We study the following quasilinear pursuit-evasion model:
{ut=Δu−χ∇⋅(u(u+1)α∇w)+u(λ1−μ1ur1−1+av), x∈Ω, t>0,vt=Δv+ξ∇⋅(v(v+1)β∇z)+v(λ2−μ2vr2−1−bu), x∈Ω, t>0,0=Δw−w+v, x∈Ω, t>0,0=Δz−z+u, x∈Ω, t>0,
in a smooth and bounded domain Ω⊂Rn(n≥1), where a,b,χ,ξ,λ1,λ2,μ1,μ2>0, α,β∈R, and r1,r2>1. When r1>max{1,1+α},r2>max{1,1+β}, it has been proved that if min{(r1−1)(r2−β−1),(r1−α−1)(r2−β−1)}>(n−2)+n, then for some suitable nonnegative initial data u0 and v0, the system admits a unique globally classical solution which is bounded in Ω×(0,∞).
Citation: Chang-Jian Wang, Zi-Han Zheng. The effects of cross-diffusion and logistic source on the boundedness of solutions to a pursuit-evasion model[J]. Electronic Research Archive, 2023, 31(6): 3362-3380. doi: 10.3934/era.2023170
[1] | Thabet Abdeljawad, Muhammad Aamir Ali, Pshtiwan Othman Mohammed, Artion Kashuri . On inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional integrals. AIMS Mathematics, 2021, 6(1): 712-725. doi: 10.3934/math.2021043 |
[2] | Jia-Bao Liu, Saad Ihsan Butt, Jamshed Nasir, Adnan Aslam, Asfand Fahad, Jarunee Soontharanon . Jensen-Mercer variant of Hermite-Hadamard type inequalities via Atangana-Baleanu fractional operator. AIMS Mathematics, 2022, 7(2): 2123-2141. doi: 10.3934/math.2022121 |
[3] | Yamin Sayyari, Mana Donganont, Mehdi Dehghanian, Morteza Afshar Jahanshahi . Strongly convex functions and extensions of related inequalities with applications to entropy. AIMS Mathematics, 2024, 9(5): 10997-11006. doi: 10.3934/math.2024538 |
[4] | Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao . Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334 |
[5] | Shahid Mubeen, Rana Safdar Ali, Iqra Nayab, Gauhar Rahman, Kottakkaran Sooppy Nisar, Dumitru Baleanu . Some generalized fractional integral inequalities with nonsingular function as a kernel. AIMS Mathematics, 2021, 6(4): 3352-3377. doi: 10.3934/math.2021201 |
[6] | Jamshed Nasir, Saber Mansour, Shahid Qaisar, Hassen Aydi . Some variants on Mercer's Hermite-Hadamard like inclusions of interval-valued functions for strong Kernel. AIMS Mathematics, 2023, 8(5): 10001-10020. doi: 10.3934/math.2023506 |
[7] | Muhammad Zakria Javed, Muhammad Uzair Awan, Loredana Ciurdariu, Omar Mutab Alsalami . Pseudo-ordering and δ1-level mappings: A study in fuzzy interval convex analysis. AIMS Mathematics, 2025, 10(3): 7154-7190. doi: 10.3934/math.2025327 |
[8] | Miguel Vivas-Cortez, Muhammad Uzair Awan, Muhammad Zakria Javed, Artion Kashuri, Muhammad Aslam Noor, Khalida Inayat Noor . Some new generalized κ–fractional Hermite–Hadamard–Mercer type integral inequalities and their applications. AIMS Mathematics, 2022, 7(2): 3203-3220. doi: 10.3934/math.2022177 |
[9] | Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441 |
[10] | Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions. AIMS Mathematics, 2020, 5(5): 5106-5120. doi: 10.3934/math.2020328 |
We study the following quasilinear pursuit-evasion model:
{ut=Δu−χ∇⋅(u(u+1)α∇w)+u(λ1−μ1ur1−1+av), x∈Ω, t>0,vt=Δv+ξ∇⋅(v(v+1)β∇z)+v(λ2−μ2vr2−1−bu), x∈Ω, t>0,0=Δw−w+v, x∈Ω, t>0,0=Δz−z+u, x∈Ω, t>0,
in a smooth and bounded domain Ω⊂Rn(n≥1), where a,b,χ,ξ,λ1,λ2,μ1,μ2>0, α,β∈R, and r1,r2>1. When r1>max{1,1+α},r2>max{1,1+β}, it has been proved that if min{(r1−1)(r2−β−1),(r1−α−1)(r2−β−1)}>(n−2)+n, then for some suitable nonnegative initial data u0 and v0, the system admits a unique globally classical solution which is bounded in Ω×(0,∞).
For a convex function f:I⊆R→R on I with c,d∈I and c<d, the Hermite–Hadamard inequality states that [1]:
f(c+d2)≤1d−c∫dcf(t)dt≤f(c)+f(d)2. | (1.1) |
The Hermite-Hadamard integral inequality (1.1) is one of the most famous and commonly used inequalities. The recently published papers [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17] are focused on extending and generalizing the convexity, Hermite-Hadamard inequality, and other inequalities for convex functions.
The situation of the fractional calculus (integrals and derivatives) has won vast popularity and significance throughout the previous five decades or so, due generally to its demonstrated applications in numerous seemingly numerous and great fields of science and engineering [18,19,20].
Now, we recall the definitions of Riemann-Liouville (RL) and generalized Riemann–Liouville (GRL) fractional integrals given by Sarikaya and Ertuğral.
Definition 1.1 ([18,19,20]). Let f∈L1[c,d]. The Riemann–Liouville (RL) fractional integrals RLIνc+f and RLIνd−f of order ν>0 with c≥0 are respectively defined by
RLIνc+f(x)=1Γ(ν)∫xc(x−t)ν−1f(t)dt,c<x, | (1.2) |
and
RLIνd−f(x)=1Γ(ν)∫dx(t−x)ν−1f(t)dt,x<d, | (1.3) |
with RLI0c+f(x)=RLI0d−f(x)=f(x).
Definition 1.2 ([21]). Assume that the function ℏ:[0,+∞)→[0,+∞) satisfies the following condition:
∫10ℏ(t)tdt<+∞. |
Then, the left sided and right sided generalized Riemann–Liouville (GRL) fractional integrals, denoted by GRLℏIc+ and GRLℏId−, are defined as follows:
GRLℏIc+f(x)=∫xcℏ(x−t)x−tf(t)dt,c<x, | (1.4) |
GRLℏId−f(x)=∫dxℏ(t−x)t−xf(t)dt,x<d. | (1.5) |
Remark 1.1. From the Definition 1.1 one can obtain some known definitions of fractional calculus as special cases. That is,
● If ℏ(t)=tνΓ(ν), then Definition 1.2 reduces to Definition 1.1.
● If ℏ(t)=tνkkΓk(ν), then the GRL fractional integrals reduce to k–RL fractional integrals [22].
● If ℏ(t)=tνexp(−1−ννt), then the GRL fractional integrals reduce to the fractional integrals with exponential kernel [23].
● If ℏ(t)=t(y−t)ν−1, then the GRL fractional integrals reduce to the conformable fractional integrals [24].
With a huge application of RL fractional integration and Hermite–Hadamard inequality, many researchers in the field of fractional calculus extended their research to the Hermite–Hadamard inequality, including RL fractional integration rather than ordinary integration; for example see [25,26,27,28,29,30,31,32].
On the one hand, it is well known that RL and GRL fractional integrals have the same importance in theory of integral inequalities, and the GRL fractional integrals are more convenient for calculation. Therefore it is necessary to study the Hermite-Hadamard integral inequalities by using the GRL fractional integrals while by using the RL fractional integrals. Fortunately, studying the Hermite-Hadamard integral inequalities via the GRL fractional integrations can unify the research of ordinary and fractional integrations. So it is necessary and meaningful to study Hermite-Hadamard integral inequalities via the GRL fractional integrations (see for details [21,33,34,35,36]).
In this paper, we consider the integral inequality of HHM type that depends on the Hermite-Hadamard and Jensen–Mercer inequalities. For this reason, we recall the Jensen–Mercer inequality: Let 0<x1≤x2≤⋯≤xn and α=(α1,α2,…,αn) nonnegative weights such that ∑ni=1αi=1. Then, the Jensen inequality [37,38] is as follows, for a convex function f on the interval [c,d], we have
f(n∑i=1αixi)≤n∑i=1αif(xi), | (1.6) |
for all xi∈[c,d] and αi∈[0,1], i=1,2,...,n.
Theorem 1.1 ([11,38]). If f is convex function on [c,d], then
f(c+d−n∑i=1αixi)≤f(c)+f(d)−n∑i=1αif(xi), | (1.7) |
for each xi∈[c,d] and αi∈[0,1], i=1,2,...,n with ∑ni=1αi=1.
For some results related to Jensen-Mercer inequality, see [39,40,41].
Based on the above observations and discussion, the primary purpose of this article is to establish several inequalities of HHM type for convex functions by using the GRL fractional integrals.
Throughout this attempt, we consider the following notations:
Λ(t):=∫t0ℏ((y−x)u)udu<+∞andΔ(t):=∫t0ℏ((y−x2)u)udu<+∞. |
Theorem 2.1. For a convex function f:[c,d]→R, we have the following inequalities for GRL:
f(c+d−x+y2)≤f(c)+f(d)−12Λ(1)[GRLℏIx+f(y)+GRLℏIy−f(x)]≤f(c)+f(d)−f(x+y2), | (2.1) |
and
f(c+d−x+y2)≤12Λ(1)[GRLℏI(c+d−y)+f(c+d−x)+GRLℏI(c+d−x)−f(c+d−y)]≤f(c+d−x)+f(c+d−y)2≤f(c)+f(d)−f(x)+f(y)2. | (2.2) |
Proof. From Jensen-Mercer inequality, we have for u,v∈[c,d]:
f(c+d−u+v2)≤f(c)+f(d)−f(u)+f(v)2. | (2.3) |
Then, for u=tx+(1−t)y and v=ty+(1−t)x, it follows that
f(c+d−x+y2)≤f(c)+f(d)−f(tx+(1−t)y)+f(ty+(1−t)x)2, | (2.4) |
for each x,y∈[c,d] and t∈[0,1]. By multiplying both sides of (2.4) by ℏ((y−x)t)t and integrating the result with respect to t over [0,1], we can obtain
f(c+d−x+y2)Λ(1)≤[f(c)+f(d)]Λ(1)−12[∫10ℏ((y−x)t)t[f(tx+(1−t)y)+f(ty+(1−t)x)]dt]=[f(c)+f(d)]∫10Λ(1)−12[∫10ℏ((y−x)t)tf(tx+(1−t)y)dt+∫10ℏ((y−x)t)tf(ty+(1−t)x)dt]=[f(c)+f(d)]Λ(1)−12[∫yxℏ(y−w)y−wf(w)dw+∫yxℏ(w−x)w−xf(w)dw]=[f(c)+f(d)]Λ(1)−12[GRLℏIx+f(w)+GRLℏIy−f(w)]. |
This gives the first inequality in (2.1). To prove the second inequality in (2.1), first we have by the convexity of f:
f(u+v2)≤f(u)+f(v)2. | (2.5) |
By changing the variables u=tx+(1−t)y and v=ty+(1−t)x in (2.5), we have
f(x+y2)≤f(tx+(1−t)y)+f(ty+(1−t)x)2,t∈[0,1]. | (2.6) |
Multiplying both sides of (2.6) by ℏ((y−x)t)t and integrating the result with respect to t over [0,1], we get
f(x+y2)Λ(1)≤12[∫10ℏ((y−x)t)tf(tx+(1−t)y)dt+∫10ℏ((y−x)t)tf(ty+(1−t)x)dt]=12[∫yxℏ(y−w)y−wf(w)+∫yxℏ(w−x)w−xf(w)dw]=12[GRLℏIx+f(y)+GRLℏIy−f(x)], |
which implies that
−f(x+y2)≥−12Λ(1)[GRLℏIx+f(y)+GRLℏIy−f(x)]. | (2.7) |
By adding f(c)+f(d) on both sides of (1.4), we can obtain the second inequality in (2.1).
Now we give the proof of inequalities (2.2). Since f is convex function, then for all u,v∈[c,d], we have
f(c+d−u+v2)=f(c+d−u+c+d−v2)≤12[f(c+d−u)+f(c+d−v)]. | (2.8) |
Then, for c+d−u=t(c+d−x)+(1−t)(c+d−y) and c+d−v=t(c+d−y)+(1−t)(c+d−x), it follows that
f(c+d−u+v2)≤12[f(t(c+d−x)+(1−t)(c+d−y))+f(t(c+d−y)+(1−t)(c+d−x))]. | (2.9) |
for each x,y∈[c,d] and t∈[0,1]. Now, by multiplying both sides of (2.9) by ℏ((y−x)t)t and integrating the obtaining inequality with respect to t over [0,1], we obtain
f(c+d−u+v2)Λ(1)≤12[∫10ℏ((y−x)t)tf(t(c+d−x)+(1−t)(c+d−y))dt+∫10ℏ((y−x)t)tf(t(c+d−y)+(1−t)(c+d−x))dt]=12[∫c+d−xc+d−yℏ(w−(c+d−y))w−(c+d−y)f(w)dw+∫c+d−xc+d−yℏ((c+d−x)−w)(c+d−x)−wf(w)dw]=12[GRLℏI(c+d−y)+f(c+d−x)+GRLℏI(c+d−x)−f(c+d−y)], |
and this completes the proof of the first inequality in (2.2). To prove the second inequality in (2.2), first we use the convexity of f to get
f(t(c+d−x)+(1−t)(c+d−y))≤tf(c+d−x)+(1−t)f(c+d−y), | (2.10) |
f(t(c+d−y)+(1−t)(c+d−x))≤(1−t)f(c+d−x)+tf(c+d−y). | (2.11) |
Adding (2.10) and (2.11), we get
f(t(c+d−x)+(1−t)(c+d−y))+f(t(c+d−y)+(1−t)(c+d−x))≤f(c+d−x)+f(c+d−y)≤2[f(c)+f(d)]−[f(x)+f(y)]. | (2.12) |
Multiplying both sides of (2.12) by ℏ((y−x)t)t and integrating the result with respect to t over [0,1], we obtain
∫10ℏ((y−x)t)tf(t(c+d−x)+(1−t)(c+d−y))dt+∫10ℏ((y−x)t)tf(t(c+d−y)+(1−t)(c+d−x))dt≤Λ(1)f(c+d−x)+Λ(1)f(c+d−y)≤2Λ(1)[f(c)+f(d)]−Λ(1)[f(x)+f(y)]. |
By using the change of variables of integration and then by multiplying the result by 12Λ(1), we can obtain the second and third inequalities in (2.2). This completes the proof of Theorem 2.1.
Remark 2.1. Let the assumptions of Theorem 2.1 be satisfied. Then,
● If ℏ(t)=t, then Theorem 2.1 reduces to [42,Theorem 2.1].
● If ℏ(t)=tνΓ(ν), then Theorem 2.1 reduces to [43,Theorem 2].
● If we set ℏ(t)=t, x=c and y=d in (2.2), then (2.2) becomes (1.1).
● If ℏ(t)=tνkkΓk(a) in Theorem 2.1 (Eq. (2.2)), we get
f(c+d−x+y2)≤Γk(ν+k)2(y−x)νk[RLℏI(c+d−y)+,kf(c+d−x)+RLℏI(c+d−x)−,kf(c+d−y)]≤f(c+d−x)+f(c+d−y)2≤f(c)+f(d)−f(x)+f(y)2. |
● If we set ℏ(t)=tνΓ(ν), x=c and y=d in (2.2), then we have
f(c+d2)≤Γ(ν+1)2(b−a)ν[RLIνc+f(d)+RLIνd−f(c)]≤f(c)+f(d)2, |
which is derived in [25].
● If we set ℏ(t)=tνkkΓk(ν), x=c and y=d in (2.2), then we have
f(c+d2)≤Γk(ν+k)2(d−c)νk[RLIνc+,kf(d)+RLIνd−,kf(c)]≤f(c)+f(d)2, |
which is derived in [44].
● If x=c and y=d, then inequalities (2.1) reduces to the following inequalities:
f(c+d2)≤f(c)+f(d)−12Λ(1)[GRLℏIc+f(y)+GRLℏId−f(x)]≤f(c)+f(d)−f(c+d2). |
● If x=c and y=d, then inequalities (2.2) reduces to [21,Theorem 5].
Corollary 2.1. For a convex function f:[c,d]→R, we have the following inequalities of HHM type for conformable fractional integrals:
f(c+d−x+y2)≤f(c)+f(d)−ν2(yν−xν)∫yxf(t)dνt≤f(c)+f(d)−f(x+y2), | (2.13) |
and
f(c+d−x+y2)≤ν(yν−xν)∫c+d−xc+d−yf(t)dνt≤f(c+d−x)+f(c+d−y)2≤f(c)+f(d)−f(x)+f(y)2. | (2.14) |
Proof. By setting ℏ(t)=t(y−t)ν−1 in Theorem 2.1, we can directly obtain the proof.
Remark 2.2. If we set x=c and y=d in (2.14), then we have the well-known conformable fractional HH integral inequality:
f(c+d2)≤νdν−cν∫dcf(t)dνt≤f(c)+f(d)2, |
which is derived by Adil Khan et al. in [45].
Corollary 2.2. For a convex function f:[c,d]→R, we have the following inequalities of HHM type for fractional integrals with exponential kernel:
f(c+d−x+y2)≤f(c)+f(d)−(ν−1)2[exp(−1−νν(y−x))−1][expIνx+f(y)+expIνy−f(x)]≤f(c)+f(d)−f(x+y2), | (2.15) |
and
f(c+d−x+y2)≤(ν−1)2[exp(−1−νν(y−x))−1][expIν(c+d−y)+f(c+d−x)+expIν(c+d−x)−f(c+d−y)]≤f(c+d−x)+f(c+d−y)2≤f(c)+f(d)−f(x)+f(y)2. | (2.16) |
Proof. By setting ℏ(t)=tνexp(−1−ννt) in Theorem 2.1, we can easily obtain the proof of Corollary 2.2.
Remark 2.3. If we set x=c and y=d in (2.16), then we have the HH inequalities for fractional integrals with exponential kernel:
f(c+d2)≤(ν−1)2[exp(−1−νν(d−c))−1][expIνc+f(d)+expIνd−f(c)]≤f(c)+f(d)2, |
which is derived by Ahmad et al. in [46].
Theorem 2.2. For a convex function f:[c,d]→R, we have the following inequalities for GRL:
f(c+d−x+y2)≤12Δ(1)[GRLℏI(c+d−x+y2)−f(c+d−y)+GRLℏI(c+d−x+y2)+f(c+d−x)]≤f(c)+f(d)−f(x)+f(y)2. | (2.17) |
Proof. From the convexity of f, we have
f(c+d−u+v2)=f(c+d−u+c+d−v2)≤12f(c+d−u)+f(c+d−v). | (2.18) |
By setting u=t2x+2−t2y, v=2−t2x+t2y, it follows that
f(c+d−x+y2)≤12[f(c+d−(t2x+2−t2y))+f(c+d−(2−t2x+t2y))], | (2.19) |
for all x,y∈[c,d] and t∈[0,1]. Multiplying both sides of (2.19) by ℏ((y−x2)t)t and integrating its result with respect to t over [0,1], we get
f(c+d−x+y2)Δ(1)≤12[∫10ℏ((y−x2)t)tf(c+d−(t2x+2−t2y))dt+∫10ℏ((y−x2)t)tf(c+d−(2−t2x+t2y))dt]=12[∫c+d−x+y2c+d−yℏ(w−(c+d−y))w−(c+d−y)f(w)dw+∫c+d−xc+d−x+y2ℏ((c+d−x)−w)(c+d−x)−wf(w)dw]=12[GRLℏI(c+d−x+y2)−f(c+d−y)+GRLℏI(c+d−x+y2)+f(c+d−x)]. |
Thus, the first inequality in (2.17) is proved. To prove the second inequality in (2.17), by using the Jensen–Mercer inequality, we can deduce:
f(c+d−(t2x+2−t2y))≤f(c)+f(d)−[t2f(x)+2−t2f(y)] | (2.20) |
f(c+d−(2−t2x+t2y))≤f(c)+f(d)−[2−t2f(x)+t2f(y)]. | (2.21) |
By adding (2.20) and (2.21), we obtain
f(c+d−(t2x+2−t2y))+f(c+d−(2−t2x+t2y))≤2[f(c)+f(d)]−f(x)+f(y). | (2.22) |
Multiplying both sides of inequality (2.22) by ℏ((y−x2)t)t and integrating the result with respect to t over [0,1], we get
∫10ℏ((y−x2)t)tf(c+d−(t2x+2−t2y))dt+∫10ℏ((y−x2)t)tf(c+d−(2−t2x+t2y))dt≤2Δ(1)[f(c)+f(d)]−Δ(1)[f(x)+f(y)]. |
By using change of variables of integration and multiplying the result by 12Δ(1), we can easily obtain second inequality in (2.17).
Remark 2.4. Assume that the assumptions of Theorem 2.2 are satisfied.
● If ℏ(t)=t, then inequalities (2.17) becomes inequalities [42,Theorem 2.1].
● If we put ℏ(t)=t,x=c and y=d in Theorem 2.2, then inequalities (2.17) becomes inequalities (1.1).
● If ℏ(t)=tνΓ(ν), then Theorem 2.2 reduces to [43,Theorem 3].
● If we put ℏ(t)=tνΓ(ν),x=c and y=d in Theorem 2.2, then Theorem 2.2 reduces to [26,Theorem 4].
● If ℏ(t)=tνkkΓk(ν) in Theorem 2.2, we get
f(c+d−x+y2)≤2νk−1Γk(ν+k)(y−x)νk[RLℏI(c+d−x+y2)−,kf(c+d−y)+RLℏI(c+d−x+y2)+,kf(c+d−x)]≤f(c)+f(d)−f(x)+f(y)2. |
● If we put ℏ(t)=tνkkΓk(ν), x=c and y=d in Theorem 2.2, then Theorem 2.2 reduces to [44,Theorem 1.1].
● If x=c and y=d, then Theorem 2.2 becomes
f(c+d2)≤12Δ(1)[GRLℏI(c+d2)−f(c)+GRLℏI(c+d2)+f(d)]≤f(c)+f(d)2. |
Corollary 2.3. For a convex function f:[c,d]→R, we have the following inequalities of HHM type for conformable fractional integrals:
f(c+d−x+y2)≤ν[yν−(x+y2)ν]∫c+d−xc+d−yf(t)dνt≤f(c)+f(d)−f(x)+f(y)2. | (2.23) |
Proof. By setting ℏ(t)=t(y−t)ν−1 in Theorem 2.2, then we have proof of Corollary 2.3.
Remark 2.5. If we set x=c and y=d in (2.23), then we get
f(c+d2)≤ν[dν−(c+d2)ν]∫dcf(t)dνt≤f(c)+f(d)2. |
Corollary 2.4. For a convex function f:[c,d]→R, we have the following inequalities of HHM type for fractional integrals with exponential kernel:
f(c+d−x+y2)≤(ν−1)2[exp(−1−νν(y−x)2)−1][expIν(c+d−x+y2)−f(c+d−y)+expIν(c+d−x+y2)+f(c+d−x)]≤f(c)+f(d)−f(x)+f(y)2. | (2.24) |
Proof. By setting ℏ(t)=tνexp(−1−ννt) in Theorem 2.2, we get proof of Corollary 2.4.
Remark 2.6. If we set x=c and y=d in (2.24), then we get
f(c+d2)≤(ν−1)2[exp(−1−νν(d−c)2)−1][expIν(c+d2)−f(c)+expIν(c+d2)+f(d)]≤f(c)+f(d)2. |
In view of the inequalities (2.1) and (2.17), we can generate some related results in this section.
Lemma 3.1. Let f:[c,d]→R be a differentiable function on (c,d) such that f′∈L[c,d]. Then, the following equality holds for GRL:
f(c+d−y)+f(c+d−x)2−12Λ(1)[GRLℏI(c+d−y)+f(c+d−x)+GRLℏI(c+d−x)−f(c+d−y)]=(y−x)2Λ(1)∫10[Λ(t)−Λ(1−t)]f′(c+d−(tx+(1−t)y))dt=(y−x)2Λ(1)∫10Λ(t)[f′(c+d−(tx+(1−t)y))−f′(c+d−(ty+(1−t)x))]dt. | (3.1) |
Proof. By the help of the right hand side of (3.1), we have
(y−x)2Λ(1)∫10Λ(t)[f′(c+d−(tx+(1−t)y))−f′(c+d−(ty+(1−t)x))]dt=(y−x)2Λ(1)[∫10Λ(t)f′(c+d−(tx+(1−t)y))dt−∫10Λ(t)f′(c+d−(ty+(1−t)x))dt]=(y−x)2Λ(1)[S1−S2]. | (3.2) |
By applying integration by parts, one can obtain
S2=∫10Λ(t)f′(c+d−(ty+(1−t)x))dt=−Λ(1)f(c+d−y)y−x+1y−x∫10ℏ((y−x)t)tf(c+d−(ty+(1−t)x))=−Λ(1)f(c+d−y)y−x+1y−x=−Λ(1)f(c+d−y)y−x+1y−x[GRLℏI(c+d−y)+f(c+d−x)]. |
Similarly, one can obtain
S1=∫10Λ(t)f(c+d−(tx+(1−t)y))dt=Λ(1)f(c+d−x)y−x−1y−x[GRLℏI(c+d−x)−f(c+d−y)]. |
By making use of S1 and S2 in (3.2), we get the identity (3.1).
Remark 3.1. Let the assumptions of Lemma 3.1 be satisfied.
● If ℏ(t)=t, then Lemma 3.1 reduces to [43,Corollary 1].
● If ℏ(t)=tνΓ(ν), then Lemma 3.1 reduces to [43,Lemma 1].
● If ℏ(t)=tνkkΓk(ν) in Lemma 3.1, we get
f(c+d−x)+f(c+d−y)2−Γk(ν+k)2(y−x)νk[RLℏI(c+d−y)+,kf(c+d−x)+RLℏI(c+d−x)−,kf(c+d−y)]=y−x2∫10[tνk−(1−t)νk]f′(c+d−(tx+(1−t)y))dt. | (3.3) |
● If x=c and y=d, then Lemma 3.1 reduces to [47,Lemma 2.1].
Corollary 3.1. Let the assumptions of Lemma 3.1 be satisfied, then the following equality holds for the conformable fractional integrals:
f(c+d−y)+f(c+d−x)2−νyν−xν∫c+d−xc+d−yf(t)dνt=(y−x)2Λ1(1)∫10[Λ1(t)−Λ1(1−t)]f′(c+d−(tx+(1−t)y))dt=(y−x)2Λ1(1)∫10Λ1(t)[f′(c+d−(tx+(1−t)y))−f′(c+d−(ty+(1−t)x))]dt, | (3.4) |
where
Λ1(t)=yν−(tx+(1−t)y)νν. |
Proof. By setting ℏ(t)=t(y−t)ν−1 in Lemma 3.1, then we have proof of Corollary 3.1.
Remark 3.2. By setting x=c and y=d in (3.4), we get
f(c)+f(d)2−νdν−cν∫dcf(t)dνt=(d−c)2Λ2(1)∫10[Λ2(t)−Λ2(1−t)]f′(td+(1−t)c)dt=(d−c)2Λ2(1)∫10Λ2(t)[f′(td+(1−t)c)−f′(tc+(1−t)d)]dt, |
where
Λ2(t)=yν−(tc+(1−t)d)νν. |
Corollary 3.2. Let the assumptions of Lemma 3.1 be satisfied, then the following equality holds for the fractional integrals with exponential kernel:
f(c+d−y)+f(c+d−x)2−(ν−1)2[exp(−1−νν(y−x))−1]×[expIν(c+d−y)+f(c+d−x)+expIν(c+d−x)−f(c+d−y)]=(y−x)2Λ3(1)∫10[Λ3(t)−Λ3(1−t)]f′(c+d−(tx+(1−t)y))dt=(y−x)2Λ3(1)∫10Λ3(t)[f′(c+d−(tx+(1−t)y))−f′(c+d−(ty+(1−t)x))]dt, | (3.5) |
where
Λ3(t)=exp(−1−νν(y−x)t)−1ν−1. |
Proof. By setting ℏ(t)=tνexp(−1−ννt) in Lemma 3.1, we get proof of Corollary 3.2.
Remark 3.3. If we set x=c and y=d in (3.5), we get
f(c)+f(d)2−(ν−1)2[exp(−1−νν(d−c))−1][expIνc+f(d)+expIνd−f(c)]=(d−c)2Λ4(1)∫10[Λ4(t)−Λ4(1−t)]f′(td+(1−t)c)dt=(d−c)2Λ4(1)∫10Λ4(t)[f′(td+(1−t)c)−f′(tc+(1−t)d)]dt, |
where
Λ4(t)=exp(−1−νν(d−c)t)−1ν−1. |
Lemma 3.2. Let f:[c,d]→R be a differentiable function on (c,d) such that f′∈L[c,d]. Then, the following equality holds for GRL:
12Δ(1)[GRLℏI(c+d−x+y2)+f(c+d−x)+GRLℏI(c+d−x+y2)−f(c+d−y)]−f(c+d−x+y2)=(y−x)4Δ(1)∫10Δ(t)[f′(c+d−(2−t2x+t2y))−f′(c+d−(t2x+2−t2y))]dt. | (3.6) |
Proof. The proof of Lemma 3.2 is similar to Lemma 3.1, so we omit it.
Remark 3.4. Let the assumptions of Lemma 3.2 be satisfied.
● If ℏ(t)=tνΓ(ν), then Lemma 3.2 reduces to [43,Lemma 2].
● If ℏ(t)=tνkkΓk(ν) in Lemma 3.2, we get
2νk−1Γk(ν+k)(y−x)νk[RLℏI(c+d−x+y2)−,kf(c+d−y)+RLℏI(c+d−x+y2)+,kf(c+d−x)]−f(c+d−x+y2)=y−x4∫10tνk[f′(c+d−(2−t2x+t2y))−f′(c+d−(t2x+2−t2y))]dt. | (3.7) |
● If x=c and y=d, then Lemma 3.2 becomes
12Δ(1)[GRLℏI(c+d2)−f(c)+GRLℏI(c+d2)+f(d)]−f(c+d2)=d−c4Δ(1)∫10Δ(t)[f′(t2c+2−t2d)−f′(2−t2c+t2d)]dt. |
Corollary 3.3. Let the assumptions of Lemma 3.2 be satisfied, then the following equality holds for the conformable fractional integrals:
ν[yν−(x+y2)ν]∫c+d−xc+d−yf(t)dνt=(y−x)4Δ1(1)∫10Δ1(t)[f′(c+d−(2−t2x+t2y))−f′(c+d−(t2x+2−t2y))]dt, | (3.8) |
where
Δ1(t)=yν−(y−(y−x2)t)νν. |
Proof. By setting ℏ(t)=t(y−t)ν−1 in Lemma 3.2, we have proof of Corollary 3.3.
Remark 3.5. If we set x=c and y=d in (3.8), we get
ν[dν−(d+c2)ν]∫dcf(t)dνt=(d−c)4Δ2(1)∫10Δ2(t)[f′(2−t2d+t2c)−f′(t2d+2−t2c)]dt, |
where
Δ2(t)=dν−(d−(d−c2)t)νν. |
Corollary 3.4. Let the assumptions of Lemma 3.2 be satisfied, then the following equality holds for the fractional integrals with exponential kernel:
(ν−1)2[exp(−1−νν(y−x)2)−1][expIν(c+d−x+y2)+f(c+d−x)+expIν(c+d−x+y2)−f(c+d−y)]−f(c+d−x+y2)=(y−x)4Δ3(1)∫10Δ3(t)[f′(c+d−(2−t2x+t2y))−f′(c+d−(t2x+2−t2y))]dt, | (3.9) |
where
Δ3(t)=exp(−1−νν(y−x)t2)−1ν−1. |
Proof. By setting ℏ(t)=tνexp(−1−ννt) in Lemma 3.2, we get proof of Corollary 3.4.
Remark 3.6. If we put x=c and y=d in (3.9), we get
(ν−1)2[exp(−1−νν(d−c)2)−1][expIν(c+d2)+f(d)+expIν(c+d2)−f(c)]−f(c+d2)=(d−c)4Δ4(1)∫10Δ4(t)[f′(2−t2d+t2c)−f′(t2d+2−t2c)]dt, |
where
Δ4(t)=exp(−1−νν(d−c)t2)−1ν−1. |
Theorem 3.1. Let f:[c,d]→R be a differentiable function on (c,d) such that |f′| is convex on [c,d]. Then, the following inequality holds for GRL:
|GRLℏF(c,d;x,y)|≤(y−x)2Λ(1)[[|f′(c)|+|f′(d)|]∫10|Λ(t)−Λ(1−t)|dt−[|f′(x)|+|f′(y)|]∫10t|Λ(t)−Λ(1−t)|dt], | (3.10) |
where
|GRLℏF(c,d;x,y)|:=|f(c+d−y)+f(c+d−x)2−12Λ(1)[GRLℏI(c+d−y)+f(c+d−x)+GRLℏI(c+d−x)−f(c+d−y)]|. |
Proof. In view of Lemma 3.1, we have
|GRLℏF(c,d;x,y)|≤(y−x)2Λ(1)∫10|Λ(t)−Λ(1−t)||f′(c+d−(tx+(1−t)y))|dt. |
Then, by using the Jensen–Mercer inequality, we obtain
|GRLℏF(c,d;x,y)|≤(y−x)2Λ(1)∫10|Λ(t)−Λ(1−t)|[|f′(c)|+|f′(d)|−t|f′(x)|−(1−t)|f′(y)|]dt=(y−x)2Λ(1)[∫10|Λ(t)−Λ(1−t)|[|f′(c)|+|f′(d)|]dt−|f′(x)|∫10t|Λ(t)−Λ(1−t)|dt−|f′(y)|∫10(1−t)|Λ(t)−Λ(1−t)|dt]=(y−x)2Λ(1)[[|f′(c)|+|f′(d)|]∫10|Λ(t)−Λ(1−t)|dt−[|f′(x)|+|f′(y)|]∫10t|Λ(t)−Λ(1−t)|dt], |
which completes the proof of Theorem 3.1.
Remark 3.7. Let the assumptions of Theorem 3.1 be satisfied. Then,
● If ℏ(t)=tνΓ(ν), then Theorem 3.1 reduces to [43,Theorem 4].
● If ℏ(t)=tνkkΓk(ν) in Theorem 3.1, we get
|f(c+d−x)+f(c+d−y)2−Γk(ν+k)2(y−x)νk[RLℏI(c+d−y)+,kf(c+d−x)+RLℏI(c+d−x)−,kf(c+d−y)]|≤y−xν+k(k−k2νk)[|f′(c)|+|f′(d)|−|f′(x)|+|f′(y)|2]. | (3.11) |
● If x=c and y=d, then Theorem 3.1 reduces to [21,Theorem 6].
Corollary 3.5. Let the assumptions of Theorem 3.1 be satisfied. Then, we have
|f(c+d−y)+f(c+d−x)2−1y−x∫c+d−xc+d−yf(x)dx|≤14[|f′(c)|+|f′(d)|−|f′(x)|+|f′(y)|2]. | (3.12) |
Proof. If we set ℏ(t)=t in Theorem 3.1, then we have proof of Corollary 3.5.
Remark 3.8. If we use x=c and y=d in Corollary 3.5, then Corollary 3.5 reduces to [47,Theorem 2.2].
Corollary 3.6. Let the assumptions of Theorem 3.1 be satisfied. Then, we have the following inequality holds for conformable fractional integrals:
|f(c+d−y)+f(c+d−x)2−νyν−xν∫c+d−xc+d−yf(t)dνt|≤ν(y−x)2(yν−xν)×[[|f′(c)|+|f′(d)|]∫10|Λ1(t)−Λ1(1−t)|dt−[|f′(x)|+|f′(y)|]∫10t|Λ1(t)−Λ1(1−t)|dt]. | (3.13) |
Proof. By setting ℏ(t)=t(y−t)ν−1 in Theorem 3.1, we have proof of Corollary 3.6.
Remark 3.9. If we set x=c and y=d, then we have
|f(c)+f(d)2−νdν−cν∫dcf(t)dνt|≤ν(d−c)2(dν−cν)[[|f′(c)|+|f′(d)|]∫10t|Λ2(t)−Λ2(1−t)|dt]. |
Corollary 3.7. Let the assumptions of Theorem 3.1 be satisfied. Then, we have the following inequality for fractional integrals with exponential kernel:
|f(c+d−y)+f(c+d−x)2−(ν−1)2[exp(−1−νν(y−x))−1]×[expIν(c+d−y)+f(c+d−x)+expIν(c+d−x)−f(c+d−y)]|≤(ν−1)(y−x)2[exp(−1−νν(y−x))−1][[|f′(c)|+|f′(d)|]∫10|Λ3(t)−Λ3(1−t)|dt−[|f′(x)|+|f′(y)|]∫10t|Λ3(t)−Λ3(1−t)|dt]. | (3.14) |
Proof. By setting ℏ(t)=tνexp(−1−ννt) in Theorem 3.1, we get proof of Corollary 3.7.
Remark 3.10. If we set x=c and y=d in (3.14), then we have
|f(c)+f(d)2−(ν−1)2[exp(−1−νν(d−c))−1][expIνc+f(d)+expIνd−f(c)]|≤(ν−1)(d−c)2[exp(−1−νν(d−c))−1][[|f′(c)|+|f′(d)|]∫10t|Λ4(t)−Λ4(1−t)|dt]. |
Theorem 3.2. Let f:[c,d]→R be a differentiable function on (c,d) such that |f′|q is convex on [c,d] for some q>1. Then, the following inequality holds for GRL:
|GRLℏF(c,d;x,y)|≤(y−x)2Λ(1)(∫10|Λ(t)−Λ(1−t)|pdt)1p×(|f′(c)|q+|f′(d)|q−|f′(x)|q+|f′(y)|q2)1q, | (3.15) |
where 1p+1q=1.
Proof. In view of Lemma 3.1 and the well–known Hölder's inequality, one can obtain
|GRLℏF(c,d;x,y)|≤(y−x)2Λ(1)(∫10|Λ(t)−Λ(1−t)|pdt)1p(∫10|f′(c+d−(tx+(1−t)y))|qdt)1q. |
We can apply the Jensen–Mercer inequality due to the convexity of |f′|q, to get
|GRLℏF(c,d;x,y)|≤(y−x)2Λ(1)(∫10|Λ(t)−Λ(1−t)|pdt)1p×(∫10[|f′(c)|q+|f′(d)|q−(t|f′(x)|q+(1−t)|f′(y)|q)]dt)1q=(y−x)2Λ(1)(∫10|Λ(t)−Λ(1−t)|pdt)1p(|f′(c)|q+|f′(d)|q−|f′(x)|q+|f′(y)|q2)1q, |
which completes the proof of Theorem 3.2.
Corollary 3.8. Let the assumptions of Theorem 3.2 be satisfied, then we have
|f(c+d−y)+f(c+d−x)2−1y−x∫c+d−xc+d−yf(x)dx|≤(y−x)2(1+p)1p×(|f′(c)|q+|f′(d)|q−|f′(x)|q+|f′(y)|q2)1q. | (3.16) |
Remark 3.11. If we use x=c and y=d in Corollary 3.8, then Corollary 3.8 reduces to [47,Theorem 2.3].
Proof. By using ℏ(t)=t in inequality (3.15), we can obtain inequality (3.16).
Corollary 3.9. Let the assumptions of Theorem 3.2 be satisfied, then we have the following inequality holds for RL:
|f(c+d−y)+f(c+d−x)2−Γ(ν+1)2(y−x)ν[RLIν(c+d−y)+f(c+d−x)+RLIν(c+d−x)−f(c+d−y)]|≤(y−x)2(νp+1)1p(|f′(c)|q+|f′(d)|q−|f′(x)|q+|f′(y)|q2)1q. | (3.17) |
Proof. By setting ℏ(t)=tνΓ(ν) in inequality (3.15), we obtain inequality (3.17).
Remark 3.12. If we set x=c and y=d in Corollary 3.9, then we have
|f(c)+f(d)2−Γ(ν+1)2(d−c)ν[RLIνc+f(d)+RLIνd−f(c)]|≤(d−c)2(νp+1)1p(|f′(c)|q+|f′(d)|q2)1q. |
Corollary 3.10. Let the assumptions of Theorem 3.2 be satisfied, then we have for k–RL:
|f(c+d−y)+f(c+d−x)2−Γk(ν+k)2(y−x)νk[RLIν(c+d−y)+,kf(c+d−x)+RLIν(c+d−x)−,kf(c+d−y)]|≤(y−x)2(νkp+1)1p(|f′(c)|q+|f′(d)|q−|f′(x)|q+|f′(y)|q2)1q. | (3.18) |
Proof. By setting ℏ(t)=tνkkΓk(ν) in inequality (3.15), we can obtain inequality (3.18).
Remark 3.13. If we set x=c and y=d in Corollary 3.10, then we obtain
|f(c)+f(d)2−Γk(ν+k)2(d−c)νk[RLIνc+,kf(d)+RLIνd−,kf(c)]|≤(d−c)2(νkp+1)1p(|f′(c)|q+|f′(d)|q2)1q. |
Corollary 3.11. Let the assumptions of Theorem 3.2 be satisfied, then we have the following inequality for the conformable fractional integrals:
|f(c+d−y)+f(c+d−x)2−νyν−xν∫c+d−xc+d−yf(t)dνt|≤ν(y−x)2(yν−xν)×(∫10|Λ1(t)−Λ1(1−t)|pdt)1p(|f′(c)|q+|f′(d)|q−|f′(x)|q+|f′(y)|q2)1q. | (3.19) |
Proof. By setting ℏ(t)=t(y−t)ν−1 in Theorem 3.2, we get proof of Corollary 3.11.
Remark 3.14. If we set x=c and y=d in (3.19), then we have
|f(c)+f(d)2−νdν−cν∫dcf(t)dνt|≤ν(d−c)2(dν−cν)(∫10|Λ2(t)−Λ2(1−t)|pdt)1p×(|f′(c)|q+|f′(d)|q2)1q. |
Corollary 3.12. Let the assumptions of Theorem 3.2 be satisfied, then we have the following inequality for the fractional integrals with exponential kernel:
|f(c+d−y)+f(c+d−x)2−(ν−1)2[exp(−1−νν(y−x))−1]×[expIν(c+d−y)+f(c+d−x)+expIν(c+d−x)−f(c+d−y)]|≤(ν−1)(y−x)2[exp(−1−νν(y−x))−1](∫10|Λ3(t)−Λ3(1−t)|pdt)1p×(|f′(c)|q+|f′(d)|q−|f′(x)|q+|f′(y)|q2)1q. | (3.20) |
Proof. By setting ℏ(t)=tνexp(−1−ννt) in Theorem 3.2, we have proof of Corollary 3.12.
Remark 3.15. If we set x=c and y=d in (3.20), then we have
|f(c)+f(d)2−(ν−1)2[exp(−1−νν(d−c))−1][expIνc+f(d)+expIνd−f(c)]|≤(ν−1)(d−c)2[exp(−1−νν(d−c))−1](∫10|Λ4(t)−Λ4(1−t)|pdt)1p(|f′(c)|q+|f′(d)|q2)1q. |
Theorem 3.3. Let f:[c,d]→R be a differentiable function on (c,d) such that |f| is convex on [c,d]. Then, the following inequality holds for GRL:
|GRLℏG(c,d;x,y)|≤(y−x)2Δ(1)[|f′(c)|+|f′(d)|−|f′(x)|+|f′(y)|2]∫10|Δ(t)|dt, | (3.21) |
where
|GRLℏG(c,d;x,y)|:=|12Δ(1)[GRLℏI(c+d−x+y2)+f(c+d−x)+GRLℏI(c+d−x+y2)−f(c+d−y)]−f(c+d−x+y2)|. |
Proof. From Lemma 3.2, we have
|GRLℏG(c,d;x,y)|≤(y−x)4Δ(1)[∫10|Δ(t)||f′(c+d−(2−t2x+t2y))|dt+∫10|Δ(t)||f′(c+d−(t2x+2−t2y))|dt] |
Then, by using the Jensen–Mercer inequality, we get
|GRLℏG(c,d;x,y)|≤(y−x)4Δ(1)[∫10|Δ(t)|(|f′c|+|f′(d)|−(2−t2|f′(x)|+t2|f′(y)|))dt+∫10|Δ(t)|(|f′(c)|+|f′(d)|−(t2|f′(x)|+2−t2|f′(y)|))dt]=(y−x)4Δ(1)[∫10|Δ(t)|[2|f′(c)|+2|f′(d)|−(|f′(x)|+|f′(y)|)]dt]=(y−x)2Δ(1)[|f′(c)|+|f′(d)|−|f′(x)|+|f′(y)|2]∫10|Δ(t)|dt, |
which completes the proof of Theorem 3.3.
Remark 3.16. Let the assumptions of Theorem 3.3 be satisfied. Then, the following special cases can be considered.
● If ℏ(t)=t, then Theorem 3.3 reduces to [43,Corollary 2].
● If ℏ(t)=t, x=c and y=d, then Theorem 3.3 reduces to [48,Theorem 2.2].
● If ℏ(t)=tνΓ(ν), then Theorem 3.3 reduces to [43,Theorem 5].
● If ℏ(t)=tνΓ(ν),x=c and y=d, then Theorem 3.3 reduces to [26,Theorem 5] with q=1.
● If ℏ(t)=tνkkΓk(ν) in Theorem 3.3, we get
|2νk−1Γk(ν+k)(y−x)νk[RLℏI(c+d−x+y2)−,kf(c+d−y)+RLℏI(c+d−x+y2)+,kf(c+d−x)]−f(c+d−x+y2)|≤k(y−x)2(ν+k)[|f′(c)|+|f′(d)|−|f′(x)|+|f′(y)|2]. | (3.22) |
● If we set ℏ(t)=tνkkΓk(ν),x=c and y=d in Theorem 3.3, then we have
|2ν−kkΓk(ν+k)(d−c)νk[RLIν(c+d2)+,kf(d)+RLIν(c+d2)−,kf(c)]−f(c+d2)|≤k(d−c)2(ν+k)[|f′(c)|+|f′(d)|2]. |
Corollary 3.13. Let the assumptions of Theorem 3.3 be satisfied. Then, the following inequality holds for the conformable fractional integrals:
|ν[yν−(x+y2)ν]∫c+d−xc+d−yf(t)dνt|≤ν(y−x)2[yν−(x+y2)ν]×[|f′(c)|+|f′(d)|−|f′(x)|+|f′(y)|2]∫10|Δ1(t)|dt. | (3.23) |
Proof. By setting ℏ(t)=t(y−t)ν−1 in Theorem 3.3, we can get proof of Corollary 3.13.
Remark 3.17. If we set x=c and y=d in (3.23), then we have
|ν[dν−(c+d2)ν]∫dcf(t)dνt|≤ν(d−c)2[dν−(c+d2)ν][|f′(c)|+|f′(d)|2]∫10|Δ2(t)|dt. |
Corollary 3.14. Let the assumptions of Theorem 3.3 be satisfied. Then, the following inequality holds for the fractional integrals with exponential kernel:
|(ν−1)2[exp(−1−νν(y−x)2)−1][[expIν(c+d−x+y2)+f(c+d−x)+expIν(c+d−x+y2)−f(c+d−y)]]−f(c+d−x+y2)|≤(ν−1)(y−x)2[exp(−1−νν(y−x)2)−1][|f′(c)|+|f′(d)|−|f′(x)|+|f′(y)|2]∫10|Δ3(t)|dt. | (3.24) |
Proof. By setting ℏ(t)=tνexp(−1−ννt) in Theorem 3.3, we can obtain proof of Corollary 3.14.
Remark 3.18. If we set x=c and y=d in (3.24), then we have
|(ν−1)2[exp(−1−νν(d−c)2)−1][[expIν(c+d2)+f(d)+expIν(c+d2)−f(c)]]−f(c+d2)|≤(ν−1)(d−c)2[exp(−1−νν(d−c)2)−1][|f′(c)|+|f′(d)|2]∫10|Δ4(t)|dt. |
Theorem 3.4. Let f:[c,d]→R be a differentiable function on (c,d) such that |f′|q is convex on [c,d] for some q>1. Then, the following inequality holds for GRL:
|GRLℏG(c,d;x,y)|≤(y−x)4Δ(1)(∫10|Δ(t)|pdt)1p[(|f′(c)|q+|f′(d)|q−3|f′(x)|q+|f′(y)|q4)1q+(|f′(c)|q+|f′(d)|q−(|f′(x)|q+3|f′(y)|q4))1q], | (3.25) |
where 1p+1q=1.
Proof. From Lemma 3.2 and well-known Hölder's inequality, we obtain
|GRLℏG(c,d;x,y)|≤(y−x)4Δ(1)(∫10|Δ(t)|pdt)1p[(∫10|f′(c+d−(2−t2x+t2y))|qdt)1q+(∫10|f′(c+d−(t2x+2−t2y))|qdt)1q]. |
By applying the Jensen–Mercer inequality due to convexity of |f′|q, we can obtain
|GRLℏG(c,d;x,y)|≤(y−x)4Δ(1)(∫10|Δ(t)|pdt)1p[(∫10[|f′(c)|q+|f′(d)|q−(2−t2|f′(x)|q+t2|f′(y)|q)]dt)1q+(∫10[|f′(c)|q+|f′(d)|q−(t2|f′(x)|q+2−t2|f′(y)|q)]dt)1q]=(y−x)4Δ(1)(∫10|Δ(t)|pdt)1p[(|f′(c)|q+|f′(d)|q−3|f′(x)|q+|f′(y)|q4)1q+(|f′(c)|q+|f′(d)|q−(|f′(x)|q+3|f′(y)|q4))1q], |
and this completes proof of the Theorem 3.4.
Remark 3.19. Let the assumptions of Theorem 3.4 be satisfied. Then, the following special cases can be considered.
● If ℏ(t)=t, then Theorem 3.4 reduces to [43,Corollary 3].
● If ℏ(t)=t,x=c and y=d, then Theorem 3.4 reduces to [48,Theorem 2.3].
● If ℏ(t)=tνΓ(ν), then Theorem 3.4 reduces to [43,Theorem 6].
● If ℏ(t)=tνΓ(ν),x=c and y=d, then Theorem 3.4 reduces to [26,Theorem 6].
● If ℏ(t)=tνkkΓk(ν) in Theorem 3.4, we get
|2νk−1Γk(ν+k)(y−x)νk[RLℏI(c+d−x+y2)−,kf(c+d−y)+RLℏI(c+d−x+y2)+,kf(c+d−x)]−f(c+d−x+y2)|≤y−x4(kνp+k)1p[(|f′(c)|q+|f′(d)|q−3|f′(x)|q+|f′(y)|q4)1q+(|f′(c)|q+|f′(d)|q−|f′(x)|q+3|f′(y)|q4)1q]. | (3.26) |
● If ℏ(t)=tνkkΓk(ν),x=c and y=d, then we have
|2ν−kkΓk(ν+k)(d−c)νk[RLIν(c+d2)+,kf(d)+RLIν(c+d2)−,kf(c)]−f(c+d2)|≤(d−c)4(kνp+k)1p[(|f′(c)|q+3|f′(d)|q4)1q+(3|f′(c)|q+|f′(d)|q4)1q]. |
Corollary 3.15. Let the assumptions of Theorem 3.4 be satisfied. Then, the following inequality holds for the conformable fractional integrals:
|ν[yν−(x+y2)ν]∫c+d−xc+d−yf(t)dνt|≤ν(y−x)4(yν−(x+y2)ν)(∫10|Δ1(t)|pdt)1p×[(|f′(c)|q+|f′(d)|q−3|f′(x)|q+|f′(y)|q4)1q+(|f′(c)|q+|f′(d)|q−(|f′(x)|q+3|f′(y)|q4))1q]. | (3.27) |
Proof. By setting ℏ(t)=t(y−t)ν−1 in Theorem 3.4, we can obtain proof of Corollary 3.15.
Remark 3.20. If we set x=c and y=d in (3.27), then we have
|ν[dν−(c+d2)ν]∫dcf(t)dνt|≤ν(d−c)4(dν−(c+d2)ν)(∫10|Δ2(t)|pdt)1p[(|f′(c)|q+3|f′(d)|q4)1q+(3|f′(c)|q+|f′(d)|q4)1q]. |
Corollary 3.16. Let the assumptions of Theorem 3.4 be satisfied. Then, the following inequality holds for the fractional integrals with exponential kernel:
|(ν−1)2[exp(−1−νν(y−x)2)−1][[expIν(c+d−x+y2)+f(c+d−x)+expIν(c+d−x+y2)−f(c+d−y)]]−f(c+d−x+y2)|≤(ν−1)(y−x)4[exp(−1−νν(y−x)2)−1](∫10|Δ3(t)|pdt)1p[(|f′(c)|q+|f′(d)|q−3|f′(x)|q+|f′(y)|q4)1q+(|f′(c)|q+|f′(d)|q−(|f′(x)|q+3|f′(y)|q4))1q]. | (3.28) |
Proof. By setting ℏ(t)=tνexp(−1−ννt) in Theorem 3.4, we can obtain proof of Corollary 3.16.
Remark 3.21. If we set x=c and y=d in (3.28), then we have
|(ν−1)2[exp(−1−νν(d−c)2)−1][[expIν(c+d2)+f(d)+expIν(c+d2)−f(c)]]−f(c+d2)|≤(ν−1)(d−c)4[exp(−1−νν(d−c)2)−1](∫10|Δ4(t)|pdt)1p[(|f′(c)|q+3|f′(d)|q4)1q+(3|f′(c)|q+|f′(d)|q4)1q]. |
In this work inequalities of Hermite-Hadamard-Mercer type via generalized fractional integrals are obtained. It is also proved that the results in this paper are generalization of the several existing comparable results in literature. As future direction, one may finds some new interesting inequalities through different types of convexities. Our results may stimulate further research in different areas of pure and applied sciences.
We want to give thanks to the Dirección de investigación from Pontificia Universidad Católica del Ecuador for technical support to our research project entitled: "Algunas desigualdades integrales para funciones convexas generalizadas y aplicaciones". This work is partially supported by National Natural Sciences Foundation of China (Grant No. 11971241).
The authors declare that they have no conflict of interest.
[1] |
E. Keller, L. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399–415. https://doi.org/10.1016/0022-5193(70)90092-5 doi: 10.1016/0022-5193(70)90092-5
![]() |
[2] |
T. Ciéslak, M. Winkler, Finite-time blow-up in a quasilinear system of chemotaxis, Nonlinearity, 21 (2008), 1057–1076. https://doi.org/10.1088/0951-7715/21/5/009 doi: 10.1088/0951-7715/21/5/009
![]() |
[3] | D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences I, Jahresber. DMV, 105 (2003), 103–165. |
[4] |
R. Kowalczyk, Preventing blow-up in a chemotaxis model, J. Math. Anal. Appl., 305 (2005), 566–588. https://doi.org/10.1016/j.jmaa.2004.12.009 doi: 10.1016/j.jmaa.2004.12.009
![]() |
[5] | K. Osaki, A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcial. Ekvac., 44 (2001), 441–469. |
[6] |
H. Gajewski, K. Zacharias, Global behavior of a reaction-diffusion system modelling chemotaxis, Math. Nachr., 195 (1998), 77–114. https://doi.org/10.1002/mana.19981950106 doi: 10.1002/mana.19981950106
![]() |
[7] |
D. Horstmann, G. Wang, Blow-up in a chemotaxis model without symmetry assumptions, Eur. J. Appl. Math., 12 (2001), 159–177. https://doi.org/10.1017/S0956792501004363 doi: 10.1017/S0956792501004363
![]() |
[8] | T. Nagai, T. Senba, K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411–433. |
[9] |
T. Senba, T. Suzuki, Parabolic system of chemotaxis: Blowup in a finite and the infinite time, Methods Appl. Anal., 8 (2001), 349–367. https://doi.org/10.4310/MAA.2001.v8.n2.a9 doi: 10.4310/MAA.2001.v8.n2.a9
![]() |
[10] |
M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differ. Equations, 248 (2010), 2889–2905. https://doi.org/10.1016/j.jde.2010.02.008 doi: 10.1016/j.jde.2010.02.008
![]() |
[11] |
M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748–767. https://doi.org/10.1016/j.matpur.2013.01.020 doi: 10.1016/j.matpur.2013.01.020
![]() |
[12] |
D. Liu, Y. Tao, Boundedness in a chemotaxis system with nonlinear signal production, Appl. Math. J. Chin. Univ. Ser. B, 31 (2016), 379–388. https://doi.org/10.1007/s11766-016-3386-z doi: 10.1007/s11766-016-3386-z
![]() |
[13] |
M. Winkler, A critical blow-up exponent in a chemotaxis system with nonlinear signal production, Nonlinearity, 31 (2018), 2031–2056. https://doi.org/10.1088/1361-6544/aaaa0e doi: 10.1088/1361-6544/aaaa0e
![]() |
[14] |
J. I. Tello, M. Winkler, Chemotaxis system with logistic source, Comm. Partial Differ. Equations, 32 (2007), 849–877. https://doi.org/10.1080/03605300701319003 doi: 10.1080/03605300701319003
![]() |
[15] | Z. Wang, T. Xiang, A class of chemotaxis systems with growth source and nonlinear secretion, preprient, arXiv: 1510.07204. |
[16] |
M. Winkler, Chemotaxis with logistic source: very weak global solutions and boundedness properties, J. Math. Anal. Appl., 348 (2008), 708–729. https://doi.org/10.1016/j.jmaa.2008.07.071 doi: 10.1016/j.jmaa.2008.07.071
![]() |
[17] |
G. Viglialoro, Very weak global solutions to a parabolic-parabolic chemotaxis-system with logistic source, J. Math. Anal. Appl., 439 (2016), 197–212. https://doi.org/10.1016/j.jmaa.2016.02.069 doi: 10.1016/j.jmaa.2016.02.069
![]() |
[18] |
M. Winkler, The role of superlinear damping in the construction of solutions to drift-diffusion problems with initial data in L1, Adv. Nonlinear Anal., 9 (2020), 526–566. https://doi.org/10.1515/anona-2020-0013 doi: 10.1515/anona-2020-0013
![]() |
[19] | K. Painter, T. Hillen, Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Q., 10 (2002), 501–543. |
[20] |
M. Winkler, Does a 'volume-filling effect' always prevent chemotactic collapse? Math, Methods Appl. Sci., 33 (2010), 12–24. https://doi.org/10.1002/mma.1146 doi: 10.1002/mma.1146
![]() |
[21] |
Y. Tao, M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differ. Equations, 252 (2012), 692–715. https://doi.org/10.1016/j.jde.2011.08.019 doi: 10.1016/j.jde.2011.08.019
![]() |
[22] |
K. Lin, C. Mu, H. Zhong, A blow-up result for a quasilinear chemotaxis system with logistic source in higher dimensions, J. Math. Anal. Appl., 464 (2018), 435–455. https://doi.org/10.1016/j.jmaa.2018.04.015 doi: 10.1016/j.jmaa.2018.04.015
![]() |
[23] |
X. Cao, Y. Tao, Boundedness and stabilization enforced by mild saturation of taxis in a producer-scrounger model, Nonlinear Anal. Real World Appl., 57 (2021), 103189. https://doi.org/10.1016/j.nonrwa.2020.103189 doi: 10.1016/j.nonrwa.2020.103189
![]() |
[24] |
X. Li, Z. Xiang, Boundedness in quasilinear Keller-Segel equations with nonlinear sensitivity and logistic source, Discrete Contin. Dyn. Syst., 35 (2015), 3503–3531. https://doi.org/10.3934/dcds.2015.35.3503 doi: 10.3934/dcds.2015.35.3503
![]() |
[25] |
L. Wang, C. Mu, P. Zheng, On a quasilinear parabolic-elliptic chemotaxis system with logistic source, J. Differ. Equations, 256 (2014), 1847–1872. https://doi.org/10.1016/j.jde.2013.12.007 doi: 10.1016/j.jde.2013.12.007
![]() |
[26] |
L. Wang, Y. Li, C. Mu, Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source, Discrete Contin. Dyn. Syst., 34 (2014), 789–802. https://doi.org/10.3934/dcds.2014.34.789 doi: 10.3934/dcds.2014.34.789
![]() |
[27] |
Q. Zhang, Y. Li, Boundedness in a quasilinear fully parabolic Keller-Segel system with logistic source, Z. Angew. Math. Phys., 66 (2015), 2473–2484. https://doi.org/10.1007/s00033-015-0532-z doi: 10.1007/s00033-015-0532-z
![]() |
[28] |
C. Wang, L. Zhao, X. Zhu, A blow-up result for attraction-repulsion system with nonlinear signal production and generalized logistic source, J. Math. Anal. Appl., 518 (2023), 126679. https://doi.org/10.1016/j.jmaa.2022.126679 doi: 10.1016/j.jmaa.2022.126679
![]() |
[29] |
C. Wang, Y. Yang, Boundedness criteria for the quasilinear attraction-repulsion chemotaxis system with nonlinear signal production and logistic source, Electron. Res. Arch., 31 (2023), 299–318. https://doi.org/10.3934/era.2023015 doi: 10.3934/era.2023015
![]() |
[30] |
C. Wang, Y. Zhu, X. Zhu, Long time behavior of the solution to a chemotaxis system with nonlinear indirect signal production and logistic source, Electron. J. Qual. Theory Differ. Equations, 11 (2023), 1–21. https://doi.org/10.14232/ejqtde.2023.1.11 doi: 10.14232/ejqtde.2023.1.11
![]() |
[31] |
Y. Tao, M. Winkler, A fully cross-diffusive two-component evolution system: Existence and qualitative analysis via entropy-consistent thin-film-type approximation, J. Funct. Anal., 281 (2021), 109069. https://doi.org/10.1016/j.jfa.2021.109069 doi: 10.1016/j.jfa.2021.109069
![]() |
[32] |
Y. Tao, M. Winkler, Existence theory and qualitative analysis for a fully cross-diffusive predator-prey system, SIAM J. Math. Anal., 54 (2022), 4806–4864. https://doi.org/10.1137/21M1449841 doi: 10.1137/21M1449841
![]() |
[33] |
A. Chakraborty, M. Singh, D. Lucy, P. Ridland, Predator-prey model with prey-taxis and diffusion, Math. Comput. Modell., 46 (2007), 482–498. https://doi.org/10.1016/j.mcm.2006.10.010 doi: 10.1016/j.mcm.2006.10.010
![]() |
[34] |
J. I. Tello, D. Wrzosek, Predator-prey model with diffusion and indirect prey-taxis, Math. Models Methods Appl. Sci., 26 (2016), 2129–2162. https://doi.org/10.1142/s0218202516400108 doi: 10.1142/s0218202516400108
![]() |
[35] |
I. Ahn, C. Yoon, Global solvability of prey-predator models with indirect predator-taxis, Z. Angew. Math. Phys., 72 (2021), 1–20. https://doi.org/10.1007/s00033-020-01461-y doi: 10.1007/s00033-020-01461-y
![]() |
[36] |
H. Jin, Z. Wang, Global dynamics and spatio-temporal patterns of predator-prey systems with density-dependent motion, Eur. J. Appl. Math., 32 (2021), 652–682. https://doi.org/10.1017/s0956792520000248 doi: 10.1017/s0956792520000248
![]() |
[37] |
G. Ren, Y. Shi, Global boundedness and stability of solutions for prey-taxis model with handling and searching predators, Nonlinear Anal. Real World Appl., 60 (2021), 103306. https://doi.org/10.1016/j.nonrwa.2021.103306 doi: 10.1016/j.nonrwa.2021.103306
![]() |
[38] |
T. Goudon, L. Urrutia, Analysis of kinetic and macroscopic models of pursuit-evasion dynamics, Commun. Math. Sci., 14 (2016), 2253–2286. https://doi.org/10.4310/CMS.2016.v14.n8.a7 doi: 10.4310/CMS.2016.v14.n8.a7
![]() |
[39] |
P. Amorim, B. Telch, L. M. Villada, A reaction-diffusion predator-prey model with pursuit, evasion, and nonlocal sensing, Math. Biosci. Eng., 16 (2019), 5114–5145. https://doi.org/10.3934/mbe.2019257 doi: 10.3934/mbe.2019257
![]() |
[40] |
G. Li, Y. Tao, M. Winkler, Large time behavior in a predator-prey system with indirect pursuit-evasion interaction, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 4383. https://doi.org/10.3934/dcdsb.2020102 doi: 10.3934/dcdsb.2020102
![]() |
[41] |
J. Zheng, P. Zhang, Blow-up prevention by logistic source an N-dimensional parabolic-elliptic predator-prey system with indirect pursuit-evasion interaction, J. Math. Anal. Appl., 519(2023), 126741. https://doi.org/10.1016/j.jmaa.2022.126741 doi: 10.1016/j.jmaa.2022.126741
![]() |
[42] |
C. Liu, B. Liu, Boundedness and asymptotic behavior in a predator-prey model with indirect pursuit-evasion interaction, Discrete Contin. Dyn. Syst. Ser. B, 27 (2022), 4855–4874. https://doi.org/10.3934/dcdsb.2021255 doi: 10.3934/dcdsb.2021255
![]() |
[43] |
D. Qi, Y. Ke, Large time behavior in a predator-prey system with indirect pursuit-evasion interaction, Discrete Contin. Dyn. Syst. Ser. B, 27 (2022), 4531–4549. https://doi.org/10.3934/dcdsb.2021240 doi: 10.3934/dcdsb.2021240
![]() |
[44] |
P. Amorim, B. Telch, A chemotaxis predator-prey model with indirect pursuit-evasion dynamics and parabolic signal, J. Math. Anal. Appl., 500 (2021), 125128. https://doi.org/10.1016/j.jmaa.2021.125128 doi: 10.1016/j.jmaa.2021.125128
![]() |
[45] |
B. Telch, Global boundedness in a chemotaxis quasilinear parabolic predator-prey system with pursuit-evasion, Nonlinear Anal. Real World Appl., 59 (2021), 103269. https://doi.org/10.1016/j.nonrwa.2020.103269 doi: 10.1016/j.nonrwa.2020.103269
![]() |
[46] |
B. Telch, A parabolic-quasilinear predator-prey model under pursuit-evasion dynamics, J. Math. Anal. Appl., 514 (2022), 126276. https://doi.org/10.1016/j.jmaa.2022.126276 doi: 10.1016/j.jmaa.2022.126276
![]() |
[47] |
Y. Wang, A quasilinear attraction-repulsion chemotaxis system of parabolic-elliptic type with logistic source, J. Math. Anal. Appl., 441 (2016), 259–292. https://doi.org/10.1016/j.jmaa.2016.03.061 doi: 10.1016/j.jmaa.2016.03.061
![]() |
[48] |
M. Winkler, K. C. Djie, Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect, Nonlinear Anal., 72 (2010), 1044–1064. https://doi.org/10.1016/j.na.2009.07.045 doi: 10.1016/j.na.2009.07.045
![]() |
[49] | L. Nirenberg, On elliptic partial differential equations, Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., Ⅲ. Ser., 13 (1959), 115–162. |
[50] |
H. Brézis, W. A. Strauss, Semi-linear second-order elliptic equations in L1, J. Math. Soc. Jpn., 25 (1973), 565–590. https://doi.org/10.2969/jmsj/02540565 doi: 10.2969/jmsj/02540565
![]() |
1. | Jarunee Soontharanon, Muhammad Aamir Ali, Hüseyin Budak, Pinar Kösem, Kamsing Nonlaopon, Thanin Sitthiwirattham, Behrouz Parsa Moghaddam, Some New Generalized Fractional Newton’s Type Inequalities for Convex Functions, 2022, 2022, 2314-8888, 1, 10.1155/2022/6261970 | |
2. | Sabila Ali, Rana Safdar Ali, Miguel Vivas-Cortez, Shahid Mubeen, Gauhar Rahman, Kottakkaran Sooppy Nisar, Some fractional integral inequalities via h-Godunova-Levin preinvex function, 2022, 7, 2473-6988, 13832, 10.3934/math.2022763 | |
3. | Dafang Zhao, Muhammad Aamir Ali, Chanon Promsakon, Thanin Sitthiwirattham, Some Generalized Fractional Integral Inequalities for Convex Functions with Applications, 2022, 6, 2504-3110, 94, 10.3390/fractalfract6020094 | |
4. | Tariq A. Aljaaidi, Deepak B. Pachpatte, Ram N. Mohapatra, The Hermite–Hadamard–Mercer Type Inequalities via Generalized Proportional Fractional Integral Concerning Another Function, 2022, 2022, 1687-0425, 1, 10.1155/2022/6716830 | |
5. | Miguel Vivas-Cortez, Seth Kermausuor, Juan E. Nápoles Valdés, 2022, Chapter 16, 978-981-19-0667-1, 275, 10.1007/978-981-19-0668-8_16 | |
6. | Hüseyin Budak, Fatma Ertuğral, Muhammad Aamir Ali, Candan Can Bilişik, Mehmet Zeki Sarikaya, Kamsing Nonlaopon, On generalizations of trapezoid and Bullen type inequalities based on generalized fractional integrals, 2023, 8, 2473-6988, 1833, 10.3934/math.2023094 | |
7. | Henok Desalegn Desta, Eze R. Nwaeze, Tadesse Abdi, Jebessa B. Mijena, New Generalized Hermite–Hadamard–Mercer’s Type Inequalities Using (k, ψ)-Proportional Fractional Integral Operator, 2023, 3, 2673-9321, 49, 10.3390/foundations3010005 | |
8. | Muhammad Adil Khan, Saeed Anwar, Sadia Khalid, Zaid Mohammed Mohammed Mahdi Sayed, Erhan Set, Inequalities of the Type Hermite–Hadamard–Jensen–Mercer for Strong Convexity, 2021, 2021, 1563-5147, 1, 10.1155/2021/5386488 | |
9. | Miguel Vivas-Cortez, Muhammad Uzair Awan, Muhammad Zakria Javed, Artion Kashuri, Muhammad Aslam Noor, Khalida Inayat Noor, Some new generalized κ–fractional Hermite–Hadamard–Mercer type integral inequalities and their applications, 2021, 7, 2473-6988, 3203, 10.3934/math.2022177 | |
10. | Muhammad Aamir Ali, Christopher S. Goodrich, Hüseyin Budak, Some new parameterized Newton-type inequalities for differentiable functions via fractional integrals, 2023, 2023, 1029-242X, 10.1186/s13660-023-02953-x | |
11. | Shahid Mubeen, Rana Safdar Ali, Yasser Elmasry, Ebenezer Bonyah, Artion Kashuri, Gauhar Rahman, Çetin Yildiz, A. Hussain, On Novel Fractional Integral and Differential Operators and Their Properties, 2023, 2023, 2314-4785, 1, 10.1155/2023/4165363 | |
12. | Muhammad Aamir Ali, Zhiyue Zhang, Michal Fečkan, GENERALIZATION OF HERMITE–HADAMARD–MERCER AND TRAPEZOID FORMULA TYPE INEQUALITIES INVOLVING THE BETA FUNCTION, 2024, 54, 0035-7596, 10.1216/rmj.2024.54.331 | |
13. | Bandar Bin-Mohsin, Muhammad Zakria Javed, Muhammad Uzair Awan, Awais Gul Khan, Clemente Cesarano, Muhammad Aslam Noor, Exploration of Quantum Milne–Mercer-Type Inequalities with Applications, 2023, 15, 2073-8994, 1096, 10.3390/sym15051096 | |
14. | Iqra Nayab, Shahid Mubeen, Rana Safdar Ali, Faisal Zahoor, Muath Awadalla, Abd Elmotaleb A. M. A. Elamin, Novel fractional inequalities measured by Prabhakar fuzzy fractional operators pertaining to fuzzy convexities and preinvexities, 2024, 9, 2473-6988, 17696, 10.3934/math.2024860 | |
15. | DAFANG ZHAO, MUHAMMAD AAMIR ALI, HÜSEYIN BUDAK, ZAI-YIN HE, SOME BULLEN-TYPE INEQUALITIES FOR GENERALIZED FRACTIONAL INTEGRALS, 2023, 31, 0218-348X, 10.1142/S0218348X23400601 | |
16. | Muhammad Samraiz, Atika Imran, Saima Naheed, Inverse cosine convex functions: Algebraic, geometric, and analytic perspectives, 2024, 0170-4214, 10.1002/mma.10518 | |
17. | Sofia Ramzan, Muhammad Uzair Awan, Miguel Vivas-Cortez, Hüseyin Budak, On Fractional Ostrowski-Mercer-Type Inequalities and Applications, 2023, 15, 2073-8994, 2003, 10.3390/sym15112003 | |
18. | Bandar Bin-Mohsin, Muhammad Zakria Javed, Muhammad Uzair Awan, Hüseyin Budak, Awais Gul Khan, Clemente Cesarano, Muhammad Aslam Noor, Unified inequalities of the q-Trapezium-Jensen-Mercer type that incorporate majorization theory with applications, 2023, 8, 2473-6988, 20841, 10.3934/math.20231062 | |
19. | Miguel Vivas-Cortez, Muhammad Samraiz, Muhammad Tanveer Ghaffar, Saima Naheed, Gauhar Rahman, Yasser Elmasry, Exploration of Hermite–Hadamard-Type Integral Inequalities for Twice Differentiable h-Convex Functions, 2023, 7, 2504-3110, 532, 10.3390/fractalfract7070532 | |
20. | Miguel Vivas-Cortez, Muhammad Uzair Awan, Usama Asif, Muhammad Zakria Javed, Hüseyin Budak, Advances in Ostrowski-Mercer Like Inequalities within Fractal Space, 2023, 7, 2504-3110, 689, 10.3390/fractalfract7090689 | |
21. | Muhammad Samraiz, Saima Naheed, Ayesha Gul, Gauhar Rahman, Miguel Vivas-Cortez, Innovative Interpolating Polynomial Approach to Fractional Integral Inequalities and Real-World Implementations, 2023, 12, 2075-1680, 914, 10.3390/axioms12100914 | |
22. | Jianqiang Xie, Muhammad Aamir Ali, Hüseyin Budak, Michal Fečkan, Thanin Sitthiwirattham, FRACTIONAL HERMITE–HADAMARD INEQUALITY, SIMPSON’S AND OSTROWSKI’S TYPE INEQUALITIES FOR CONVEX FUNCTIONS WITH RESPECT TO A PAIR OF FUNCTIONS, 2023, 53, 0035-7596, 10.1216/rmj.2023.53.611 | |
23. | Muhammad Ali, Hüseyin Budak, Michal Feckan, Nichaphat Patanarapeelert, Thanin Sitthiwirattham, On some Newton’s type inequalities for differentiable convex functions via Riemann-Liouville fractional integrals, 2023, 37, 0354-5180, 3427, 10.2298/FIL2311427A | |
24. | Abdul Mateen, Zhiyue Zhang, Serap Özcan, Muhammad Aamir Ali, Generalization of Hermite–Hadamard, trapezoid, and midpoint Mercer type inequalities for fractional integrals in multiplicative calculus, 2025, 2025, 1687-2770, 10.1186/s13661-025-02008-8 |