A second order alternating direction implicit scheme for time-dependent Riesz space distributed-order advection-dispersion equations is applied to higher dimensions with the Tensor-Train decomposition technique. The solutions are solved in compressed format, the Tensor-Train format, and the errors accumulated due to compressions are analyzed to ensure convergence. Problems with low-rank data are tested, the results illustrated a steeper growth in the ranks of the numerical solutions than that in related works.
Citation: Lot-Kei Chou, Siu-Long Lei. High dimensional Riesz space distributed-order advection-dispersion equations with ADI scheme in compression format[J]. Electronic Research Archive, 2022, 30(4): 1463-1476. doi: 10.3934/era.2022077
A second order alternating direction implicit scheme for time-dependent Riesz space distributed-order advection-dispersion equations is applied to higher dimensions with the Tensor-Train decomposition technique. The solutions are solved in compressed format, the Tensor-Train format, and the errors accumulated due to compressions are analyzed to ensure convergence. Problems with low-rank data are tested, the results illustrated a steeper growth in the ranks of the numerical solutions than that in related works.
[1] | A. V. Chechkin, J. Klafter, I. M. Sokolov, Fractional Fokker-Planck equation for ultraslow kinetics, Europhys. Lett., 63 (2003), 326–332. https://doi.org/10.1209/epl/i2003-00539-0 doi: 10.1209/epl/i2003-00539-0 |
[2] | Y. G. Sinai, The limiting behavior of a one-dimensional random walk in a random medium, Theory Probab. Appl., 27 (1983), 256–268. https://doi.org/10.1137/1127028 doi: 10.1137/1127028 |
[3] | M. M. Meerschaert, E. Nane, P. Vellaisamy, Distributed-order fractional diffusions on bounded domains, J. Math. Anal. Appl., 379 (2011), 216–228. https://doi.org/10.1016/j.jmaa.2010.12.056 doi: 10.1016/j.jmaa.2010.12.056 |
[4] | M. Caputo, Distributed order differential equations modelling dielectric induction and diffusion, Fract. Calc. Appl. Anal., 4 (2001), 421–442. |
[5] | X. Hu, F. Liu, V. Anh, I. Turner, A numerical investigation of the time distributed-order diffusion model, Anziam J., 5 (2014), C464–C478. https://doi.org/10.21914/anziamj.v55i0.7888 doi: 10.21914/anziamj.v55i0.7888 |
[6] | J. Jia, H. Wang, A fast finite difference method for distributed-order space-fractional partial differential equations on convex domains, Comput. Math. Appl., 75 (2018), 2031–2043. https://doi.org/10.1016/j.camwa.2017.09.003 doi: 10.1016/j.camwa.2017.09.003 |
[7] | W. Fan, F. Liu, A numerical method for solving the two-dimensional distributed order space-fractional diffusion equation on an irregular convex domain, Appl. Math. Lett., 77 (2018), 114–121. https://doi.org/10.1016/j.aml.2017.10.005 doi: 10.1016/j.aml.2017.10.005 |
[8] | X. Wang, F. Liu, X. Chen, Novel second-order accurate implicit numerical methods for the Riesz space distributed-order advection-dispersion equations, Adv. Math. Phys., 2015 (2015), 1–14. https://doi.org/10.1155/2015/590435 doi: 10.1155/2015/590435 |
[9] | I. Oseledets, Tensor-train decomposition, SIAM J. Sci. Comput., 33 (2011), 2295–2317. https://doi.org/10.1137/090752286 doi: 10.1137/090752286 |
[10] | D. Bertaccini, F. Durastante, Block structured preconditioners in tensor form for the all-at-once solution of a finite volume fractional diffusion equation, Appl. Math. Lett., 95 (2019), 92–97. https://doi.org/10.1016/j.aml.2019.03.028 doi: 10.1016/j.aml.2019.03.028 |
[11] | T. Breiten, V. Simoncini, M. Stoll, Low-rank solvers for fractional differential equations, Electron. Trans. Numer. Anal., 45 (2016), 107–132. https://doi.org/10.17617/2.2270973 doi: 10.17617/2.2270973 |
[12] | S. Dolgov, J. Pearson, D. Savostyanov, M. Stoll, Fast tensor product solvers for optimization problems with fractional differential equations as constraints, Appl. Math. Comput., 273 (2016), 604–623. https://doi.org/10.1016/j.amc.2015.09.042 doi: 10.1016/j.amc.2015.09.042 |
[13] | I. Oseledets, E. Tyrtyshnikov, N. Zamarashkin, Tensor-train ranks for matrices and their inverses, Comput. Methods Appl. Math., 11 (2011), 394–403. https://doi.org/10.2478/cmam-2011-0022 doi: 10.2478/cmam-2011-0022 |
[14] | V. Kazeev, B. Khoromskij, E. Tyrtyshnikov, Multilevel Toeplitz matrices generated by tensor-structured vectors and convolution with logarithmic complexity, SIAM J. Sci. Comput., 35 (2013), A1511–A1536. https://doi.org/10.1137/110844830 doi: 10.1137/110844830 |
[15] | L. Chou, S. Lei, Tensor-train format solution with preconditioned iterative method for high dimensional time-dependent space-fractional diffusion equations with error analysis, J. Sci. Comput., 80 (2019), 1731–1763. https://doi.org/10.1007/s10915-019-00994-3 doi: 10.1007/s10915-019-00994-3 |
[16] | L. Chou, S. Lei, Finite volume approximation with ADI scheme and low-rank solver for high dimensional spatial distributed-order fractional diffusion equations, Comput. Math. Appl., 89 (2021), 116–126. https://doi.org/10.1016/j.camwa.2021.02.014 doi: 10.1016/j.camwa.2021.02.014 |
[17] | W. Deng, B. Li, W. Tian, P. Zhang, Boundary problems for the fractional and tempered fractional operators, Multiscale Model. Simul., 16 (2018), 125–149. https://doi.org/10.1137/17M1116222 doi: 10.1137/17M1116222 |
[18] | C. Çelik, M. Duman, Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative, J. Comput. Phys., 231 (2012), 1743–1750. https://doi.org/10.1016/j.jcp.2011.11.008 doi: 10.1016/j.jcp.2011.11.008 |
[19] | I. Gohberg, V. Olshevsky, Circulants, displacements and decompositions of matrices, Integr. Equat. Oper. Theory, 15 (1992), 730–743. https://doi.org/10.1007/bf01200697 doi: 10.1007/bf01200697 |
[20] | R. Chan, M. Ng, Conjugate gradient methods for Toeplitz systems, SIAM Rev., 38 (1996), 427–482. https://doi.org/10.1137/S0036144594276474 doi: 10.1137/S0036144594276474 |