415

43. L. Wang, W. Wang, B. Li, CMFL: Mitigating communication overhead for federated learning, in
IEEE 39th International Conference on Distributed Computing Systems (ICDCS), (2019), 954–
964. https://doi.org/10.1109/ICDCS.2019.00099

44. S. Truex, N. Baracaldo, A. Anwar, T. Steinke, H. Ludwig, R. Zhang, et al., A hybrid approach to
privacy-preserving federated learning, in ACM Workshop on Artificial Intelligence and Security,
(2019), 1–11. https://doi.org/10.1145/3338501.3357370

45. P. Liu, S. Xie, Z. Shen, H. Wang, Enhancing location privacy through P2P network and caching
in anonymizer, KSII Trans. Internet Inf. Syst., 16 (2022), 1653–1670.
https://doi.org/10.3837/tiis.2022.05.013

46. Y. Zhu, C. Liu, Y. Zhang, W. You, Research on 5G core network trust model based on NF
interaction behavior, KSII Trans. Internet Inf. Syst., 16 (2022), 3333–3354.
http://doi.org/10.3837/tiis.2022.10.007

47. Network simulation version3, 2008. Available from: https://www.nsnam.org/.
48. G. F. Riley, T. R. Henderson, The ns-3 network simulator, in Modeling and Tools for Network

Simulation, Springer, (2021), 15–34. https://doi.org/10.1007/978-3-642-12331-3_2
49. Gawłowicz, A. Zubow, ns3-gym: Extending OpenAI gym for networking research, arXiv preprint,

(2018), arXiv:1810.03943. https://doi.org/10.48550/arXiv.1810.03943
50. Network simulation version2, 1997. Available from: https://www.isi.edu/nsnam/ns/.
51. Mininet: Network emulator/simulator, 2010. Available from: http://mininet.org/.
52. Mininet WiFi, 2021. Available from: https://mininet-wifi.github.io/.
53. MATLAB. Available from: https://www.mathworks.com/help/index.html?s_tid=CRUX_lftnav.
54. OMNET++. Available from: https://omnetpp.org/download/models-and-tools.
55. OpenDaylight. Available from: https://www.opendaylight.org.
56. Floodlight. Available from: https://github.com/floodlight/floodlight.
57. Ryu-Controller. Available from: https://ryusdn.org/index.html.
58. OpenStack. Available from: https://www.openstack.org/.

1361

Electronic Research Archive Volume 32, Issue 2, 1333–1364.

59. Iperf. Available from: https://iperf.fr/.
60. S. Avallone, S. Guadagno, D. Emma, A. Pescapé, G. Ventre, D-ITG distributed internet traffic

generator, in First International Conference on the Quantitative Evaluation of Systems, 2004.
QEST 2004. Proceedings, (2004), 316–317. https://doi.org/10.1109/qest.2004.1348045

61. Open network foundation. Available from: https://opennetworking.org/.
62. D. J. Beutel, T. Topal, A. Mathur, X. Qiu, T. Parcollet, P. de Gusmao, et al., Flower: A friendly

federated learning research framework, arXiv preprint, (2022), arXiv:2007.14390.
https://doi.org/10.48550/arXiv.2007.14390

63. C. He, S. Li, J. So, X. Zeng, M. Zhang, H. Wang, et al., FedML: A research library and benchmark
for federated machine learning, arXiv preprint, (2020), arXiv:2007.13518.
https://doi.org/10.48550/arXiv.2007.13518

64. FederatedAi/FATE. Available from: https://github.com/FederatedAI/FATE.
65. Tensorflow/federated. Available from: https://github.com/tensorflow/federated.
66. A. Ziller, A. Trask, A, Loardo, B. Wagner, J. Nounahon, J. Passerat-Palmach, et al., PySyft: A

library for easy federated learning, in Federated Learning Systems, Springer, (2021), 111–139.
https://doi.org/10.1007/978-3-030-70604-3_5

67. M. H. Garcia, A. Manoel, D. M. Diaz, F. Mireshghallah, R. Sim, D. Dimitriadis, Flute: A scalable,
extensible framework for high-performance federated learning simulations, arXiv preprint,
(2022), arXiv:2203.13789. https://doi.org/10.48550/arXiv.2203.13789

68. E. Ekaireb, X. Yu, K. Ergun, Q. Zhao, K. Lee, M. Huzaifa, et al., ns3-fl: Simulating federated
learning with ns-3, (2022), 99–104. https://doi.org/10.1145/3532577.3532591

69. H. Ludwig, N. Baracaldo, G. Thomas, Y. Zhou, A. Anwar, S. Rajamoni, et al., IBM federated
learning: An enterprise framework white paper V0.1, arXiv preprint, (2020), arXiv:2007.10987.
https://doi.org/10.48550/arXiv.2007.10987

70. G. Ulm, E. Gustavsson, M. Jirstrand, Functional federated learning in Erlang (ffl-erl), in
Functional and Constraint Logic Programming, Springer, (2018), 162–178.
https://doi.org/10.1007/978-3-030-16202-3_10

71. M. Daole, A. Schiavo, J. Bárcena, P. Ducange, F. Marcelloni, A. Renda, OpenFL-XAI: Federated
learning of explainable artificial intelligence models in Python, SoftwareX, 23 (2023), 101505.
https://doi.org/10.1016/j.softx.2023.101505

72. B. Knott, S. Venkataraman, A. Hannun, S. Sengupta, M. Ibrahim, L. van der Maaten, CrypTen:
Secure multi-party computation meets machine learning, arXiv preprint, (2022),
arXiv:2109.00984. https://doi.org/10.48550/arXiv.2109.00984

73. Y. Xie, Z. Wang, D. Chen, D. Gao, L. Yao, W. Kuang, et al., FederatedScope: A flexible federated
learning platform for heterogeneity, in Proceedings of the VLDB Endowment, (2023), 1059–1072.
https://doi.org/10.14778/3579075.3579081

74. H. R. Roth, Y. Chen, Y. Wen, I. Yang, Z. Xu, Y. Hsieh, et al., Nvidia flare: Federated learning
from simulation to real-world, arXiv preprint, (2023), arXiv:2210.13291.
https://doi.org/10.48550/arXiv.2210.13291

75. W. Zhuang, X. Gan, Y. Wen, S. Zhang, EasyFL: A low-code federated learning platform for
dummies, IEEE Internet of Things J., 9 (2022), 13740–13754.
https://doi.org/10.1109/jiot.2022.3143842

1362

Electronic Research Archive Volume 32, Issue 2, 1333–1364.

76. S. Caldas, S. Duddu, P. Wu, T. Li, J. Konecny, H. B. McMahan, et al., LEAF: A benchmark for
federated settings, arXiv preprint, (2019), arXiv:1812.01097.
https://doi.org/10.48550/arXiv.1812.01097

77. PaddlePaddle/PaddleFL. Available from: https://github.com/PaddlePaddle/PaddleFL.
78. L. Sani, P. Porto, A. lacob, W. Zhao, X. Qiu, Y. Gao, et al., IBM federated learning: An enterprise

framework white paper V0.1, arXiv preprint, (2020), arXiv: 2007.10987v1.
https://doi.org/10.48550/arXiv.2007.10987

79. P. Tam, S. Math, C. Nam, S. Kim, Adaptive resource optimized edge federated learning in real-
time image sensing classifications, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 14 (2021),
10929–10940. https://doi.org/ 10.1109/JSTARS.2021.3120724

80. V. Balasubramanian, M. Aloqaily, M. Reisslein, A. Scaglione, Intelligent resource management
at the edge for ubiquitous IoT: An SDN-based federated learning approach, IEEE Network, 35
(2021), 114–121. https://doi.org/10.1109/MNET.011.2100121

81. R. Uddin, S. Kumar, SDN-based federated learning approach for satellite-iot framework to
enhance data security and privacy in space communication, in 2022 IEEE International
Conference on Wireless for Space and Extreme Environments (WiSEE), (2022), 71–76.
https://doi.org/10.1109/WiSEE49342.2022.9926943

82. V. Balasubramanian, M. Aloqaily, M. Reisslein, FedCo: A federated learning controller for
content management in multi-party edge systems, in 2021 International Conference on Computer
Communications and Networks (ICCCN), (2021), 1–9.
https://doi.org/10.1109/ICCCN52240.2021.9522153

83. A. R. Mahmod, G. Caliciuri, P. Pace, A. Iera, Improving the quality of federated learning
processes via software defined networking, in International Workshop on Networked AI Systems
(NetAISys’23), (2023), 1–6. https://doi.org/10.1145/3597062.3597281

84. G. Li, J. Wu, S. Li, W. Yang, C. Li, Multi-tentacle federated learning over software-defined
industrial internet of things against adaptive poisoning attacks, IEEE Trans. Ind. Inf., 19 (2022),
1260–1269. https://doi.org/10.1109/tii.2022.3173996

85. L. Chen, H. Tang, Y. Zhao, W. You, K. Wang, A privacy-preserving and energy-efficient
offloading algorithm based on lyapunov optimization, KSII Trans. Internet Inf. Syst., 16 (2022),
2490–2506. https://doi.org/10.3837/tiis.2022.08.002

86. K. M. M. Fathima, M. Suganthi, N. Santhiyakumari, Enhancing the quality of service by GBSO
splay tree routing framework in wireless sensor network, KSII Trans. Internet Inf. Syst., 17 (2023),
2188–2208. https://doi.org/10.3837/tiis.2023.08.013

87. P. Tam, S. Math, S. Kim, Intelligent massive traffic handling scheme in 5G bottleneck backhaul
networks, KSII Trans. Internet Inf. Syst., 15 (2021), 874–890.
https://doi.org/10.3837/tiis.2021.03.004

88. X. Huang, Z. Chen, Q. Chen, J. Zhang, Federated learning based QoS-aware caching decisions in
fog-enabled internet of things networks, Digital Commun. Networks, 9 (2023), 580–589.
https://doi.org/10.1016/j.dcan.2022.04.022

89. P. Tam, S. Math, S. Kim, Optimized multi-service tasks offloading for federated learning in edge
virtualization, IEEE Trans. Network Sci. Eng., 9 (2022), 4363–4378.
https://doi.org/10.1109/TNSE.2022.3200057

1363

Electronic Research Archive Volume 32, Issue 2, 1333–1364.

90. J. Xu, J. Lin, Y. Li, Z. Xu, MultiFed: A fast converging federated learning framework for services
QoS prediction via cloud–edge collaboration mechanism, Knowledge-Based Syst., 268 (2023),
110463. https://doi.org/10.1016/j.knosys.2023.110463

91. V. Gugueoth, S. Safavat, S. Shetty, Security of internet of things (IoT) using federated learning
and deep learning-recent advancements, issues and prospects, ICT Express, 9 (2023), 941–960.
https://doi.org/10.1016/j.icte.2023.03.006

92. S. Zarandi, H. Tabassum, Federated double deep Q-learning for joint delay and energy
minimization in IoT networks, in IEEE International Conference on Communications Workshops
(ICC Workshops), (2021), 1–6. https://doi.org/10.1109/iccworkshops50388.2021.9473821

93. Y. Ren, A. Guo, C. Song, Multi-slice joint task offloading and resource allocation scheme for
massive mimo enabled network, KSII Trans. Internet Inf. Syst., 17 (2023), 794–815.
https://doi.org/10.3837/tiis.2023.03.007

94. Y. Xu, H. Zhou, J. Chen, T. Ma, S. Shen, Cybertwin assisted wireless asynchronous federated
learning mechanism for edge computing, in IEEE Global Communications Conference
(GLOBECOM), (2021), 1–6. https://doi.org/10.1109/globecom46510.2021.9685076

95. A. Alferaidi, K. Yadav, Y. Alharbi, W. Viriyasitavat, S. Kautish, G. Dhiman, Federated learning
algorithms to optimize the client and cost selections, Math. Probl. Eng., 2022 (2022), 1–9.
https://doi.org/10.1155/2022/8514562

96. S. Tang, W. Zhou, L. Chen, L. Lai, J. Xia, L. Fan, Battery-constrained federated edge learning in
UAV-enabled IoT for B5G/6G networks, Phys. Commun., 47 (2021), 101381.
https://doi.org/10.1016/j.phycom.2021.101381

97. D. J. Han, M. Choi, J. Park, J. Moon, FedMes: Speeding up federated learning with multiple edge
servers, IEEE J. Sel. Areas Commun., 39 (2021), 3870–3885.
https://doi.org/10.1109/JSAC.2021.3118422

98. W. Liu, L. Chen, Y. Chen, W. Zhang, Accelerating federated learning via momentum gradient
descent, IEEE J. Sel. Areas Commun., 31 (2020), 1754–1766.
https://doi.org/10.1109/TPDS.2020.2975189

99. R. Chen, D. Shi, X. Qin, D. Liu, M. Pan, S. Cui, Service delay minimization for federated learning
over mobile devices, IEEE J. Sel. Areas Commun., 41 (2023), 990–1006.
https://doi.org/10.1109/JSAC.2023.3242711

100. S. Caldas, J. Konečny, H. B. McMahan, A. Talwalkar, Expanding the reach of federated learning
by reducing client resource requirements, arXiv preprint, (2019), arXiv:1812.07210.
https://doi.org/10.48550/arXiv.1812.07210

101. M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, S. Cui, A joint learning and communications
framework for federated learning over wireless networks, IEEE Trans. Wireless Commun., 20
(2021), 269–283. https://doi.org/10.1109/TWC.2020.3024629

102. C. Ma, Distributed optimization with arbitrary local solvers, Optim. Methods Software, 32 (2017),
813–848. https://doi.org/10.1080/10556788.2016.1278445

103. X. Yao, C. Huang, L. Sun, Two-stream federated learning: Reduce the communication costs, in
2018 IEEE Visual Communications and Image Processing (VCIP), (2018), 1–4.
https://doi.org/10.1109/VCIP.2018.8698609

104. B. Luo, X. Li, S. Wang, J. Huang, L. Tassiulas, Cost-effective federated learning in mobile edge
networks, IEEE J. Sel. Areas Commun., 39 (2021), 3606–3621.
https://doi.org/10.1109/JSAC.2021.3118436

1364

Electronic Research Archive Volume 32, Issue 2, 1333–1364.

105. J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, D. Bacon, Federated learning:
Strategies for improving communication efficiency, arXiv preprint, (2019), arXiv:1610.05492.
https://doi.org/10.48550/arXiv.1610.05492

106. J. Xu, H. Wang, L. Chen, Bandwidth allocation for multiple federated learning services in wireless
edge networks, IEEE Trans. Wireless Commun., 21 (2022), 2534–2546.
https://doi.org/10.1109/TWC.2021.3113346

107. A. K. Abasi, M. Aloqaily, M. Guizani, Grey wolf optimizer for reducing communication cost of
federated learning, in GLOBECOM 2022 - 2022 IEEE Global Communications Conference,
(2022), 1049–1054. https://doi.org/10.1109/GLOBECOM48099.2022.10001681

108. D. Gurung, S. R. Pokhrel, G. Li, Quantum federated learning: Analysis, design and
implementation challenges, arXiv preprint, (2023), arXiv:2306.15708.
https://doi.org/10.48550/arXiv.2306.15708

109. N. Bouacida, P. Mohapatra, Vulnerabilities in federated learning, IEEE Access, 9 (2021), 63229–
63249. https://doi.org/10.1109/ACCESS.2021.3075203

110. F. K. Dankar, K. E. Emam, Practicing differential privacy in health care: A review, IEEE Intell.
Inf. Bull., 6 (2013), 35–67. https://dl.acm.org/doi/10.5555/2612156.2612159

111. V. Mothukuri, R. M. Parizi, S. Pouriyeh, Y. Huang, A. Dehghantanha, G. Srivastava, A survey
on security and privacy of federated learning, Future Gener. Comput. Syst., 115 (2020), 619–640.
https://doi.org/10.1016/j.future.2020.10.007

©2024 the Author(s), licensee AIMS Press. This is an open access
article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0)

