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Abstract: Federated learning (FL) provides a collaborative framework that enables intelligent 
networking devices to train a shared model without the need to share local data. FL has been applied 
in communication networks, which offers the dual advantage of preserving user privacy and reducing 
communication overhead. Networking systems and FL are highly complementary. Networking 
environments provide critical support for data acquisition, edge computing capabilities, round 
communication/connectivity, and scalable topologies. In turn, FL can leverage capabilities to achieve 
learning adaptation, low-latency operation, edge intelligence, personalization, and, notably, privacy 
preservation. In our review, we gather relevant literature and open-source platforms that point out the 
feasibility of conducting experiments at the confluence of FL and intelligent networking. Our review 
is structured around key sections, including the introduction of FL concepts, the background of FL 
applied in networking, and experimental simulations covering networking for FL and FL for 
networking. Additionally, we delved into case studies showcasing FL potential in optimizing state-of-
the-art network optimization objectives, such as learning performance, quality of service, energy, and 
cost. We also addressed the challenges and outlined future research directions that provide valuable 
guidance to researchers and practitioners in this trending field. 
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1. Introduction 

General data protection regulation (GDPR) has steered into a new era of data protection and 
privacy awareness [1,2]. As organizations and institutions engage with restricted data privacy 
requirements, the necessity to find solutions that oblige the regulation and protect sensitive information 
while still leveraging the potentiality of data-driven learning becomes highly significant. In the era of 
massive data and internet of things (IoT) heterogeneity, the handling of sensitive data is a complex 
objective for both businesses and researchers, which expands to a variety of services including 
healthcare systems, home security, wearable personal, payment systems, etc. [3–6]. The consequences 
of data breaches and privacy violations include not only legal but also ethical and reputational 
problems. Due to this circumstance, researchers and practitioners have pushed to explore new 
paradigms that can reconcile the functionality supports for both data-driven intelligence and robust 
data protection capability.  

Decentralizing data from central servers to individual devices, federated learning (FL) unlocks 
the power of artificial intelligence (AI) for domains with sensitive data and diverse equipment [7]. It 
addresses data privacy concerns, enhances security, and improves model generalizability while 
reducing communication costs and server load [8]. Beyond these general benefits, FL holds enormous 
potential for network applications. First, its decentralized nature minimizes data transmission to central 
servers, alleviating network congestion and bandwidth demands [9]. Second, it enables personalized 
model training on individual devices, leading to contextually relevant models tailored to user behaviors 
and preferences. Additionally, by leveraging data diversity from various devices and locations, FL 
generates robust and generalized models that improve the overall accuracy and performance of 
network applications [10,11]. Ultimately, FL’s decentralized approach not only protects data privacy 
but also optimizes network efficiency, empowers personalization, and boosts model performance in 
the networking landscape. 

For researchers in the networking field, numerous challenges arise as they seek to balance the 
demands of optimizing network performance and preserving user privacy [12,13]. The exponential 
growth of data volumes, the increasing heterogeneity of networking taxonomies, and the intense 
sensitivity surrounding user data all contribute to these challenges. Consequently, researchers are 
driven to explore novel techniques that lead to a complementary technique, FL, which promises to 
upgrade the way networking systems are designed and optimized in a distributed and collaborative 
manner. In 2016, Google researchers released FL as a communication-efficient method of distributed 
learning between global servers and local participants through iterative global model broadcasting, 
local training, and model averaging [14]. Figure 1 illustrates the overview of FL that integrates in the 
networking field, including four main tiers, namely application, network, edge, and cloud. FL (edge) 
offers a comprehensive set of contributions to networking by introducing a framework where local 
devices can collectively train a shared model without exposing raw data, particularly sensitive 
information [15–18]. The framework feature not only enhances privacy preservation but also 
reduces the communication overhead that often troubles conventional data-sharing or high-volume 
uploading approaches.  
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Figure 1. Illustrates the overview of FL that integrates in networking field. 

Beyond privacy, FL (edge) also offers the potential for learning adaptation, low-latency operation, 
edge intelligence, personalization, and cost-effective resource utilization, all of which are significant 
for intelligent networking systems [19–21]. On the other hand, as researchers begin to explore the 
relationship between FL and networking, the selection of experimental simulation tools or platforms 
becomes a critical consideration. Therefore, in this survey, we aim to provide a comprehensive 
overview of the state-of-the-art experimental simulations for privacy-preserving FL in intelligent 
networking. Figure 2 presents the paper structure, and Table 1 gives the abbreviations used in this 
paper. Furthermore, to summarize our contributions, we categorize the main points as follows: 
• Networking for FL: This section examines network simulation tools to ensure collaboration with 

FL frameworks. Simultaneously, network platforms can generate a precise dataset to obtain any 
specific applications. Typically, multiple simulation platforms can provide for several aspects (e.g., 
network topology acquisition, distributed computing putting capability, multi-round 
communication, and scalability deployment). 

• FL for networking: Afterward, we reflect on the abovementioned platforms by reviewing how 
the FL framework resource can be utilized to complement networking simulation (e.g., data 
privacy, private preservation, bandwidth-efficient updates, latency reduction, learning robustness 
in edge intelligence, and converged round communication). 

• Objectives of FL case studies: As we discussed, the collaboration between multiple simulation 
tools and the FL framework is eligible to accomplish several case studies in terms of learning 
performance, QoS, energy efficiency, and cost. 

• Challenges and future directions: Simulation tools and the FL framework play a crucial role in 
realizing the full potential of various applications while addressing their inherent challenges in 
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the critical areas of the research and development of 5G and beyond networks. However, in 
optimizing communication efficiency between the central server and decentralized clients, 
especially in constrained network resources, challenges include communication overhead, 
operational bandwidth cost, and expansion of multi-awareness learning (resources, delays, and 
energy). Additionally, ensuring the privacy of sensitive data during the FL process remains a 
paramount concern, prompting investigations into techniques such as secure multi-party 
computation and differential privacy. The scalability of FL in intelligent networking, mainly when 
dealing with a vast number of clients and diverse network conditions. 

Table 1. List of abbreviations. 

Acronym  Description 
API  Application programming interface 
CAPEX Capital expenditure 
DDQN Double deep Q-network 
DFQL Deep federated Q-learning 
DL Deep learning 
DNN Deep neural network 
DRL Deep reinforcement learning 
DSRA Device selection and resource allocation 
DQL Deep Q-learning  
EC Edge cloud 
E2E End-to-end 
FL Federated learning 
HFL-VNE Horizontal federated learning-virtual network embedding 
IID Independent-and-identically-distributed 
IIoT Industrial internet of things 
IoV Internet of vehicles  
IoT Internet of things 
MEC Multi-access edge computing 
MFL Multilevel federated learning 
ML Machine learning 
MTFL Multi-tentacle federated learning 
NFV Network functions virtualization 
NFVeEC NFV-enabled EC 
QoE Quality of experience  
QoS Quality of service 
RAN Radio access network 
SDN Software-defined networks 
VGAE Variational graph autoencoder 
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Figure 2. The overall structure of the surveys. 

2. Background of federated learning in intelligent networking 

FL enables training on decentralized data sources while keeping the data localized. In practical 
FL scenarios, the active coordinator requires a critical focus on communication efficiency, model 
aggregation, and security evaluation to ensure its effectiveness. In Table 2, we gather the most relevant 
surveys analyzing in relation to FL simulation. 

Table 2. Describes the summary of existing FL surveys. 

Survey paper IoT 
networks 

Overview 
of FL 

Framework 
details 

Key performance 
indicators 

Simulation 
tools in 
networks 

Ref. Year 

W. Lim et al. ✓ ✓ ✓ ✘ ✘ [22] 2020 
D. Nguyen et al. ✓ ✓ ✓ ✘ ✘ [23] 2021 
R. Gupta et al. ✘ ✓ ✓ ✓ ✘ [24] 2022 
L. Witt et al. ✘ ✓ ✓ ✘ ✘ [25] 2023 
H. Chen et al. ✘ ✓ ✓ ✘ ✘ [26] 2023 
M. Al-Quraan et al. ✘ ✓ ✓ ✘ ✘ [27] 2023 

We started by listing all the processing steps of conventional FL and pointing out the main 
functions and literature reviews that are associated with intelligent networking. The execution can be 
defined as follows:  
1) Initialization: FL begins with server setup as a global central server that is responsible for 

coordinating the overall FL process. Then, the coordinator selects the model by creating a model 
architecture suitable for the target application. Some use cases initially declare the model random 
or even pre-trained on public data. After deciding on the global model, the FL coordinator is 
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required to identify the client batch in that round of communication, namely participant selection.  
2) Participant selection: In mobile networks, participant selection is challenging due to bandwidth 

limitations and unstable availability or connectivity [28]. Suppose the coordinator sets a policy 
with random client selection in each round. In that case, the learning performance will return with 
unreliable accuracy, slow convergence, data imbalance, and unfairness [29], which heavily 
degrades the practicality in real-world scenarios. The selection approaches tackle the 
heterogeneity of device taxonomies in modern networks with diverse data type distributions and 
hardware-specific configurations. Table 3 summarizes proposed approaches in this domain, 
including targets on resource efficiency, convergence analysis, data heterogeneity handling, 
power-of-choice strategies, and unstable clients [30–34]. 

Table 3. Summary of paper contributions on participant selection. 

Summary of execution flows Target objectives Ref. Year 
The proposed algorithm features two components: 1) 
An online learning component based on previous 
resource usage and training results for making 
fractional decisions, and 2) An internet-based rounding 
tool that transforms fractional choices into whole 
number selections. 

Prioritization in cumulative utilization of 
computation and communication 
resources, while ensuring the convergence 
of both local and aggregated models.  

[30] 2020 

The Power-of-Choice selection strategy works as 
follows: 1) The central server calculates the local 
losses of all clients, 2) The server sorts the clients in 
decreasing order of their local losses, and 3) The server 
selects the top set of clients to participate in the current 
training round. 

Improvement of the convergence speed 
and accuracy of FL while reducing 
communication and computation 
overhead (target applications can be 
distributed machine learning (ML), 
mobile edge computing, and IoT). 

[31] 2022 

“PyramidFL” is a fine-grained client selection method 
that first determines the utility-based client selection 
from the global view and then optimizes its utility 
profiling locally for further client selection. 

Designing to speed up the FL training 
while achieving a higher final model 
performance, also prioritizing the use of 
clients with higher statistical and system 
utility. 

[32] 2020 

1) Deadline-based aggregation: Aggregate client 
updates once a fixed deadline is met. 2) Joint 
optimization: two subproblems on client selection and 
parameter update. 3) E3CS: an exponential-weight 
algorithm for exploration and exploitation-based client 
selection. 

Improvement of the training efficiency 
and final model accuracy in FL within a 
volatile training context, where clients are 
prone to failures. 

[33] 2022 

“Newt” is an enhanced FL approach that includes a 
new client selection utility and fine-grained control on 
selection frequency. 

Enabling efficient selection in intelligent 
transportation systems, which has 
challenges such as data and device 
heterogeneity and highly dynamic system.  

[34] 2022 

3) Model distribution: After the server selects the clients that will participate in the training round, 
it distributes the current model to all the selected clients. The clients then download the model 
onto their local devices and train it on their own data. 
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4) Local model training: Local data is stored on each client device in the FL system, and the clients 
train on their local data without sending it to the server. However, there are also some challenges 
associated with using local data, including data heterogeneity, insufficient computation resources, 
and network connectivity. Due to the problems of local device capability, there are several studies 
proposing edge-assisted learning for handling FL local tasks, particularly over resource-
constrained IoT devices. 

5) Local model updates: After local training, each client generates the optimal model update for 
that round, which consists of the model parameters (e.g., weights). Table 4 presents the relevant 
literature that assists the local model training and updates. 

Table 4. Summary of paper contributions on local model training and updates. 

Summary of execution flows Target objectives Ref. Year
“FL+HC” clusters clients are grouped based on how closely 
their local updates match the overall global model. After 
this grouping, the clusters are trained autonomously and 
simultaneously using dedicated models. 

Improvement of the accuracy of the test 
set while minimizing the communication 
rounds needed to achieve convergence in 
FL, especially when dealing with non-
independent and non-identically 
distributed (non-IID) data. 

[35] 2020

1) Bandwidth allocation: involves assigning additional 
bandwidth to devices that experience poorer channel 
conditions or possess less robust computational capabilities. 
2) Device scheduling: suggests an approach that prioritizes 
selecting devices with the shortest model updating time 
until a favorable balance is struck between learning 
efficiency and round-trip latency. 

Maximization of the convergence rate of 
FL training with respect to time rather than 
rounds, which can be achieved by 
minimizing the expected time for FL 
training to attain certain model accuracy. 

[36] 2020

Each client offloads partial data to the edge server for 
processing, and then, the clients update their local models 
using the remaining data (Meanwhile, the edge server 
updates the global model using the aggregated data). 

Mitigation of the straggler effect in FL and 
improving the system efficiency (The 
method can be used in applications, such 
as mobile device training, IoT device 
training, or healthcare data training). 

[37] 2021

The optimal offloading strategy is derived by minimizing 
the FL loss function under the latency constraint and the Q-
learning-based offloading strategy is proposed for the 
imperfect channel state information scenario. 

Improvement of training efficiency and 
mitigating the straggler effect of FL in 
industrial IoT networks. 

[38] 2023

The greedy algorithm is proposed by iteratively assigning 
communication resources to the edge nodes that consume 
the least energy for local model training in each round, 
which proceeds until the communication resource budget 
is finished. 

Training machine learning models for 
edge-assisted Internet of Agriculture 
Things applications, where data are both 
vertically and horizontally partitioned, 
and resources are limited. 

[39] 2022

6) Model updates aggregation and global update: Clients securely transmit their model parameter 
updates (e.g., weights) to the central server or even using edge-assisted methods. The central 
server aggregates the model updates into a global update. Conventional aggregation methods 
include federated averaging and secure multi-party computation. The central server integrates the 
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aggregated global model update into the new-iteration central model. To improve this processing 
step, there are several studies that tackle different target objectives. Table 5 presents the literature 
reviews for this phase. 

Table 5. Summary of paper contributions on update aggregation and global update. 

Summary of execution flows Target objectives Ref. Year
1) Unbiased gradient aggregation: Evaluate the 
gradients against the global model parameters in the 
last local epoch, and 2) FedMeta: Perform meta 
updating on the global model parameters using a small 
set of data samples indicating the expected target 
distribution. 

Improvement of the convergence speed 
and accuracy (Both unbiased gradient 
aggregation and FedMeta can be 
applied individually or together and can 
be integrated into existing FL). 

[40] 2020

1) Partition the network into groups and local model 
updates into segments, 2) Apply the aggregation 
protocol to segments with specific coordination 
between users, and 3) Aggregate the aggregated 
segments to obtain the global update. 

Enabling secure model aggregation in 
FL systems, while allowing users to 
adjust the quantization proportional to 
their communication resources. 

[41] 2022

The method aggregates updates from scheduled 
devices using an age-aware weighting design, and the 
weights are assigned to each update based on the 
freshness of the data, with more recent updates 
receiving higher weights. 

Development of an asynchronous FL 
framework with periodic aggregation 
that can support heterogeneous 
computation capabilities and training 
data distributions. 

[42] 2021

The method uses a feedback mechanism to communicate 
the estimated global update to each client, which then 
calculates the relevance of its local update to the 
estimated global update (If the relevance is lower than 
a predefined threshold, the client does not update). 

Mitigation of communication overhead, 
which can be applied to a variety of FL 
applications, such as personalized 
healthcare, intelligent transportation 
systems, and distributed machine 
learning for financial services. 

[43] 2019

Participants apply linear transformation to the model 
update vector, then partially encrypt the transformed 
vector using multi-input functional encryption. 

Design of an efficient secure 
aggregation scheme, which can protect 
the security of model updates without 
losing efficiency. 

[44] 2020

Each processing step helps improve the central model performance, deployed after the 
convergence evaluation and application performance requirements are satisfied. The privacy and 
security methods (e.g., encryption, secure communication protocols, and access controls) are 
converged to protect sensitive data and model interactions between entities [45]. Figure 3 illustrates 
the general view of FL’s possible failures in networking. Throughout the overall execution flows, we 
point out the background of FL and its relationship with networking architecture. There are several 
challenges to handle, and from a researcher’s perspective, complementary simulations of 
networking and FL are critical to gaining extensive experience before practically deploying their 
proposed approaches. 

This section aims to gather comprehensive information related to FL frameworks and 
backgrounds studied in networking, especially the execution of FL frameworks in terms of initiate, 
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participatory selection, model distribution, local model training, local mode updates, model update 
aggregate, and global update. 

 

Figure 3. FL processing possible failure in round communications. 

3. Experimental simulations: Networking for federated learning 

In this section, we primarily concentrate on illustrating the critical role of simulation performance 
by interacting network components, including user equipment (UE), radio access networks (RAN), 
core networks (CN), edge cloud (EC), software-defined networks (SDN), multi-access edge computing 
(MEC), and millimeter wave (mmWave). With several aspects given the intuitionistic abstract of 
relational network simulation tools, we can tackle representation for network performance in actual 
implementation and provide the design, optimization, and testing of 5G networking. Additionally, we 
can provide up-to-date trending networking to customized functions for evaluating and analyzing 
network performance and results. In this grading, we observe the state of simulation tools to 
accomplish scale-up, which assisted FL in ensuring the local data deserves security and privacy in 
many communication and computation aspects [46]. As in Table 6, we gather the trending networking 
simulation tools, which provide taxonomic and comprehensive information to involve within network 
protocol, standardization, management, orchestration, and network topology. Simulation tools can be 
specified depending on the use case and research objectives. The trend of network simulation tools and 
techniques are listed as follows: network simulation version 3 (NS-3), network simulation version 2 
(NS-2), Mininet, Mininet-Wi-Fi, MATLAB, OMNet++, OpenDayLight, Floodlight, Ryu Controller, 
and OpenStack. 
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Table 6. Related network simulation tools for networking. 

Platform Summary Primary focuses Ref. Year 

NS3 (C++, 
Python) 

A simulator can provide an approach to 
enhance the comprehensive and flexible 
platform for computer network simulation. 
It also provides the ability to analyze and 
simulate network behaviors and several 
network standardization protocols, 
algorithms, scenarios, and topologies. 
Available: https://www.nsnam.org/ 

- Customization and extension of its 
functionality 

- Supporting comprehensive network 
environment and network protocols 

- Execution of the simulation using 
an XML trace file 

- Support with OpenAI Gym 

[47–
49] 

2008

NS2 (C++) Designing to illustrate the behaviors of 
computer networks, which include wired 
and wireless communication, routing, and 
congest control protocol and transport 
(e.g., routing algorithm).  
Available: https://www.isi.edu/nsnam/ns/

- Routing  
- Switching  
- Extending to support IPv6 
- Extending to support cloud 

computing 

[50] 1997

Mininet 
(Python) 

Open-source network emulator that 
provides to create, configure, and test 
network topologies, which supports large-
scale network infrastructure and the 
integration with SDN controller using 
OpenFlow (simplifying the configuration 
on node, flow entry, and link). 
Available: http://mininet.org/ 

- Creation and design for a real-world 
SDN environment 

- Interconnecting API and AI  
- Exportation of network topology 

into Python script 
- Being mini-edit to visualize the 

topology 
 

[51] 2010

Mininet-WiFi 
(Python) 

Designing to evolve rapidly and develop to 
emulate wireless network controller 
environment that supports several wireless 
protocols such as Wi-Fi, ZigBee, and 
Bluetooth. 
Available: https://mininet-wifi.github.io 

- Development of a new scenario of 
the network wireless 

- Measurement of the performance of 
different Wi-Fi channels 

- Routing protocol for wireless 
connection mesh network 

- Providing a high degree of fidelity 
- Focusing on the security and 

scalability of mobile network 

[52] 2021

MATLAB 
(Commercial) 

Enabling cooperation with other 
programming languages and numerical 
computing environment, which provides 
more functions for modeling and simulating 
communication systems, wireless networks, 
cellular networks, and optical networks 
(enclosing several tools and libraries). 
Available: https://www.mathworks.com/
help/index.html?s_tid=CRUX_lftnav 

- Simulation for network systems and 
protocols 

- Simulation for complex networks 
- Offering customization and 

development 
- Specification network function  
- areas or behaviors 

[53] unde
fined

Continued on next page 
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Platform Summary Primary focuses Ref. Year 

OMNet++ 
(C++) 

Designing a component architecture for 
models and providing a high degree of 
scaling to support an extensive network 
with millions of nodes, which is feasible to 
obtain a highly accurate result.  
Available: https://omnetpp.org/ 
download/models-and-tools 

- Support model completeness 
- Simulation from LANs to WANs 
- Packet-switched and circuit-

switched networks 
- Support for sensor networks and ad-

hoc networks 

[54] 1993

OpenDayLig
ht (Java, 
Python, 
YAML) 

Providing an open platform to focus on 
customizing and automating networks of 
network environment, which makes 
familiar with SDN controller scales up of 
the network device and network 
applications. 
Available: https://www.opendaylight.org 

- Combination of multiple service 
and protocol  

- Sustenance of various southbound 
APIs with network devices and 
protocol 

- Feasibly support of a wide range of 
standard networking protocols 

- Adaptation of NFV and SDN  

[55] 2013

Floodlight 
(Java) 

Offering greater flexibility, agility, and 
programmability in network management.
Floodlight makes a rule of network policy 
and routing logic. 
Available: 
https://github.com/floodlight/floodlight 

- Support for multiple network 
protocols 

- Solution for flexible and scalable 
approaches 

[56] 2014

Ryu-
Controller 
(Python) 

Supporting several protocols for managing 
network devices, such as OpenFlow, 
Netconf, and OF-config. 
Available: https://ryusdn.org/index.html

- Creation flow table management 
- Traffic monitoring 
- Packet forwarding 

[57] 2014

OpenStack Open source offers a core network 
controller to accommodate network 
functions virtualization (NFV), it 
maintains the feature as a platform for 
network automation, orchestration, and 
management resources. 
Available: https://www.openstack.org 

- Network protocols and technologies 
- A private cloud platform 
- Enhancement of resources 

utilization and elastic hypervisors 
- RESTful API 
- Tools achieved with automation and 

integration 

[58] 2010

In the 5G perspective, many simulation tools can offer advantages and leverage enhancements to 
indicate network performance and analysis. Due to differences in network settings, the platforms might 
gain fluctuation between QoS and QoE. Figure 4 shows the overview of simulations regarding setting 
scenarios, network environments, and differentiated network tiers; simulation tools can be performed 
depending on the characteristics of the network. 
• NS3 gains interest from researchers in setting the network topologies to compromise the 

availability of RAN, mmWave, and handover processing. On the other hand, NS-3 has intensified 
by integrating an Open-AI gym into a collaboration capsule class that allows RL agents. 

• MATLAB identifies tools used in many fields that can be simulated and analyzed by various 
network systems (e.g., communication networks, wireless networks, and network protocols). 
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Network simulations can be performed on network performance analysis, which consists of 
analyzing network performance metrics such as latency, packet loss, packet drop ratio, packet size, 
throughput, and network capacity, by capturing the network routing and using a network protocol 
to simulate and analyze network routing algorithms such as border gateway protocol (BGP), open 
shortest path first (OSPF), and routing information protocol (RIP). Within this, MATLAB 
provides a built-in function and toolbox for simulation with transmission protocol control 
/internet protocol (TCP/IP), user data gram protocol/ internet protocol (UDP/IP), and Ethernet. 

• Mininet is a widely used network emulator and simulator that provides fast simulation speed using 
OS-level virtualization function and thus has strengths in terms of scalability. It is a simulator that 
fully supports the OpenFlow protocol and works with various SDN devices. Mininet shows 
excellent compatibility with various currently released SDN controller open sources. However, 
the model diversity cannot simulate natural environments and multiple scenarios. The Mininet 
version includes standard switch and router models (the legacy model) alongside SDN-enabled 
switches and hosts. Mininet also offers a single link model that can configure detailed parameters 
like bandwidth, delay, and loss probability. Notably, Mininet lacks its own built-in traffic model 
and performance analysis capabilities. Instead, it relies on external traffic generation tools such 
as ping, iperf [59], and D-ITG [60]. Additionally, analyzing performance involves collecting and 
assessing packets or relying on other external tools. Consequently, there are limitations when 
using Mininet as a simulation tool for experiments to validate the stability and reliability of 
networking systems or those requiring a realistic network environment. 

• Mininet-WiFi was established early with a wildly supported WiFi modules on the Mininet SDN 
network emulator and extended the function of the Mininet network by adding virtualized WiFi 
standard and access point (AP). The modules are based on Linux wireless drivers and 80211hwsim 
wireless simulation diver. Mininet-WiFi supports the use of spec mode. 

• OMNet++ is an open source for academic, non-profit, and industrial purposes. OMNet++ is 
similar to NS3 and NS2 in the network simulation of both the wired network and wireless network, 
which holds capability to utilize for several objectives, such as queuing network modeling, 
mobility, and INET structure. OMNet++ also provides a use case under a graphical interface and 
limitation of network topology. 

• OpenStack is an open source that allows for the building of a simplified platform. It provides 
flexible customization in implementation, fosters interoperability across deployment, and is easily 
accessible to meet the requirements of both users and operators (e.g., public and private cloud 
resource utilization). However, OpenStack can be considered to build a massively scalable 
operating system with elasticity and horizontal scalability in resources. OpenStack leads the 
several resource components and orchestration. On the other hand, a web-based application 
programmable interface (API) ensures that command and control aspects are computation, 
memory, storage, and networking. 

• Floodlight is a controller platform that uses a Java-based OpenFlow controller to support 
orchestration virtualization and physical infrastructure and manages both OpenFlow and non-
OpenFlow networks. 

• OpenDayLight (ODL) was introduced by the open network foundation (ONF) in 2013 [61]. ODL 
controller offers enhanced reliability and clustering capabilities and resolves issues in older 
controllers. Numerous prominent companies have joined this initiative, aiming to create a resilient 
and effective system for large-scale industries. ODL significantly impacts SDN’s business aspect, 
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with most controllers choosing it as their foundation.  
With several significant FL frameworks and network simulation tools, the primary purpose of 

conducting experimental simulations in networking for FL is to analyze, evaluate, and validate the 
performance, behavior, and feasibility of FL algorithms, protocols, and systems within network 
environments. Those simulations are vital for gaining into how FL operates in diverse network settings, 
considering factors like different device types, varying communication conditions, network 
heterogeneity, and privacy concerns. By simulating these scenarios, researchers can fine-tune 
algorithms, optimize parameters, and understand the implications of deploying FL in practical 
networking environments without real-world experimentation, accelerating research and development. 

 

Figure 4. Network simulation tools for collaboration with networking architecture. 

4. Privacy-preserving simulations: Federated learning for networking 

FL and networking complement each other by leveraging networking’s data acquisition, edge and 
distributed computing capabilities, multi-round communications, and scalability deployment. At the 
same time, FL reinforces privacy preservation, model updates, latency reduction, learning robustness, 
and edge intelligence. Table 7 lists well-known platforms for conducting FL experiments. Academia 
and industry have created numerous platforms to facilitate the widespread adoption of FL, including 
Google AI, DeepMind, Facebook Research, WeBank+Linux Foundation, IBM, Microsoft, Intel, 
NVIDIA, etc. All platforms have the capability for the general FL with several dataset supports. We 
outline the summary specifications and functional focuses as follows: 
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Table 7. Related platforms to FL experiments. 

Platform Summary Primary Focuses Ref. Year
Flower 
(Python) 

Providing a unified approach to FL, 
federated evaluation, and federated 
analytics, which allows users to jointly 
federate different workloads, ML 
frameworks, and programming languages. 
Available: https://flower.dev 

- Offering large-scale experiments 
- Emphasis of heterogeneous participants 
- Transition to real-world devices 
- Integration of multiple ML training 

frameworks 
- Customizability and extensibility 

[62] 2020

FedML 
(Python) 

Prioritization lightweight, cross-platform, 
and secure FL and federated analytics. 
Available: https://www.fedml.ai 

- Convergence of MLOps tools with 
decentralized learning 

- Vertical approaches to industries and 
applications 

- Scalability for data silos and rapid 
large model training 

[63] 2020

FATE 
(Python) 

Designing to be industrial-grade with 
features such as scalability, security, and 
compliance (supports logistic regression, 
tree-based algorithms, deep learning, 
transfer learning, etc.). 
Available: https://fate.fedai.org 

- A wide range of secure computation 
protocols 

- FATE CLI, SDK, and dashboard 
- Design with distributed architecture, 

message-passing interface, and fault 
tolerance 

[64] 2019

TFF 
(Python) 

Providing a flexible programming model for 
FL, as well as a variety of tools and libraries 
to support the development and deployment 
of FL applications. 
Available: 
https://www.tensorflow.org/federated 

- High-level interfaces (FL and FC API) 
including datasets, models, 
computation builders, client placement 
type, etc. 

- Integration with TensorFlow+Keras 
- Deployment to a variety of runtime 

environments (mobile devices, edge 
servers, and cloud platforms) 

[65] 2019

PySyft 
(Python, 
Docker) 

Supporting a variety of techniques, such as 
differential privacy, secure multi-party 
computation, and homomorphic encryption.
Available: 
https://openmined.github.io/PySyft/ 

- Extension to more privacy-preserving 
techniques 

- Support for multiple deployment 
environments 

- Security and private learning 

[66] 2021

FLUTE 
(Python) 

Enabling rapid prototyping and simulation 
of new FL at scale with cloud integration 
and multi-GPU support, including novel 
optimization, privacy, and communications 
strategies. 
Available: 
https://github.com/microsoft/msrflute 

- A modular architecture for framework 
customization 

- A visualization tool for tracking the 
progress of FL 

- A possible integration with AzureML 
workspaces 

[67] 2022

Continued on next page 
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Platform Summary Primary Focuses Ref. Year
ns3-fl 
(C++, 
Python) 

Enhancement of the configuration of 
network settings and connecting to FL 
simulator, flsim, while implementation 
includes client-server ns3 and sync/async FL 
process communications. 
Available: 
https://github.com/eekaireb/ns3-fl 

- Emphasis of network settings 
- A power model of energy consuming 

while training clients 
- Enhancement of networking output 

reliability 

[68] 2022

IBM FL 
(Python) 

Enabling distribution of machine learning in 
enterprise environments, prioritizing privacy, 
compliance, and data locality, and supporting 
various learning techniques and topologies.
Available: https://ibmfl.res.ibm.com 

- Simplification of the adoption with 
infrastructure, coordination, and 
compatibility with common libraries 
and minimizes the learning curve 

- Deployment across various computing 
environments and designing custom 
fusion algorithms 

- A deep focus on the enterprise 
environment 

[69] 2020

FFL-ERL 
(Erlang) 

Providing Erlang’s suitability for FL, 
comparing its performance in two scenarios: 
a full Erlang implementation and a hybrid 
approach using C for numerical computations.
Available: 
https://github.com/gregorulm/fcc_ffl_erl 

- Discussion of trade-off between C’s 
high performance and Erlang’s 
superior programmer productivity 

- Excellence in concurrency and 
distribution 

- Development and coordination 
capabilities 

[70] 2018

OpenFL-
XAI 
(Python, 
Docker) 

Emphasis privacy and explainability by 
focusing on the FL of Fuzzy Rule-Based 
Systems. 
Available: 
https://github.com/Unipisa/OpenFL-XAI 

- Intel’s OpenFL framework 
- A solution for accurate, private, and 

interpretable AI applications 
- A trustworthy AI systems, privacy 

preservation, and transparency 

[71] 2023

CrypTen 
(Python) 

Enabling privacy-preserving ML with 
secure multiparty computation with ML-
centric features, a tensor library, and robust 
protocol implementations for real-world use.
Available: https://crypten.ai 

abstractions for efficient and secure 
model evaluation 

- Simplification on secure ML for non-
cryptography experts 

- Integration with PyTorch’s familiar 
API 

[72] 2021

Federated
Scope 
(Python, 
Docker) 

Utilization of an event-based structure to 
grant users significant flexibility in 
autonomously defining the actions of 
distinct participants. 
Available: https://github.com/alibaba/ 
FederatedScope 

- Support plug-in operations and 
components for enhanced privacy, 
attack simulation, and auto-tuning 

- Facilitation of the incorporation of 
diverse plug-in operations and 
components to enhance and streamline 
further development 

[73] 2022

Continued on next page 
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Platform Summary Primary Focuses Ref. Year
NVIDIA 
FLARE 
(Python) 

Providing an open-source SDK to ease 
building workflows with capabilities of 
scalable packaging, elastic, and lightweight.
Available: 
https://github.com/NVIDIA/NVFlare 

- Multiple training and validation 
workflows 

- Federated analytics and lifecycle 
orchestration 

- Simplification on dashboard for 
management 

[74] 2020

EasyFL 
(Python) 

Targeting beginners with limited prior 
knowledge, while offering low-code 
platform, API design, and enhancing the 
deployment efficiency. 
Available: https://github.com/EasyFL-
AI/EasyFL 

- Training outputs tracker 
- Simulation with statistical and system 

heterogeneity 
- Design on plug-in for training flow 

abstraction 

[75] 2022

LEAF 
(Python) 

Providing an adaptable benchmarking 
system designed for evaluating learning in 
federated settings with a collection of openly 
available federated datasets. 
Available: 
https://github.com/TalwalkarLab/leaf 

- Datasets: FEMNIST (Image 
classification), Sentiment140 
(Sentiment analysis), Shakespeare 
(Next-character prediction), Synthetic 
(Classification), and Reddit (Next-
word prediction) 

- Emphasis on learning in federated 
settings 

[76] 2018

PaddleFL 
(Python, 
C++, 
Kubernete
s) 

Leveraging distributed training and 
Kubernetes-based job scheduling to offer 
scalable deployment, also easy replication. 
Available: https://github.com/ 
PaddlePaddle/PaddleFL 

- Simplification of the deployment of 
FL systems on large-scale distributed 
clusters 

- A flexible framework with 
components for defining tasks, 
designing ML models, and handling 
distributed training configurations 

- Detail with run times on server, 
worker, and scheduler 

[77] 2020

Figure 5 illustrates the overview of relations between FL for networking and networking for FL. 
These platforms provide comprehensive support for FL by offering various tools, libraries, and features 
tailored to different use cases and requirements. Flower stands out for its unified approach, 
emphasizing large-scale experiments, heterogeneous participant support, and multiple ML training 
frameworks. FedML prioritizes lightweight and secure FL, converging MLOps tools, and offering 
vertical approaches for various industries. FATE focuses on industrial-grade FL, supporting various 
algorithms, secure computation protocols, and a distributed architecture. TFF provides a flexible 
programming model, high-level interfaces, and easy deployment to diverse runtime environments. 
PySyft specializes in privacy-preserving techniques, offering support for multiple deployment 
environments. FLUTE enables rapid prototyping and simulation of FL at scale with modular 
architecture and cloud integration. ns3-fl enhances network settings and communications for FL 
simulation, while IBM FL focuses on enterprise environments, minimizing the learning curve and 
supporting custom fusion algorithms. FFL-ERL leverages Erlang concurrency and distribution 
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capabilities for FL, OpenFL-XAI emphasizes privacy and explainability, and CrypTen bridges secure 
multiparty computation and ML. FederatedScope supports plug-in operations and components, 
NVIDIA FLARE simplifies workflows, EasyFL targets beginners with low-code and efficient 
deployment, and LEAF offers federated benchmarking with openly available datasets. Finally, 
PaddleFL simplifies deployment on large-scale clusters, providing flexibility for defining tasks and 
handling distributed training configurations, making these platforms valuable assets for the FL 
community. The lists of tools in Tables 6 and 7 complement each other in Table 8, which surveys 
articles about FL framework and simulation tools.  

 

Figure 5. Federated learning for network simulation. 

Table 8. Surveys on utilized FL framework and network simulation tools. 

Paper Performance matric  Aggregation 

approach 

FL 

framework 

Network 

simulation 

Data acquisition  Ref. Year 

L. Sami et al. Throughput FedAvg Flower, 

FedScale, 

Flue 

Unspecified Google speech, 

OpenImage, 

Shakespeare 

[78] 2023 

P. Tam et al. Drop ratio, delivery 

ratio, delay, accuracy  

FedAvg TensorFlow 

Federated 

Mininet, 

Ryu 

MNIST and 

topology 

simulation 

[79] 2021 

V. Balasubramanian 

et al. 

Cache hit ratio, average 

delay 

FedCo PyTorch Mininet Simulation [80] 2021 

R. Uddin et al. Precision, recall, F1-

score, accuracy 

AWS 

OpenGrid 

OpenMined Mininet, 

Ryu 

STIN SAT20, 

simulation 

(SDN) 

[81] 2023 

V. Balasubramanian 

et al. 

MNO revenue, cache hit 

ratio, average access 

latency, percentage error 

in placement 

FedCo Python Mininet-

Wifi 

Simulation [82] 2021 
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5. FL case studies for optimization objectives 

In this section, we brought up five primary sector domains that are discussed about learning 
performance, QoS, energy consumption, and cost that recent studies have proposed using FL-based 
approaches for networking as Figure 6 and Table 9.  

 

Figure 6. FL case studies for optimization. 

5.1. Learning performance 

FL with networking is an extension of collaborative ML approaches that allows multiple 
decentralized devices or servers to collaborate to train shared models while keeping local and private 
data. FL has been increased to coordinate with learning performance in terms of computational capacity, 
amount of memory, and communication resources, which contribute to the learning process of privacy 
preservation for sensitive information. 

In [83], authors proposed SDN support to the FL. Implementing the FL framework (FL client and 
FL server) is supported at the application level and network layer (SDN controller). SDN is handled 
with data empirically in the FL process, and this paper focuses on the less-explored issue of using FL 
for high-sensitive application applications. Hence, edge devices have experienced delays due to 
communication overload. Lastly, SDN maintains efficiency FL even in meeting heavy conditions. 
SDN-assisted FL can significantly reduce processing time with minimal signaling overhead to the form 
of the controller. Moreover, the authors aimed to enhance the security and trustworthiness of FL in the 
software-defined industrial internet of things (SD-IIoT) [84,85]. Implementing multi-tentacle FL 
(MTFL) frameworks assists in solutions to the growing prevalence of poisoning attacks. MTFL groups 
participants with similar training data and mode parameters into a “tentacle group”. Along with 
impacting adaptive poisoning data, a stochastic tentacle data exchanging (STDE) protocol was utilized. 
The protocol involved adding Gaussian noises to exchange data, which differs from traditional defense 
mechanisms in that all exchanged data will be processed using differential privacy technology to 
safeguard tentacle privacy. 
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5.2. Quality of service 

QoS is the major evaluation metrics for both aspects, namely E2E networking and FL multi-round 
communications. Each metric is essential for guaranteeing the delivery of services, especially in 
mission-critical applications. Several aspects of FL frameworks are to ensure that it can more 
effectively and precisely match the QoS requirements of the application. QoS indicates important 
things within the premises that as massive data gathering and data transmission [86]. Edge caching 
based on the fog computing network is considered a provisioning potential solution to tackle the 
latency and further content fetch delay and minimize the QoS of the end-to-end (E2E) delay. To prevent 
network congestion, bottlenecks, and the risk of data user privacy leakage, FL is ultimately used to 
enable E2E-assisted fog computing networks and edge virtualization [87–89]. In a novel multi-center 
FL framework for QoS prediction which utilized the central server from the cloud to the edge and 
trains global models in edge regions [90]. This framework employs two gradient aggregation 
strategies: 1) internal aggregation for regional users and 2) external aggregation among edge servers 
with cloud server assistance. 

5.3. Energy consumption 

When referring to FL for network environment, energy and power consumption are important 
factors as recently demonstrated by the many reviewed studies. Because FL distributes the training 
process across devices on the network, interruptions such as power supply issues, network 
disconnections, and other disruptions can lead to a device pausing or discontinuing the learning process 
after a certain number of epochs. Moreover, when discussing the FL approach, it is essential to 
acknowledge the necessity of constructing ML models efficiently. These models should be capable of 
acquiring knowledge from historical IoT sensor data, which is employed to enhance energy efficiency 
and reduce costs [91]. Therefore, the significance of optimizing the energy consumption objective 
becomes more pronounced when taking the entire FL-IoT context. [92] presents the problem as one 
that centered on reducing both the delay and energy consumption of IoT devices within FL systems. 
The authors considered various factors, including the decision of whether to offload tasks to edge or 
cloud resources, the allocation of computation resources, local processing, and transmission power. 
Their primary objective is to minimize the long-term delay and energy usage. This problem was a 
multi-agent DRL challenge, which they tackled using a double-deep Q-learning (DQL) network 
through a DQL agent. To address the decision of whether to offload a task for processing. In the 
subsequent phase, they focused on allocating computation and communication resources [93]. 
Moreover, they employed the FedRL approach, where each IoT device trained its own DQL models, 
shared these models with a centralized controller, and updated the models in a central aggregation unit [94]. 
QoS for tasks and task queue length, exhibited fluctuations, selecting an efficient update frequency for 
the target network to stabilize the environment, leading to improved solutions for the agent. It is important 
to mention that the authors did not discuss the results related to cost minimization in their study.  
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Table 9. Surveys on utilized simulation tools and the FL framework. 

Categorize  Methodology Significance Performance matric Simulation/framework Ref. Year
Learning 
performance 

 Edge client devices. Accuracy and loss. GNS3, 
OpenDayLight, 
NETCONF and 
RESTCONF/Flower, 
FedAvg 

[83] 2023

TD-EPAD 
algorithm 

Trustiness of training 
data in SD-IIoT. 

Accuracy. Mininet, Floodlight [84] 2023

Quality of 
service 

Supporting 
vector 
machine 

Handling on allocating 
the network resource 
and controlling massive 
communication in 
backbone. 

Delay, jitter, packet 
drop ratio, packet 
delivery ratio, 
throughput. 

NS-3 [87] 2021

CUPE 
algorithm 

Minimization of the 
content fetch delay for 
latency- sensitive of 
IoT. 

Cach hit rate, 
content fetch delay.

Unspecified [88] 2023

DDQN Overcoming on the 
minimization of energy 
consumption, 
completion time, and 
round communication 
between local 
participant and node 
selection. 

Packet drops ratio, 
throughput, overall 
accuracy, delay, and 
packet delivery 
ratio.  

NS-3, Mininet, mini-
nfv, OASIS TOSCA 

[89] 2022

MultiFed, a 
multi-center 
FL 
framework 

Acceleration for better 
convergence, 
heterogeneity handling, 
and improvement on 
scalability for privacy 
preservation in cloud-
edge collaboration. 

Total 
communication 
rounds, total 
communication 
delay, and total 
communication 
volume. 

Unspecified [90] 2023

Energy 
consumption  

MIBLP, 
DDQN, 
FedRL 
algorithm 

Minimization of the 
long-term delay and 
energy consumption of 
an IoT device. 

Cost per user. Unspecified [92] 2021

Cost Fed-average 
algorithm 

Approvement on client 
selection and 
optimizing model 
aggregation. 

Averaging training 
accuracy, energy 
consumption of unit 
loss delay. 

Unspecified [95] 2022
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5.4. Cost 

When considering the goal of optimizing network costs, the primary focus is on two components: 
operational expenses (OPEX) associated with capital expenditure (CAPEX). For instance, in the 
context of FL implementations, communication often acts as a significant bottleneck, and thus, 
reducing communication costs involves optimizing connections [95]. Within this section, one can 
observe a variety of approaches to representing costs in the FL-IoT environment. Different research 
studies have been adopted for various metrics to achieve cost optimization. As a result, we encounter 
different terminologies used by different authors in this section. To enhance clarity, we have provided 
the specific cost metric for each study. [96] considers the battery-constrained federated edge learning 
problem for their operating CPU frequency for both prolonging the battery life and avoiding the 
untimely dropping from FL training. The primary objective was to reduce the overall system which 
was determined by both latency and energy consumption. To achieve this, the authors devised a 
resource allocation scheme to adjust the CPU frequency of devices and allocate wireless bandwidth. 
They introduced a DDPG-based allocation strategy to address this issue. Under this approach, clients 
were required to report their available resources and the server had to estimate the channel parameters 
for communication between users and devices. Additionally, the base station had to inform participants 
about the current CPU frequency and available wireless bandwidth. Consequently, the agent received 
varying rewards to meet both latency and energy consumption requirements. The proposed DDPG 
strategy outperformed E-DDPG (DDPG strategy with even bandwidth allocation) in terms of system 
cost. Mainly, it effectively utilized wireless bandwidth resources during the learning process, 
resulting in improved system performance. Moreover, DDPG performed better than alternative 
methods across various bandwidth values, as it efficiently leveraged system communication and 
computational resources. 

5.4.1. Key performance indicators of FL in networking 

Key performance indicators (KPIs) in FL in networking aim to measure the effectiveness and 
overall performance of collaborative model training of FL systems across decentralized devices while 
preserving user privacy. Here are the following key aspects: 
• Speed and convergence: Introduces a novel framework that optimizes FL by employing multiple 

edge servers. This framework likely includes mechanisms for efficient communication, 
aggregation of model updates, and strategies to minimize latency during the learning process [97]. 
It also discusses empirical results and performance evaluations of FedMes, showcasing 
improvements in FL speed, convergence rates, and overall efficiency compared to traditional FL 
setups. [98] The primary focus is on improving the speed and convergence of FL algorithms, 
specifically by leveraging the momentum gradient descent (MGD) technique. MGD can be a 
valuable technique for accelerating FL, leading to faster model training, and potentially improving 
resource efficiency. The proposed adaptive FedMGD further enhances the performance by 
adapting to device heterogeneity. 

• Delay: The majority of techniques must be solved to accelerate the model updates and parameters 
between the central server and participating devices. [99] The authors propose a dynamic 
sampling and adaptive resource allocation (DSARA) framework to minimize service delays in 
mobile FL. The algorithm incorporates the latest local model updates and resource constraints to 
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select the optimal device subset for each round. It offers a valuable solution for enabling efficient 
and delay-aware FL on mobile devices, paving the way for practical applications in mobile edge 
computing and distributed ML. 

• Communication round: The backbone of information exchange in FL, enabling collaborative 
model training while preserving data privacy on participating devices. 1) infrequent rounds with 
compressed updates achieved decent accuracy while minimizing bandwidth usage, 2) strategic 
selection of participating devices based on data relevance further improved efficiency, and 3) 
federated averaging with weights assigned based on update quality accelerated convergence 
towards the optimal model. Furthermore, it demonstrates the importance of optimizing 
communication rounds for resource-constrained networks in real-world FL applications. 
Moreover, [100] aims to decrease the size of models produced by both the server and clients while 
adjusting the FL procedure. Initially, the server creates a smaller sub-model with fewer parameters 
using federated dropout. Subsequently, the resulting model undergoes lossy compression on the 
server’s end and transmits to the clients. The clients then decompress the model to begin training. 
After training, the updates are compressed and sent back to the server, which decompresses and 
combines the final model. The communication bottleneck in the federated averaging method is 
due to limited bandwidth, causing delays for clients in uploading their updates. 

• Resource utilization: In FL-based IoT environments, we observe many heterogeneous IoT 
devices that are in nature and process limited resources. Hence, FL trains operated through 
efficient client selection and optimized resource utilization. In [101], it tackled the hurdles of 
unreliable wireless communication in FL. They built a framework that joins learning tasks with 
wireless communication on multiple devices. Recognizing issues like packet errors and limited 
bandwidth, they devised an optimization plan to minimize training errors while allocating 
resources and wisely choosing participating users. The framework accounts for how wireless 
channels affect learning, leading to a precise formula for predicting how well the model will train. 
This breakthrough could pave the way for reliable and efficient FL in resource-constrained 
settings like wireless networks. 
This section focuses on utilizing FL case studies regarding learning performance, QoS, energy 

consumption, and cost. Meanwhile, KPIs are primarily impacted by FL to show the effectiveness of 
its ability to adapt to speed and convergence, delay, communication round, and resource utilization. 

6. Challenges and future directions 

This section presents the main research challenges and future directions in this recent review 
within several issues to tackle for supporting FL with network simulation tools. However, this field 
also faces several challenges and has numerous future directions to explore, as follows: 
• Communication overhead: To prevent communication overhead during communication between 

simulation tools and other tools for collaborating interactions, which is a critical phase to consider 
accurately in network environments of heterogeneous IoT. The primary purpose of maintaining 
communication and synchronization among various network components is the interface, nodes, 
or entities involved. For instance, where a client faces limited bandwidth, effective 
communication with the FL server during model training becomes challenging. Similarly, clients 
with insufficient processing capabilities find it impractical to execute assigned local 
computational tasks [102–105]. Additionally, when dealing with extensive data across the 
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network, the resulting large model size poses difficulties for resource-constrained clients. 
Efficient training in such large data networks necessitates compressing client models, 
minimizing the burden on clients with constrained resources. If many FL clients grapple with 
resource limitations, the FL process demands increased server-client interactions to achieve 
target convergence. However, clients may find bearing the associated high communication 
costs prohibitive. 

• Operational bandwidth cost: Offering the operational bandwidth cost is one of the concern cases 
in networking operations and a critical consideration as FL relies on the exchange of data and 
model between participants and global server. The following factors can involve operational 
bandwidth costs in FL: 1) exchanging data for local collaboration, 2) the frequency of participant-
server round communications, 3) the distance/mobility between participants, 4) networks with 
lower bandwidth capacity [106] (cellular networks) will have higher bandwidth costs than networks 
with higher bandwidth capacity [107], and 5) the number of simulators/platforms involved in the 
deployment. Therefore, utilizing a (edge) cloud-based FL platform can optimize bandwidth cost 
by optimizing data transfer, edge aggregation, and caching capabilities. 

• Expansion of multi-awareness learning (MAL): FL framework enables the ML model to learn 
from distributed data while preserving privacy and reducing communication costs. Network 
simulation offers exciting opportunities for enhancing network performance through innovative 
methods. For instance, MAL models can dynamically fine-tune routing algorithms, congestion 
control protocols, and power management strategies, improving network throughput, decreasing 
latency, and energy conservation. One approach for extending MAL to network simulation is to 
adopt a reinforcement learning methodology. In this method, the MAL model is trained to interact 
with a simulated network environment, learning to take actions that maximize a predefined reward. 
Reward functions can be tailored to represent specific network performance objectives, such as 
achieving higher throughput, lower latency, or reduced energy consumption. Another approach 
for integrating MAL into network simulation involves using supervised learning. The MAL model 
was trained using a historical network data dataset annotated with desired network performance 
metrics. The expansion of MAL into network simulation presents a promising avenue of research 
with the potential to transform how networks are conceived and administered. MAL can create 
more efficient, dependable, and sustainable network infrastructures by empowering ML models 
to glean insights from distributed data and adapt to evolving network conditions. The specification 
terms of how MAL could optimize network performance are routing optimization, congestion 
control, and power management. The limitation emerges when a network characteristic relies on 
the models of its components. These models tend to oversimplify the real-world scenario and the 
performance of real-world networks is impacted by the variability in conditions, including traffic 
loads, hardware failures, and software bugs. These factors can be challenging to model accurately 
in a simulator. 

• Quantum computing for FL: Quantum computing presents the opportunity for substantial 
benefits compared to classical machine learning algorithms [108]. By harnessing quantum 
superposition and entanglement, quantum algorithms can conduct computations in parallel, 
potentially leading to faster processing and heightened efficiency. Quantum ML (QML) algorithms 
exhibit superior effectiveness in managing extensive datasets and intricate patterns, enhancing 
learning capabilities. Moreover, quantum algorithms can extract information from quantum state 
transformations and interference, resulting in more accurate predictions. While the realization of 
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quantum advantage in QFL is an ongoing area of research and development, the distinctive 
features of quantum computing show potential for addressing complex computational tasks and 
introducing novel possibilities in data analysis and pattern recognition. It challenges the 
following tantalizing options: 1) collaborative learning across a vast network, 2) data privacy, 3) 
communication, 4) gradient leakage, 5) compromised client, and 6) compromised server. 

• Security vulnerabilities: The distributed training method in FL provides an avenue for engaging 
a substantial client base, potentially extending to millions of clients. Within the FL framework, 
clients are not inherently trustworthy and each client may possess varying degrees of malicious 
or adversarial capabilities. [109] The server employs a random selection process for clients, 
allowing them to participate in FL training iterations. Identifying malicious clients in a training 
session becomes challenging when dealing with thousands or even millions of clients. 
Consequently, malicious clients may exploit the system to gain access to and learn about the 
privacy of other clients participating in the same iteration. 

• Differential privacy: DP may lead to exposing sensitive data information. FL can preserve 
privacy across various applications, including social media, innovative city applications, 
healthcare [110], and traffic management. In these applications, sensitive data is stored locally on 
mobile or edge devices [111]. Only the model parameters derived from these devices are 
transmitted to the global FL to train the overarching machine-learning model. The subsequent 
discussion delves into recent studies and efforts to utilize FL to preserve privacy in these contexts. 
At the end of this section, FL demonstrates its increasingly significant role in IoT networks and 

applications. We also raise several critical research challenges and current issue trends to be considered 
for further FL-networking system implementation. We list several challenges concerning FL with 
network simulation, such as communication overhead, operation bandwidth cost, expansion of multi-
awareness learning, security vulnerabilities, and differential privacy. 

7. Conclusions 

In this paper, we presented a survey of experimental simulations for privacy-preserving FL in 
intelligent networking. We examined the potential relationship between the network simulation tool 
and the FL framework. An introduction with a motivational statement from networking and FL is 
gathered comprehensive terms in novelty concepts and technologies recently. Then, we described the 
preliminary studies for FL frameworks that can be leveraged to achieve learning approaches with 
intelligence networks. Afterward, we provided networking environments that provide critical support 
for data acquisition, edge computing capabilities, round communication, connectivity, and scalable 
topologies. Moreover, FL can leverage capabilities to achieve learning adaptation, low-latency 
operation, edge intelligence, personalization, and privacy preservation. Additionally, we brought up 
case studies of FL potential in terms of learning performance, QoS, energy consumption, and cost. 
Finally, we discussed potential challenges and future directions that could provide valuable ways for 
researchers in the recently trending field development to enhance the application in practical, real-
world systems. 
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