Research article Special Issues

Fixed-time synchronization of nonlinear coupled memristive neural networks with time delays via sliding-mode control


  • Received: 13 September 2022 Revised: 17 November 2022 Accepted: 22 November 2022 Published: 07 April 2023
  • This article focuses on achieving fixed-time synchronization (FxTS) of nonlinear coupled memristive neural networks (NCMMN) with time delays. We propose a novel integrable sliding-mode manifold (SMM) and develop two control strategies (chattering or non-chattering) to achieve FxTS. By selecting appropriate parameters, some criteria are established to force the dynamics of NCMMN to reach the designed SMM within a fixed time and remain on it thereafter. Additionally, they provide estimations for the settling time (TST). the validity of our results is demonstrated through several numerical examples.

    Citation: Xingting Geng, Jianwen Feng, Yi Zhao, Na Li, Jingyi Wang. Fixed-time synchronization of nonlinear coupled memristive neural networks with time delays via sliding-mode control[J]. Electronic Research Archive, 2023, 31(6): 3291-3308. doi: 10.3934/era.2023166

    Related Papers:

  • This article focuses on achieving fixed-time synchronization (FxTS) of nonlinear coupled memristive neural networks (NCMMN) with time delays. We propose a novel integrable sliding-mode manifold (SMM) and develop two control strategies (chattering or non-chattering) to achieve FxTS. By selecting appropriate parameters, some criteria are established to force the dynamics of NCMMN to reach the designed SMM within a fixed time and remain on it thereafter. Additionally, they provide estimations for the settling time (TST). the validity of our results is demonstrated through several numerical examples.



    加载中


    [1] L. Chua, Memristor the missing circuit elemen, IEEE Trans. Circuit Theory, 18 (1971), 507–519.
    [2] D. Strukov, G. Snider, D. Stewart, R. Williams, The missing memristor found, Nature, 453 (2008), 80–83. https://doi.org/10.1038/nature06932 doi: 10.1038/nature06932
    [3] W. Lin, G. Chen, Large memory capacity in chaotic artificial neural networks: A view of the anti-integrable limit, IEEE Trans. Neural Netw., 20 (2009), 1340–1351. https://doi.org/10.1109/TNN.2009.2024148 doi: 10.1109/TNN.2009.2024148
    [4] V. Yuriy, D. Massimiliano, Experimental demonstration of associative memory with memristive neural networks, Neural Netw., 23 (2010), 881–886. https://doi.org/10.1016/j.neunet.2010.05.001 doi: 10.1016/j.neunet.2010.05.001
    [5] M. Zhao, Algebraic criteria for reachable set estimation of delayed memristive neural networks, IET Control Theory Appl., 13 (2019), 1736–1743. https://doi.org/10.1049/iet-cta.2018.5959 doi: 10.1049/iet-cta.2018.5959
    [6] S. Adhikari, C. Yang, H. Kim, L. Chua, Memristor bridge synapse-based neural network and its learning, IEEE Trans. Neural Netw. Learn. Syst., 23 (2012) 1426–1435. https://doi.org/10.1109/TNNLS.2012.2204770 doi: 10.1109/TNNLS.2012.2204770
    [7] J. Hu, Y. Yang, H. Liu, Non-fragile set-membership estimation for sensor-saturated memristive neural networks via weighted try-once-discard protocol, IET Control Theory Appl., 14 (2020), 1671–1680. https://doi.org/10.1049/iet-cta.2020.0219 doi: 10.1049/iet-cta.2020.0219
    [8] C. Zhou, C. Wang, W. Yao, H. Lin, Observer-based synchronization of memristive neural networks under DOS attacks and actuator saturation and its application to image encryption, Appl. Math. Comput., 425 (2022), 127080. https://doi.org/10.1016/j.amc.2022.127080 doi: 10.1016/j.amc.2022.127080
    [9] J. Cao, W. Jun, Global asymptotic and robust stability of recurrent neural networks with time delays, IEEE Trans. Circuits-I, 52 (2005), 417–426. https://doi.org/10.1109/TCSI.2004.841574 doi: 10.1109/TCSI.2004.841574
    [10] X. Wang, H. Su, F. Zhang, G. Chen, A robust distributed interval observer for LTI systems, IEEE Trans. Autom. Control, 68 (2023), 1337–1352. https://doi.org/10.1109/TAC.2022.3151586 doi: 10.1109/TAC.2022.3151586
    [11] R. Saber, J. Fax, R. Murray, Consensus and cooperation in networked multi-agent systems, Proc. IEEE, 95 (2007), 215–233. https://doi.org/10.1109/JPROC.2006.887293 doi: 10.1109/JPROC.2006.887293
    [12] X. Wang, X. Wang, H. Su, J. Lam, Reduced-order interval observer based consensus for masswith time-varying interval uncertainties, Automatica, 135 (2022), 109989. https://doi.org/10.1016/j.automatica.2021.109989 doi: 10.1016/j.automatica.2021.109989
    [13] J. Wang, C. Xu, J. Feng, M. Chen, X. Wang, Y. Zhao, Synchronization in moving pulse-coupled oscillator networks, IEEE Trans. Circuits-I, 62 (2015), 2544–2554. https://doi.org/10.1109/TCSI.2015.2477576 doi: 10.1109/TCSI.2015.2477576
    [14] Y. Bao, Y. Zhang, B. Zhang, B. Wang, Resilient fixed-time synchronization of neural networks under DOS attacks, J. Frank. Inst., 360 (2023), 555–573. https://doi.org/10.1016/j.jfranklin.2022.09.038 doi: 10.1016/j.jfranklin.2022.09.038
    [15] W. Yao, C. Wang, Y. Sao, C. Zhou, H. Lin, Exponential multistability of memristive Cohen-Grossberg neural networks with stochastic parameter perturbations, Appl. Math. Comput., 386 (2020), 125483. https://doi.org/10.1016/j.amc.2020.125483 doi: 10.1016/j.amc.2020.125483
    [16] A. Wu, Z. Zeng, Exponential stabilization of memristive neural networks with time delays, IEEE Trans. Neural Netw. Learn. Syst., 23 (2012), 1919–1929. https://doi.org/10.1109/TNNLS.2012.2219554 doi: 10.1109/TNNLS.2012.2219554
    [17] Z. Chao, C. Wang, W. Yao, Quasi-synchronization of stochastic memristive neural networks subject to deception attacks, Nonlinear Dynam., 2022 (2022), 1–20. https://doi.org/10.1007/s11071-022-07925-2 doi: 10.1007/s11071-022-07925-2
    [18] W. Lu, T. Chen, G. Chen, Synchronization analysis of linearly coupled systems described by differential equations with a coupling delay, Physica D, 221 (2006), 118–134. https://doi.org/10.1016/j.physd.2006.07.020 doi: 10.1016/j.physd.2006.07.020
    [19] Z. Guo, J. Wang, Z. Yan, Global exponential synchronization of two memristor-based recurrent neural networks with time delays via static or dynamic coupling, IEEE Trans. Syst. Manand Cybern., 45 (2015), 235–249. https://doi.org/10.1109/TSMC.2014.2343911 doi: 10.1109/TSMC.2014.2343911
    [20] C. Zhou, C. Wang, Y. Sun, W. Yao, H. Lin, Cluster output synchronization for memristive neural networks, Inform. Sciences, 589 (2022), 459–477. https://doi.org/10.1016/j.ins.2021.12.084 doi: 10.1016/j.ins.2021.12.084
    [21] S. Bhat, D. Bernstein, Finite-time stability of homogeneous systems, in Proceedings of the American control conference, (1997), 2513–2514. https://doi.org/10.1109/ACC.1997.609245
    [22] V. Haimo, Finite-time controllers, SIAM J. Control Optim., 24 (1986), 760–770. https://doi.org/10.1137/0324047 doi: 10.1137/0324047
    [23] Y. Hong, J. Huang, Y. Xu, On an output feedback finite-time stabilization problem, IEEE Trans. Autom. Control, 46, (2001), 305–309. https://doi.org/10.1109/9.905699 doi: 10.1109/9.905699
    [24] X. Chen, T. Huang, J. Cao, Finite-time multi-switching sliding mode synchronisation for multiple uncertain complex chaotic systems with network transmission mode, IET Control Theory Appl., 13 (2019), 1246–1257. https://doi.org/10.1049/iet-cta.2018.5661 doi: 10.1049/iet-cta.2018.5661
    [25] L. Wang, Y. Shen, Finite-time stabilizability and instabilizability of delayed memristive neural networks with nonlinear discontinuous controller, IEEE Trans. Neur. Netw. Learn. Syst., 26 (2015), 2914–2924. https://doi.org/10.1109/TNNLS.2015.2460239 doi: 10.1109/TNNLS.2015.2460239
    [26] Z. Tang, J. Park, H. Bao, Finite-time cluster synchronization of discontinuous Lur'e networks via pinning control, in 2016 35th Chinese Control Conference (CCC), (2016), 7206–7210. https://doi.org/10.1109/ChiCC.2016.7554497
    [27] E. Cruz-Zavala, J. Moreno, L. Fridman, Uniform robust exact differentiator, IEEE Trans. Autom. Control, 56 (2011), 2727–2733. https://doi.org/10.1109/TAC.2011.2160030 doi: 10.1109/TAC.2011.2160030
    [28] J. Mishra, C. Li, M. Jalili, X. Yu, Robust second-order consensus using a fixed-time convergent sliding surface in multiagent systems, IEEE Trans. Cybern., 50 (2020), 846–855. https://doi.org/10.1109/TCYB.2018.2875362 doi: 10.1109/TCYB.2018.2875362
    [29] X. Liu, T. Chen, Finite-time and fixed-time cluster synchronization with or without pinning control, IEEE Trans. Cybern., 48 (2018), 240–252. https://doi.org/10.1109/TCYB.2016.2630703 doi: 10.1109/TCYB.2016.2630703
    [30] X. Yang, J. Lam, D. Ho, Fixed-time synchronization of complex networks with impulsive effects via nonchattering control, IEEE Trans. Autom. Control, 62 (2017), 5511–5521. https://doi.org/10.1109/TAC.2017.2691303 doi: 10.1109/TAC.2017.2691303
    [31] J. Cai, J. Feng, J. Wang, Y. Zhao, Tracking consensus of multi-agent systems under switching topologies via novel SMC: An event-triggered approach, IEEE Trans. Netw. Sci. Eng., 9 (2022), 2150–2163. https://doi.org/10.1109/TNSE.2022.3155405 doi: 10.1109/TNSE.2022.3155405
    [32] X. Liu, X. Su, P. Shi, C. Shen, Observer-based sliding mode control for uncertain fuzzy systems via event-triggered strategy, IEEE Trans. Fuzzy Syst., 27 (2019), 2190–2201. https://doi.org/10.1109/TFUZZ.2019.2895804 doi: 10.1109/TFUZZ.2019.2895804
    [33] Y. Bao, Y. Zhang, B. Zhang, Fixed-time synchronization of coupled memristive neural networks via event-triggered control, Appl. Math. Comput., 411 (2021), 126542. https://doi.org/10.1016/j.amc.2021.126542 doi: 10.1016/j.amc.2021.126542
    [34] Y. Bao, Y. Zhang, Fixed-time dual-channel event-triggered secure quasi-synchronization of coupled memristive neural networks, J. Frank. Inst., 358 (2021), 10052–10078. https://doi.org/10.1016/j.jfranklin.2021.10.023 doi: 10.1016/j.jfranklin.2021.10.023
    [35] M. Corradini, A. Cristofaro, Nonsingular terminal sliding-mode control of nonlinear planar systems with global fixed-time stability guarantees, Automatica, 95 (2018), 561–565. https://doi.org/10.1016/j.automatica.2018.06.032 doi: 10.1016/j.automatica.2018.06.032
    [36] Z. Wang, H. Wu, Projective synchronization in fixed time for complex dynamical networks with nonidentical nodes via second-order sliding mode control strategy, J. Frankl. Inst., 355 (2018), 7306–7334. https://doi.org/10.1016/j.jfranklin.2018.07.018 doi: 10.1016/j.jfranklin.2018.07.018
    [37] L. Wang, Z. Zeng, M. Ge, A disturbance rejection framework for finite-time and fixed-time stabilization of delayed memristive neural networks, IEEE Trans. Syst., Man, Cybern., Syst., 51 (2021), 905–915. https://doi.org/10.1109/TSMC.2018.2888867 doi: 10.1109/TSMC.2018.2888867
    [38] C. Hu, H. He, H. Jiang, Fixed/preassigned-time synchronization of complex networks via improving fixed-time stability, IEEE Trans. Cybern., 51 (2021), 2882–2892. https://doi.org/10.1109/TCYB.2020.2977934 doi: 10.1109/TCYB.2020.2977934
    [39] N. Li, X. Wu, J. Feng, Y. Xu, J. Lu, Fixed-time synchronization of coupled neural networks with discontinuous activation and mismatched parameters, IEEE Trans. Neural Netw. Learn. Syst., 32 (2021), 2470–2482. https://doi.org/10.1109/TNNLS.2020.3005945 doi: 10.1109/TNNLS.2020.3005945
    [40] Z. Guo, S. Yang, J. Wang, Global exponential synchronization of multiple memristive neural networks with time delay via nonlinear coupling, IEEE Trans. Neural Netw. Learn. Syst., 26 (2015), 1300–1311. https://doi.org/10.1109/TNNLS.2014.2354432 doi: 10.1109/TNNLS.2014.2354432
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1178) PDF downloads(95) Cited by(0)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog