Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Research article Special Issues

Empirical assessment of drivers of electricity prices in East Africa: Panel data experience of Rwanda, Uganda, Tanzania, Burundi, and Kenya

  • Sustainable electricity supply plays a key role in economic development. Cost recovery, profitability and affordability of electricity through power tariff regulation, have become a subject of conflict between private providers and regulators. Consequently, regulators need to balance the interests of all stakeholders. The objective of this study, is to measure to which extent, Electricity Net Consumption (EC), Electricity Net Generation (EG), electricity transmission and distribution losses (Losses), International Average Crude oil prices (FP), Consumer Price Index (CPI), Industry Value Added (IVA) could influence the Average Electricity Prices (EP) in East Africa, especially in Rwanda, Uganda, Tanzania, Burundi, and Kenya. The data are from World Bank Indicators and cover the period from 2000 to 2019. This study adopts a three-stage approach, consisting of panel unit root tests, panel cointegration tests and estimating the long run cointegration relationship of the variables in a panel context. We applied four different panel unit root tests including ADF-Fisher Chi-square, Levin, Lin and Chu (LLC); PP-Fisher Chi-square, and Im, Pesaran, and Shin, (IPS). The results reveal that the variables are non-stationary at "level", stationary at first-differences and integrated with order one denoted as I(1). The Pedroni, Kao and Johansen Fisher co-integration tests were performed. This study uses full modified ordinary least squares (FMOLS) and dynamic ordinary least squares (DOLS) to estimate the long run relationship among the variables. We find that the increase in EG, FP, and CPI increase the Average Electricity Prices (EP); while the increase in Losses, EC, and IVA decreases EP. Therefore, we recommend the promotion of long-term investment policies in renewable sources and efficient policies to reduce technical and commercial losses. In addition, this study suggests that appropriate policies related to subsidized electricity prices would, however, prevent adverse effects related to inefficient over-consumption of electricity.

    Citation: Mburamatare Daniel, William K. Gboney, Hakizimana Jean de Dieu, Akumuntu Joseph, Fidele Mutemberezi. Empirical assessment of drivers of electricity prices in East Africa: Panel data experience of Rwanda, Uganda, Tanzania, Burundi, and Kenya[J]. AIMS Energy, 2023, 11(1): 1-30. doi: 10.3934/energy.2023001

    Related Papers:

    [1] Shumoua F. Alrzqi, Fatimah A. Alrawajeh, Hany N. Hassan . An efficient numerical technique for investigating the generalized Rosenau–KDV–RLW equation by using the Fourier spectral method. AIMS Mathematics, 2024, 9(4): 8661-8688. doi: 10.3934/math.2024420
    [2] Xiaoli Wang, Lizhen Wang . Traveling wave solutions of conformable time fractional Burgers type equations. AIMS Mathematics, 2021, 6(7): 7266-7284. doi: 10.3934/math.2021426
    [3] Zhengang Zhao, Yunying Zheng, Xianglin Zeng . Finite element approximation of fractional hyperbolic integro-differential equation. AIMS Mathematics, 2022, 7(8): 15348-15369. doi: 10.3934/math.2022841
    [4] Ailing Zhu, Yixin Wang, Qiang Xu . A weak Galerkin finite element approximation of two-dimensional sub-diffusion equation with time-fractional derivative. AIMS Mathematics, 2020, 5(5): 4297-4310. doi: 10.3934/math.2020274
    [5] Jian-Gen Liu, Jian Zhang . A new approximate method to the time fractional damped Burger equation. AIMS Mathematics, 2023, 8(6): 13317-13324. doi: 10.3934/math.2023674
    [6] Weiwen Wan, Rong An . Convergence analysis of Euler and BDF2 grad-div stabilization methods for the time-dependent penetrative convection model. AIMS Mathematics, 2024, 9(1): 453-480. doi: 10.3934/math.2024025
    [7] Shanhao Yuan, Yanqin Liu, Yibin Xu, Qiuping Li, Chao Guo, Yanfeng Shen . Gradient-enhanced fractional physics-informed neural networks for solving forward and inverse problems of the multiterm time-fractional Burger-type equation. AIMS Mathematics, 2024, 9(10): 27418-27437. doi: 10.3934/math.20241332
    [8] Xin Zhao, Xin Liu, Jian Li . Convergence analysis and error estimate of finite element method of a nonlinear fluid-structure interaction problem. AIMS Mathematics, 2020, 5(5): 5240-5260. doi: 10.3934/math.2020337
    [9] Zhichao Fang, Ruixia Du, Hong Li, Yang Liu . A two-grid mixed finite volume element method for nonlinear time fractional reaction-diffusion equations. AIMS Mathematics, 2022, 7(2): 1941-1970. doi: 10.3934/math.2022112
    [10] Muhammad Asim Khan, Norma Alias, Umair Ali . A new fourth-order grouping iterative method for the time fractional sub-diffusion equation having a weak singularity at initial time. AIMS Mathematics, 2023, 8(6): 13725-13746. doi: 10.3934/math.2023697
  • Sustainable electricity supply plays a key role in economic development. Cost recovery, profitability and affordability of electricity through power tariff regulation, have become a subject of conflict between private providers and regulators. Consequently, regulators need to balance the interests of all stakeholders. The objective of this study, is to measure to which extent, Electricity Net Consumption (EC), Electricity Net Generation (EG), electricity transmission and distribution losses (Losses), International Average Crude oil prices (FP), Consumer Price Index (CPI), Industry Value Added (IVA) could influence the Average Electricity Prices (EP) in East Africa, especially in Rwanda, Uganda, Tanzania, Burundi, and Kenya. The data are from World Bank Indicators and cover the period from 2000 to 2019. This study adopts a three-stage approach, consisting of panel unit root tests, panel cointegration tests and estimating the long run cointegration relationship of the variables in a panel context. We applied four different panel unit root tests including ADF-Fisher Chi-square, Levin, Lin and Chu (LLC); PP-Fisher Chi-square, and Im, Pesaran, and Shin, (IPS). The results reveal that the variables are non-stationary at "level", stationary at first-differences and integrated with order one denoted as I(1). The Pedroni, Kao and Johansen Fisher co-integration tests were performed. This study uses full modified ordinary least squares (FMOLS) and dynamic ordinary least squares (DOLS) to estimate the long run relationship among the variables. We find that the increase in EG, FP, and CPI increase the Average Electricity Prices (EP); while the increase in Losses, EC, and IVA decreases EP. Therefore, we recommend the promotion of long-term investment policies in renewable sources and efficient policies to reduce technical and commercial losses. In addition, this study suggests that appropriate policies related to subsidized electricity prices would, however, prevent adverse effects related to inefficient over-consumption of electricity.



    In this article, we consider the following time-fractional generalized Rosenau-RLW-Burgers equation:

    utC0Dαtuxx+C0Dβtuxxxx+uxuxx+f(u)x=g(x,t), (x,t)Ω×J, (1.1)

    with boundary conditions

    u(x,t)=uxx(x,t)=0, (x,t)Ω×ˉJ, (1.2)

    and initial condition

    u(x,0)=u0(x), xΩ, (1.3)

    where Ω=(a,b) is the spatial domain, J=(0,T] is the time interval with T(0,), and g(x,t) is a known source term function. The nonlinear term f(u) satisfies the assumption condition |f(u)|cf(u)|u|, where cf(u) is a positive constant on u. C0Dαtu and C0Dβtu are both Caputo fractional derivatives with 0<α,β<1. Since C0Dγtu=γ(uu0)tγ, all of the above Caputo fractional derivatives can be converted into the Riemann-Liouville fractional derivative, note that

    γutγ=1Γ(1γ)tt0u(x,s)(ts)γds,0<γ<1. (1.4)

    Specifically, when α=1, β=1, (1.1) degenerates into the generalized Rosenau-RLW-Burgers equation which can be seen as the combined system between the generalized Rosenau-RLW equation and the generalized Rosenau-Burgers equation.

    The RLW equation, the Rosenau equation, and their combined systems with other equations are significant mathematical and physical equations that effectively describe nonlinear wave behaviors. These equations have become interesting topics in the study of nonlinear dispersion dynamics. Since obtaining analytical solutions for these equations is challenging, studying their numerical methods is paramount. Over the years, there has been extensive research on numerical methods for solving this type of equation. In [1], Atouani and Omrani discussed the numerical solution of the Rosenau-RLW (RRLW) equation based on the Galerkin finite element method. In [2], He and Pan developed a three-level, linearly implicit finite difference method for solving the generalized Rosenau-Kawahara-RLW equation. In [3], Wongsaijai and Poochinapan developed a pseudo-compact finite difference scheme for solving the generalized Rosenau-RLW-Burgers equation. In [4], Mouktonglang et al. analyzed a generalized Rosenau-RLW-Burgers equation with periodic initial-boundary value. For more papers on related equations, please refer to [5,6,7,8]. It is worth noting that the literature on the fractional generalized Rosenau-RLW-Burgers equation is relatively scarce, and its analytical solution is difficult to obtain. Therefore, we have to consider effective numerical methods such as finite element methods [9,10,11,12], finite difference methods [13,14,15], finite volume methods [16], spectral methods [17,18,19], and mixed finite element methods [20,21,22]. In addition, the existence of time-fractional derivatives increases the difficulty of studying numerical methods. Therefore, it is crucial to choose an appropriate high-order approximation formula for the fractional derivative to establish a stable numerical scheme for (1.1).

    In 1986, Lubich [23] proposed the convolution quadrature (CQ) formula for Riemann Liouville fractional operators using the discrete convolution. In [24], Chen et al. developed an alternating direction implicit fractional trapezoidal rule type to solve a two-dimensional fractional evolution equation. In [25], Jin et al. proposed a corrected approximation formula for high-order BDFs through appropriate initial modifications to discretize fractional evolution equations. Based on the CQ formula, in [26], Liu et al. developed the shifted convolution quadrature (SCQ) theory, which extended the CQ formula at xnθ and discussed the constraints of parameter θ. In [27], Yin et al. studied the generalized BDF2-θ with the finite element method for solving the fractional mobile/immobile transport model, and also developed a correction scheme by adding the starting part to restore convergence order. For more related papers, please refer to [28,29,30,31,32,33].

    In this article, we develop the generalized BDF2-θ in time combined with the mixed finite element method in space to solve (1.1). The focuses of this article are as follows:

    ● It is noted that the time-fractional generalized Rosenau-RLW-Burgers equation containing two time-fractional operators is studied.

    ● The stability of the time-fractional generalized Rosenau-RLW-Burgers equation (1.1) based on the mixed finite element method is given.

    ● Based on a comprehensive analysis of some numerical examples, the numerical method's feasibility and effectiveness have been extensively validated. Specifically, the issue of decreasing the convergence rate of nonsmooth solutions is solved by adding correction terms.

    The structure of this article is as follows: In Section 2, the generalized BDF2-θ is introduced, and the fully discrete mixed finite element scheme is provided. In Section 3, the existence and uniqueness theorem for the fully discrete mixed finite element scheme is given. In Section 4, the stability of the scheme is proved. In Section 5, some numerical examples with smooth and nonsmooth solutions based on the discrete scheme are presented. In Section 6, some conclusions are given.

    In this section, we present the fully discrete mixed finite element scheme for (1.1) in space, which combines the generalized BDF2-θ in time. The generalized BDF2-θ with the starting part is introduced in [27]. Further, we divide the time interval [0,T] into 0=t0<t1<<tN1<tN=T, and let tn=nτ(n=1,2,,N), where τ is time step length size and N is a positive integer.

    For the convenience of research, set ˆu:=uu0, and assume that ˆu has the following form:

    ˆu(x,t)=ˆu1(x,t)+ˆu2(x,t):=κj=1cjtσj+tσκ+1ϕ(x,t), (2.1)

    where cj=c(x), 1<σ1<σ2<<σκ<σκ+1 and ϕ(x,t) is sufficiently differentiable with respect to t.

    Using ˆu:=uu0, we can write (1.1)–(1.3) as

    ˆutαˆuxxtα+βˆuxxxxtβ+ˆuxˆuxx+f(ˆu)x=ˆg(x,t),(x,t)Ω×J, (2.2)

    with boundary conditions

    ˆu(x,t)=ˆuxx(x,t)=0,(x,t)Ω×ˉJ, (2.3)

    and initial condition

    ˆu(x,0)=0,xΩ, (2.4)

    where ˆg(x,t)=g(x,t)+(u0)x(u0)xx.

    Now, we introduce an auxiliary variable q=ˆuxx to obtain the following coupled system:

    ˆutαˆuxxtα+βqxxtβ+ˆuxˆuxx+f(ˆu)x=ˆg(x,t), (2.5)

    and

    q=ˆuxx. (2.6)

    Multiplying (2.5) and (2.6) by vH10 and wH10, respectively, integrating the result equations, and using integration by parts, we obtain the following weak form:

    (ˆut,v)+(αˆuxtα,vx)(βqxtβ,vx)(ˆu,vx)+(ˆux,vx)(f(ˆu),vx)=(ˆg,v),vH10, (2.7)

    and

    (q,w)+(ˆux,wx)=0,wH10. (2.8)

    To provide the fully discrete numerical scheme, we first introduce the relevant formulas and lemmas for the generalized BDF2-θ.

    For smooth functions ˆu and q in [0,T], we let ˆun=ˆu(,tn), qn=(,tn). The approximation formula for the Riemann-Liouville fractional derivative at time tnθ with the generalized BDF2-θ is

    γˆunθtγ=τγnj=0ω(γ)jˆunj+τγκj=1ω(γ)n,jˆuj+Rnθγ:=Ψγ,nτˆu+Sγ,nτ,κˆu+Rnθγ, (2.9)

    where |Rnθγ|Cτ2.

    The discrete convolution part is denoted as

    Ψγ,nτˆu:=τγnj=0ω(γ)jˆunj, (2.10)

    and the starting part is

    Sγ,nτ,κˆu:=τγκj=1ω(γ)n,jˆuj. (2.11)

    The convolution weights {ω(γ)j}j=0 in (2.10) are generated by the following generating function:

    ω(γ)(ξ)=(3γ2θ2γ2γ2θγξ+γ2θ2γξ2)γ. (2.12)

    Lemma 2.1. [27] We give the convolution weights {ω(γ)j}j=0 of the generalized BDF2-θ as follows:

    ω(γ)0=(3γ2θ2γ)γ,ω(γ)1=2(θγ)(2γ3γ2θ)1γ,ω(γ)j=2γj(3γ2θ)[2(γθ)(j1γ1)ω(γ)j1+(γ2θ)(1j22γ)ω(γ)j2],j2. (2.13)

    Lemma 2.2. [27] The starting weights {ω(γ)n,j}κj=1 of the generalized BDF2-θ are given as the following:

    κj=1ω(γ)n,jj=Γ(+1)Γ(γ+1)(nθ)γnj=1ω(γ)njj,=σ1,σ2,,σκ. (2.14)

    Lemma 2.3. [12,15] For ˆuC4[0,π], the following two approximate formulas at tnθ hold:

    g(tnθ)=gnθ+O(τ2),f(ˆu(tnθ))=f(ˆunθ)+O(τ2), (2.15)

    where gnθ:=(1θ)gn+θgn1 and f(ˆunθ):=(2θ)f(ˆun1)(1θ)f(ˆun2).

    Next, we have the following approximate formula:

    ˆu(tnθ)=ˆunθ+S0,nτ,κˆu+O(τ2):=(1θ)ˆun+θˆun1+S0,nτ,κˆu+O(τ2). (2.16)

    Without considering the starting part, we can obtain the weak form of (2.5) and (2.6) at tnθ:

    (Ψ1,nτˆu,v)+(Ψα,nτˆux,vx)(Ψβ,nτqx,vx)(ˆunθ,vx)+(ˆunθx,vx)=(f(ˆunθ),vx)+(ˆgnθ,v)(Rnθ1,v), (2.17)

    and

    (qnθ,w)+(ˆunθx,wx)=(Rnθ2,w), (2.18)

    where Rnθ1=O(τ2) and Rnθ2=O(τ2).

    To establish the fully discrete mixed finite element scheme, we introduce the following finite element space:

    Vh={vh|vhH10,vh|IiPk(Ii),IiTh,k1},

    where Th is a subdivision of ˉΩ=[a,b] into M subintervals Ii=[xi1,xi], with hi=xixi1, h=max1iMhi, and Pk(Ii) represent the polynomials with a degree less than or equal to k in Ii.

    Next, we provide linear basis functions {φi}Mi=1 of finite element space Vh as follows:

    φi(x)={1+xxihi,xIi,1xxihi+1,xIi+1,0,others, (2.19)
    φM(x)={1+xxMhM,xIM,0,others. (2.20)

    Based on the above finite element space, we find {Unθ,Qnθ}Vh×Vh satisfying

    (Ψ1,nτU,V)+(Ψα,nτUx,Vx)(Ψβ,nτQx,Vx)(Unθ,Vx)+(Unθx,Vx)=(f(Unθ),Vx)+(ˆgnθ,V),VVh, (2.21)

    and

    (Qnθ,W)+(Unθx,Wx)=0,WVh. (2.22)

    Theorem 3.1. The solution of the fully discrete mixed finite element scheme (2.21) and (2.22) is uniquely solvable.

    Proof. Taking basis functions {φi}Mi=1 of finite element space Vh, we have

    Un=Mi=1uniφi,Qn=Mi=1qniφi. (3.1)

    Taking V=φj and W=φj from (2.21) and (2.22), we have

    τ1ω(1)0AUn+ταω(α)0BUn+(1θ)BUn(1θ)CUnτβω(β)0BQn=Fnθ+Gnθτ1nk=1ω(1)kAUnkταnk=1ω(α)kBUnkθBUn1+θCUn1+τβnk=1ω(β)kBQnk, (3.2)

    and

    (1θ)BUn+(1θ)AQn=θBUnθAQn, (3.3)

    where

    A=[(φi,φj)]T1i,jM,B=[(φix,φjx)]T1i,jM,C=[(φi,φjx)]T1i,jM,Fnθ=[(f(Unθ),φ1x),,(f(Unθ),φMx)]T,Gnθ=[(gnθ,φ1),,(gnθ,φM)]T.

    Obviously, A and B are symmetric and positive definite. Further, processing the boundary and simplifying the right-hand term, we have

    (τ1ω(1)0˜A+ταω(α)0˜B+(1θ)˜B(1θ)˜C)Unτβω(β)0˜BQn=Hn1, (3.4)

    and

    (1θ)˜BUn+(1θ)˜AQn=Hn2, (3.5)

    where

    Hn1=Fnθ+Gnθτ1nk=1ω(1)kAUnkταnk=1ω(α)kBUnkθBUn1+θCUn1+τβnk=1ω(β)kBQnk,Hn2=θBUnθAQn.

    Multiplying (3.4) by τ˜A1, we have

    (ω(1)0E+τ1αω(α)0˜A1˜B+τ(1θ)˜A1˜Bτ(1θ)˜A1˜C)Unτ1βω(β)0˜A1˜BQn=τ˜A1Hn1. (3.6)

    Further, rewrite (3.5) as

    Qn=Hn3, (3.7)

    where Hn3=(1θ)1˜A1Hn2˜A1˜BUn.

    Substitute (3.7) into (3.6) to obtain

    KUn=Hn4, (3.8)

    where

    K=ω(1)0E+τ1αω(α)0˜A1˜B+τ(1θ)˜A1˜Bτ(1θ)˜A1˜C+τ1βω(β)0˜A1˜B˜A1˜B,
    Hn4=τ˜A1Hn1+τ1β(1θ)1ω(β)0˜A1˜B˜A1Hn2.

    It is easy to see that (3.7) and (3.8) are equivalent to (3.4) and (3.5). Due to τ being small enough and E being an identity matrix, the matrix K is invertible. Additionally, since Uk(k=0,1,,n1) is known, after multiple iterations, (3.7) and (3.8) have a unique solution.

    Remark 3.1. Since we introduce the auxiliary variable q=ˆuxx to transform (2.2) into a first-order system (2.5) and (2.6), according to [34,35], the mixed finite element scheme (2.21) and (2.22) do not need to satisfy the LBB condition. In [36], the LBB condition is a condition for the problem to be well posed. From this perspective, typically satisfying the LBB condition is to obtain the existence and uniqueness of a solution. Although the mixed finite element scheme in this article does not need to satisfy the LBB condition, it still satisfies the existence and uniqueness of a solution.

    Lemma 4.1. [12,14] For UmVh, satisfying Um=0(m<0), we have

    (Ψ1,mtU,Umθ)14τ(H[Um]H[Um1]), m1,

    where

    H[Um]=(32θ)

    and

    \mathbb{H}[U^m]\ge\frac{1}{1-\theta}\|U^m\|^2,\ m\ge1.

    Lemma 4.2. [27] } {For any vector (v^0, v^1, \cdots, v^{n-1})\in \mathbb{R}^n , defining \{\omega_k^{(\gamma)}\}_{k = 0}^{\infty}\; (0 < \gamma < 1) be a sequence of coefficients of the generating function \omega^{(\gamma)}(\xi) in (2.12) and 0\le\theta\le\min\{\gamma, \frac{1}{2}\} , we have

    \sum\limits_{m = 1}^{n-1}v^m\sum\limits_{k = 1}^{m}\omega_{m-k}^{(\gamma)} v^k\ge0,\ n\ge1.

    Theorem 4.1. Let u^n_h = U^n+\bar{u}_h^0 , where \bar{u}_h^0 is an approximation of u_0 , the following stability of the fully discrete scheme (2.21) and (2.22) holds:

    \begin{equation} \|u_h^L\|^2\ \le\ C\left(\|\bar{u}_h^0 \|^2+\tau\sum\limits_{n = 1}^{L}\|g^{n-\theta} \|^2\right),\ 1\le L \le N, \end{equation} (4.1)

    where C is a positive constant independent of h and \tau .

    Proof. Taking V = U^{n-\theta} , W = \Psi_{\tau}^{\beta, n}Q , (2.21) and (2.22) can be written as

    \begin{equation} \begin{split} &(\Psi_{\tau}^{1,n} U,U^{n-\theta})+(\Psi_{\tau}^{\alpha,n} U_{x},U^{n-\theta}_x)-(\Psi_{\tau}^{\beta,n}Q_{x},U^{n-\theta}_x)+\|U_{x}^{n-\theta }\|^2\\ = &(U^{n-\theta},U^{n-\theta}_x)+(f(U^{n-\theta}),U^{n-\theta}_x)+(\hat{g}^{n-\theta},U^{n-\theta}), \end{split} \end{equation} (4.2)

    and

    \begin{equation} (Q^{n-\theta},\Psi_{\tau}^{\beta,n}Q)+(U^{n-\theta}_{x},\Psi_{\tau}^{\beta,n}Q_x) = 0. \end{equation} (4.3)

    Adding (4.2) and (4.3), we have

    \begin{equation} \begin{split} &(\Psi_{\tau}^{1,n} U,U^{n-\theta})+(\Psi_{\tau}^{\alpha,n} U_{x},U^{n-\theta}_x)+(Q^{n-\theta},\Psi_{\tau}^{\beta,n}Q)+\|U_{x}^{n-\theta }\|^2\\ = &(U^{n-\theta},U^{n-\theta}_x)+(f(U^{n-\theta}),U^{n-\theta}_x)+(\hat{g}^{n-\theta},U^{n-\theta}). \end{split} \end{equation} (4.4)

    Using Lemma 4.1, we obtain

    \begin{equation} \begin{split} &\frac{1}{4\tau}(\mathbb{H}[U^n]-\mathbb{H}[U^{n-1}])+(\Psi_{\tau}^{\alpha,n} U_{x},U^{n-\theta}_x)+(Q^{n-\theta},\Psi_{\tau}^{\beta,n}Q)+\|U_{x}^{n-\theta }\|^2\\ \le&(U^{n-\theta},U^{n-\theta}_x)+(f(U^{n-\theta}),U^{n-\theta}_x)+(\hat{g}^{n-\theta},U^{n-\theta}). \end{split} \end{equation} (4.5)

    Multiply (4.5) by 4\tau and sum it with respect to n from 1 to L to get

    \begin{equation} \begin{split} &\mathbb{H}[U^L]-\mathbb{H}[U^{0}]+ 4\tau\sum\limits_{n = 1}^{L}(\Psi_t^{\alpha,n} U_{x},U^{n-\theta}_x)+ 4\tau\sum\limits_{n = 1}^{L}(Q^{n-\theta},\Psi_{\tau}^{\beta,n}Q)+ 4\tau\sum\limits_{n = 1}^{L}\|U_{x}^{n-\theta }\|^2\\ \le&4\tau\left(\sum\limits_{n = 1}^{L}(U^{n-\theta},U^{n-\theta}_x)+\sum\limits_{n = 1}^{L}(f(U^{n-\theta}),U^{n-\theta}_x)+\sum\limits_{n = 1}^{L}(\hat{g}^{n-\theta},U^{n-\theta})\right). \end{split} \end{equation} (4.6)

    By the Hölder inequality and Young inequality, the three terms on the right-hand side of (4.6) can be expanded to

    \begin{equation} \sum\limits_{n = 1}^{L}(U^{n-\theta},U^{n-\theta}_x)\le\frac{1}{2}\sum\limits_{n = 1}^{L}\|U^{n-\theta}\|^2+\frac{1}{2}\sum\limits_{n = 1}^{L}\|U_{x}^{n-\theta }\|^2, \end{equation} (4.7)
    \begin{equation} \begin{split} \sum\limits_{n = 1}^{L}(f(U^{n-\theta}),U^{n-\theta}_x) \le&\sum\limits_{n = 1}^{L}\|c_f(U^{n-\theta})\|_{\infty}\|U^{n-\theta}\|\|U^{n-\theta}_x\| \\ \le& C\sum\limits_{n = 1}^{L}\|U^{n-\theta}\|^2+\frac{1}{2}\sum\limits_{n = 1}^{L}\|U_{x}^{n-\theta }\|^2, \end{split} \end{equation} (4.8)
    \begin{equation} \sum\limits_{n = 1}^{L}(\hat{g}^{n-\theta},U^{n-\theta})\le\frac{1}{2}\sum\limits_{n = 1}^{L}\|\hat{g}^{n-\theta}\|^2 +\frac{1}{2}\sum\limits_{n = 1}^{L}\|U^{n-\theta}\|^2, \end{equation} (4.9)

    where we use the bounded condition \|c_f(U^{n-\theta})\|_{\infty}\leq C .

    Substituting (4.7)–(4.9) into (4.6), we arrive at

    \begin{equation} \begin{split} & \mathbb{H}[U^L]-\mathbb{H}[U^{0}]+ 4\tau\sum\limits_{n = 1}^{L}(\Psi_t^{\alpha,n} U_{x},U^{n-\theta}_x)+ 4\tau\sum\limits_{n = 1}^{L}(Q^{n-\theta},\Psi_{\tau}^{\beta,n}Q)\\ \le& C\tau \left(\sum\limits_{n = 1}^{L}\|\hat{g}^{n-\theta}\|^2+\sum\limits_{n = 1}^{L}\|U^{n-\theta}\|^2\right). \end{split} \end{equation} (4.10)

    In what follows, using Lemmas 4.1 and 4.2 and the Gronwall inequality, we have

    \begin{equation} \|U^L\|^2-\|U^0\|^2\le C\tau\sum\limits_{n = 1}^{L}\|\hat{g}^{n-\theta}\|^2. \end{equation} (4.11)

    Since U^0 = 0 , we obtain

    \begin{equation} \|U^L\|^2\le C\tau\sum\limits_{n = 1}^{L}\|\hat{g}^{n-\theta}\|^2. \end{equation} (4.12)

    Noting that U^L = u^L_h-\bar{u}_h^0 and using the triangle inequality, the conclusion of this theorem is derived.

    In this section, we present numerical simulation results for both smooth and nonsmooth solutions to verify the effectiveness of the numerical scheme. Next, we set the nonlinear term f(u) = u^2 , the spatial domain \Omega = (0, 1) , and the time interval J = (0, 1] .

    Example 5.1 The exact solution is u(x, t) = t^{2}\sin(2\pi x) satisfying u(x, 0) = 0 , and the known source function g(x, t) is given by

    \begin{equation} g(x,t) = \sin(2\pi x)\left(2t+\frac{8\pi ^2t^{2-\alpha}}{\Gamma(3-\alpha)}+\frac{32\pi^4t^{2-\beta}}{\Gamma(3-\beta)}+4\pi^2t^2\right)+2\pi t^2\cos(2\pi x)+2\pi t^4\sin(4\pi x ). \end{equation} (5.1)

    In Table 1, fixing \tau = 1/1000 and choosing h = 1/10, 1/20, 1/40, 1/80 , we provide the L^2 -errors and the spatial convergence rates for u and q with different parameters \alpha , \beta , and \theta , where \theta\le\min\{\alpha, \beta, \frac{1}{2}\} . Similarly, in Table 2, taking h = 1/1000 , we calculate the L^2 -errors and the time convergence rates with \tau = 1/10, 1/20, 1/40, 1/80 . From Tables 1 and 2, one can see that the convergence rates in both space and time are close to 2 when the exact solution is smooth. In Table 3, if \theta > \min\{\alpha, \beta, \frac{1}{2}\} , the convergence accuracy will be unstable, which verifies the range of \theta values from a numerical perspective. To observe the effect of numerical simulation more clearly, we provide the comparison images between numerical solutions and exact solutions. In Figure 1, we show distinct comparison images of the numerical solutions of u_h and q_h and the exact solutions of u and q with \tau = 1/1000 , h = 1/80 , \alpha = 0.2 , \beta = 0.8 , and \theta = 0.2 .

    Table 1.  Spatial convergence results with \tau = 1/1000 .
    \alpha \beta \theta h \|u_h-u\| Rate \|q_h-q\| Rate
    1/10 2.2165E-02 - 2.6449E-02 -
    0.2 1/20 5.6375E-03 1.9752 6.1401E-03 2.1069
    1/40 1.4151E-03 1.9941 1.5121E-03 2.0217
    1/80 3.5399E-04 1.9992 3.8250E-04 1.9830
    1/10 2.2165E-02 - 2.6470E-02 -
    0.2 0.8 -0.5 1/20 5.6369E-03 1.9753 6.1607E-03 2.1032
    1/40 1.4146E-03 1.9945 1.5327E-03 2.0070
    1/80 3.5346E-04 2.0008 4.0308E-04 1.9269
    1/10 2.2164E-02 - 2.6490E-02 -
    -1 1/20 5.6364E-03 1.9754 6.1810E-03 2.0996
    1/40 1.4141E-03 1.9949 1.5530E-03 1.9928
    1/80 3.5293E-04 2.0024 4.2346E-04 1.8747
    1/10 2.1828E-02 - 4.0463E-02 -
    0.5 1/20 5.5499E-03 1.9756 9.6844E-03 2.0629
    1/40 1.3932E-03 1.9941 2.3964E-03 2.0148
    1/80 3.4861E-04 1.9987 5.9910E-04 2.0000
    1/10 2.1828E-02 - 4.0465E-02 -
    0.5 0.5 0.2 1/20 5.5499E-03 1.9757 9.6868E-03 2.0626
    1/40 1.3931E-03 1.9941 2.3988E-03 2.0137
    1/80 3.4854E-04 1.9989 6.0151E-04 1.9956
    1/10 2.1826E-02 - 4.0523E-02 -
    -1 1/20 5.5484E-03 1.9759 9.7445E-03 2.0561
    1/40 1.3916E-03 1.9953 2.4564E-03 1.9880
    1/80 3.4706E-04 2.0035 6.5921E-04 1.8977
    1/10 2.1399E-02 - 5.8275E-02 -
    0.2 1/20 5.4386E-03 1.9763 1.4195E-02 2.0375
    1/40 1.3651E-03 1.9943 3.5279E-03 2.0085
    1/80 3.4156E-04 1.9988 8.8248E-04 1.9992
    1/10 2.1399E-02 - 5.8276E-02 -
    0.8 0.2 0 1/20 5.4386E-03 1.9763 1.4196E-02 2.0374
    1/40 1.3650E-03 1.9943 3.5290E-03 2.0082
    1/80 3.4153E-04 1.9989 8.8360E-04 1.9978
    1/10 2.1396E-02 - 5.8410E-02 -
    -1 1/20 5.4352E-03 1.9769 1.4329E-02 2.0272
    1/40 1.3616E-03 1.9970 3.6619E-03 1.9683
    1/80 3.3812E-04 2.0097 1.0167E-03 1.8487

     | Show Table
    DownLoad: CSV
    Table 2.  Time convergence results with h = 1/1000 .
    \alpha \beta \theta \tau \|u_h-u\| Rate \|q_h-q\| Rate
    1/10 1.9614E-03 - 7.7510E-02 -
    0.2 1/20 5.0017E-04 1.9714 1.9814E-02 1.9679
    1/40 1.2703E-04 1.9773 5.0533E-03 1.9712
    1/80 3.2128E-05 1.9832 1.2867E-03 1.9736
    1/10 7.2565E-03 - 2.8650E-01 -
    0.2 0.8 -0.5 1/20 1.8309E-03 1.9867 7.2335E-02 1.9858
    1/40 4.6032E-04 1.9919 1.8206E-02 1.9903
    1/80 1.1551E-04 1.9946 4.5778E-03 1.9917
    1/10 1.2197E-02 - 4.8151E-01 -
    -1 1/20 3.1215E-03 1.9662 1.2329E-01 1.9655
    1/40 7.8542E-04 1.9907 3.1091E-02 1.9875
    1/80 1.9579E-04 2.0042 7.8135E-03 1.9924
    1/10 5.3041E-04 - 2.1042E-02 -
    0.5 1/20 1.3386E-04 1.9863 5.3622E-03 1.9724
    1/40 3.3676E-05 1.9910 1.3637E-03 1.9753
    1/80 8.4582E-06 1.9933 3.4761E-04 1.9720
    1/10 1.1457E-03 - 4.5326E-02 -
    0.5 0.5 0.2 1/20 2.8884E-04 1.9879 1.1461E-02 1.9836
    1/40 7.2679E-05 1.9907 2.8911E-03 1.9871
    1/80 1.8260E-05 1.9929 7.2972E-04 1.9862
    1/10 1.5622E-02 - 6.1668E-01 -
    -1 1/20 4.0111E-03 1.9615 1.5838E-01 1.9611
    1/40 1.0095E-03 1.9904 3.9868E-02 1.9901
    1/80 2.5362E-04 1.9929 1.0017E-02 1.9928
    1/10 5.2861E-04 - 2.0885E-02 -
    0.5 1/20 1.3465E-04 1.9730 5.3245E-03 1.9717
    1/40 3.4107E-05 1.9811 1.3530E-03 1.9765
    1/80 8.5857E-06 1.9901 3.4270E-04 1.9812
    1/10 2.2763E-03 - 8.9851E-02 -
    0.8 0.5 0 1/20 5.7402E-04 1.9875 2.2660E-02 1.9874
    1/40 1.4460E-04 1.9890 5.7086E-03 1.9889
    1/80 3.6405E-05 1.9899 1.4372E-03 1.9898
    1/10 1.5534E-02 - 6.1313E-01 -
    -1 1/20 3.9902E-03 1.9609 1.5749E-01 1.9609
    1/40 1.0033E-03 1.9917 3.9605E-02 1.9916
    1/80 2.5177E-04 1.9946 9.9391E-03 1.9945

     | Show Table
    DownLoad: CSV
    Table 3.  Time convergence results with h = 1/1000 .
    \alpha \beta \theta \tau \|u_h-u\| Rate \|q_h-q\| Rate
    1/10 2.4519E-03 - 9.6803E-02 -
    0.1 0.9 0.11 1/20 6.2095E-04 1.9813 2.4519E-02 1.9811
    1/40 5.2080E-04 0.2538 2.0647E-02 0.2480
    1/80 4.0699E+02 -19.5758 1.6068E+04 -19.5699
    1/10 1.8093E-03 - 7.1425E-02 -
    0.5 0.5 0.51 1/20 4.5109E-04 2.0039 1.7808E-02 2.0039
    1/40 2.0018E-04 1.1721 7.8154E-03 1.1881
    1/80 5.1099E-04 -1.3520 2.0090E-02 -1.3621
    1/10 4.8552E-04 - 1.9119E-02 -
    0.8 0.2 0.21 1/20 1.2438E-04 1.9647 4.8398E-03 1.9820
    1/40 5.8298E-05 1.0933 2.2123E-03 1.1294
    1/80 2.3759E-02 -8.6708 9.3790E-01 -8.7277

     | Show Table
    DownLoad: CSV
    Figure 1.  u_h , q_h and u , q with \tau = 1/1000 , h = 1/80 , \alpha = 0.2 , \beta = 0.8 , \theta = 0.2 .

    Example 5.2 In this example, we consider the case where the nonsmooth solution is taken as u = (t^{\alpha+\beta}+t^3) \sin(2\pi x) , and the known source term g(x, t) is

    \begin{equation} \begin{split} g(x,t) = &\sin(2\pi x)\left[(\alpha+\beta)t^{\alpha+\beta-1}+3t^2+4\pi^2\left(\frac{t^{\beta}\Gamma(\alpha+\beta+1)}{\Gamma(\beta+1)}+\frac{6t^{3-\alpha}}{\Gamma(4-\alpha)}\right)\right]\\ &+\sin(2\pi x)\left[16\pi^4\left(\frac{t^{\alpha}\Gamma(\alpha+\beta+1)}{\Gamma(\alpha+1)}+\frac{6t^{3-\beta}}{\Gamma(4-\beta)}\right)+4\pi^2(t^{\alpha+\beta}+t^3)\right]\\ &+2\pi (t^{\alpha+\beta}+t^3)\cos(2\pi x)+2\pi(t^{\alpha+\beta} +t^3)^2\sin(4\pi x ). \end{split} \end{equation} (5.2)

    Table 4 presents the L^2 -errors and the spatial convergence rates of u and q before and after adding the starting parts with h = 1/10, 1/20, 1/40, 1/80 , \tau = 1/2000 , where Erroro denotes the error before adding the starting parts and Errorc denotes the error after adding the starting parts.

    Table 4.  Spatial convergence results with \alpha = 0.9 , \beta = 0.2 , \tau = 1/2000 .
    \|u_h-u\| \|q_h-q\|
    \theta h Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 4.2694E-02 - 4.2693E-02 - 1.2162E-01 - 1.2163E-01 -
    0.2 1/20 1.0850E-02 1.9763 1.0850E-02 1.9763 2.9675E-02 2.0351 2.9679E-02 2.0349
    1/40 2.7235E-03 1.9942 2.7234E-03 1.9942 7.3708E-03 2.0094 7.3746E-03 2.0088
    1/80 6.8165E-04 1.9984 6.8155E-04 1.9985 1.8361E-03 2.0051 1.8400E-03 2.0029
    1/10 4.2693E-02 - 4.2692E-02 - 1.2165E-01 - 1.2168E-01 -
    -0.5 1/20 1.0849E-02 1.9764 1.0849E-02 1.9764 2.9706E-02 2.0340 2.9728E-02 2.0331
    1/40 2.7227E-03 1.9945 2.7221E-03 1.9947 7.4017E-03 2.0048 7.4237E-03 2.0016
    1/80 6.8085E-04 1.9996 6.8028E-04 2.0005 1.8671E-03 1.9871 1.8891E-03 1.9744
    1/10 4.2691E-02 - 4.2690E-02 - 1.2172E-01 - 1.2177E-01 -
    -1 1/20 1.0848E-02 1.9766 1.0846E-02 1.9767 2.9776E-02 2.0314 2.9822E-02 2.0297
    1/40 2.7209E-03 1.9952 2.7197E-03 1.9957 7.4714E-03 1.9947 7.5178E-03 1.9880
    1/80 6.7905E-04 2.0025 6.7786E-04 2.0044 1.9368E-03 1.9477 1.9833E-03 1.9224

     | Show Table
    DownLoad: CSV

    The spatial convergence rate is almost unaffected before and after correction, based on a comparison of the data in Table 5. In Tables 6 and 7, we present the L^2 -errors and the time convergence rates of u and q before and after adding the starting parts. Without the addition of the starting parts, the time convergence rates are unstable and cannot reach the second-order convergence results computed by the generalized BDF2- \theta . After adding the starting parts, the time convergence rates keep around 2 , indicating that the starting part plays a major role in correcting the time convergence rates.

    Table 5.  Spatial convergence results with \alpha = 0.5 , \beta = 0.7 , \tau = 1/2000 .
    \|u_h-u\| \|q_h-q\|
    \theta h Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 4.3949E-02 - 4.3948E-02 - 6.8838E-02 - 6.8891E-02 -
    0.5 1/20 1.1177E-02 1.9753 1.1176E-02 1.9754 1.6266E-02 2.0814 1.6318E-02 2.0778
    1/40 2.8070E-03 1.9934 2.8057E-03 1.9940 3.9696E-03 2.0348 4.0219E-03 2.0205
    1/80 7.0358E-04 1.9963 7.0222E-04 1.9984 9.4708E-04 2.0674 9.9935E-04 2.0088
    1/10 4.3949E-02 - 4.3948E-02 - 6.8842E-02 - 6.8897E-02 -
    0.2 1/20 1.1177E-02 1.9753 1.1176E-02 1.9754 1.6270E-02 2.0811 1.6324E-02 2.0774
    1/40 2.8069E-03 1.9935 2.8055E-03 1.9940 3.9739E-03 2.0336 4.0279E-03 2.0189
    1/80 7.0346E-04 1.9964 7.0206E-04 1.9986 9.5140E-04 2.0624 1.0054E-03 2.0023
    1/10 4.3948E-02 - 4.3946E-02 - 6.8877E-02 - 6.8974E-02 -
    -1 1/20 1.1176E-02 1.9754 1.1174E-02 1.9756 1.6304E-02 2.0788 1.6401E-02 2.0722
    1/40 2.8061E-03 1.9938 2.8035E-03 1.9948 4.0077E-03 2.0244 4.1049E-03 1.9984
    1/80 7.0259E-04 1.9978 7.0007E-04 2.0017 9.8520E-04 2.0243 1.0824E-03 1.9231

     | Show Table
    DownLoad: CSV
    Table 6.  Time convergence results with \alpha = 0.9 , \beta = 0.2 , h = 1/2000 .
    \|u_h-u\| \|q_h-q\|
    \theta \tau Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 2.1916E-03 - 4.2694E-02 - 8.6515E-02 - 1.2162E-01 -
    0.2 1/20 1.6194E-03 0.4365 1.0850E-02 1.9763 6.3929E-02 0.4365 2.9675E-02 2.0351
    1/40 1.0890E-03 0.5725 2.7235E-03 1.9942 4.2990E-02 0.5725 7.3710E-03 2.0093
    1/80 6.8790E-04 0.6627 6.8165E-04 1.9984 2.7157E-02 0.6627 1.8364E-03 2.0050
    1/10 2.5540E-03 - 4.2693E-02 - 1.0123E-01 - 1.2164E-01 -
    0 1/20 1.1111E-03 1.2007 1.0850E-02 1.9763 4.3864E-02 1.2065 2.9692E-02 2.0345
    1/40 7.7616E-04 0.5176 2.7231E-03 1.9944 3.0641E-02 0.5176 7.3878E-03 2.0069
    1/80 5.0234E-04 0.6277 6.8122E-04 1.9990 1.9831E-02 0.6277 1.8531E-03 1.9952
    1/10 2.4652E-02 - 4.2689E-02 - 9.7312E-01 - 1.2182E-01 -
    -0.5 1/20 7.1878E-03 1.7781 1.0845E-02 1.9768 2.8376E-01 1.7779 2.9872E-02 2.0279
    1/40 1.9420E-03 1.8880 2.7184E-03 1.9962 7.6702E-02 1.8874 7.5673E-03 1.9809
    1/80 5.5906E-04 1.7965 6.7658E-04 2.0064 2.2071E-02 1.7971 2.0329E-03 1.8962

     | Show Table
    DownLoad: CSV
    Table 7.  Time convergence results with \alpha = 0.5 , \beta = 0.7 , h = 1/2000 .
    \|u_h-u\| \|q_h-q\|
    \theta \tau Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 1.1456E-02 - 4.3948E-02 - 4.5228E-01 - 6.8880E-02 -
    0.5 1/20 5.0680E-03 1.1767 1.1176E-02 1.9754 2.0008E-01 1.1767 1.6307E-02 2.0786
    1/40 2.2184E-03 1.1919 2.8060E-03 1.9939 8.7577E-02 1.1919 4.0110E-03 2.0235
    1/80 9.6796E-04 1.1965 7.0250E-04 1.9979 3.8213E-02 1.1965 9.8850E-04 2.0207
    1/10 5.4375E-03 - 4.3948E-02 - 2.1466E-01 - 6.8904E-02 -
    0.2 1/20 2.5220E-03 1.1084 1.1176E-02 1.9754 9.9562E-02 1.1084 1.6332E-02 2.0769
    1/40 1.1387E-03 1.1472 2.8053E-03 1.9941 4.4952E-02 1.1472 4.0351E-03 2.0170
    1/80 5.0160E-04 1.1828 7.0188E-04 1.9989 1.9802E-02 1.1827 1.0126E-03 1.9946
    1/10 2.8636E-02 - 4.3948E-02 - 1.1304E+00 - 6.8904E-02 -
    -1 1/20 7.7097E-03 1.8931 1.1176E-02 1.9754 3.0439E-01 1.8929 1.6332E-02 2.0769
    1/40 1.9098E-03 2.0133 2.8053E-03 1.9941 7.5437E-02 2.0126 4.0351E-03 2.0170
    1/80 6.3574E-04 1.5869 7.0188E-04 1.9989 2.5098E-02 1.5877 1.0126E-03 1.9946

     | Show Table
    DownLoad: CSV

    In Figure 2, we obtain the comparison images between the numerical solution and the exact solution with \tau = 1/1000 , h = 1/80 , \alpha = 0.9 , \beta = 0.2 , and \theta = 0.2 . In Figures 3 and 4, we present the space and time convergence rate images of u_h and q_h under different parameters \alpha , \beta , and \theta . From Figure 4, one can see that the corrected scheme with the starting parts can effectively restore the second-order convergence rate for the nonsmooth problem.

    Figure 2.  u_h , q_h and u , q with \tau = 1/2000 , h = 1/80 , \alpha = 0.9 , \beta = 0.2 , \theta = 0.2 .
    Figure 3.  The spatial convergence rates in L^2 -errors with different parameters \alpha , \beta , and \theta .
    Figure 4.  The time convergence rates in L^2 -errors with different parameters \alpha , \beta , and \theta .

    Example 5.3. To better investigate the effect of changes of two fractional parameters \alpha and \beta on the convergence rates, we introduce the numerical example with two nonsmooth terms. Here, we take the nonsmooth solution u with

    u = (t^{1+\alpha}+t^{1+\beta}+t^3) \sin(2\pi x),

    and the known source term

    \begin{equation} \begin{split} g(x,t) = &\sin(2\pi x)\left[(1+\alpha)t^\alpha+(1+\beta)t^\beta+3t^2+4\pi^2\left(t\Gamma(2+\alpha)+\frac{t^{1+\beta-\alpha}\Gamma(2+\beta)}{\Gamma(2+\beta-\alpha)}+\frac{6t^{3-\alpha}}{\Gamma(4-\alpha)}\right)\right]\\ &+\sin(2\pi x)\left[16\pi^4\left(\frac{t^{1+\alpha-\beta}\Gamma(2+\alpha)}{\Gamma(2+\alpha-\beta)}+t\Gamma(2+\beta)+\frac{6t^{3-\beta}}{\Gamma(4-\beta)}\right)+4\pi^2(t^{1+\alpha}+t^{1+\beta}+t^3)\right]\\ &+2\pi (t^{1+\alpha}+t^{1+\beta}+t^3)\cos(2\pi x)+2\pi(t^{1+\alpha}+t^{1+\beta}+t^3)^2\sin(4\pi x ). \end{split} \end{equation} (5.3)

    In Table 8, we provide the errors of \|u_h-u\| and \|q_h-q\| and the spatial convergence rates under different parameters, which indicate that the corrected term hardly affects the spatial convergence rate.

    Table 8.  Spatial convergence results with \alpha = 0.5 , \beta = 0.6 , \tau = 1/2000 .
    \|u_h-u\| \|q_h-q\|
    \theta h Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 6.5710E-02 - 6.5710E-02 - 1.1335E-01 - 1.1335E-01 -
    0.5 1/20 1.6709E-02 1.9755 1.6709E-02 1.9755 2.7037E-02 2.0678 2.7037E-02 2.0678
    1/40 4.1946E-03 1.9940 4.1946E-03 1.9940 6.6773E-03 2.0176 6.6775E-03 2.0175
    1/80 1.0498E-03 1.9984 1.0498E-03 1.9984 1.6615E-03 2.0068 1.6617E-03 2.0066
    1/10 6.5710E-02 - 6.5710E-02 - 1.1336E-01 - 1.1336E-01 -
    0.2 1/20 1.6708E-02 1.9755 1.6708E-02 1.9755 2.7042E-02 2.0676 2.7042E-02 2.0676
    1/40 4.1944E-03 1.9940 4.1944E-03 1.9940 6.6826E-03 2.0167 6.6825E-03 2.0167
    1/80 1.0497E-03 1.9986 1.0497E-03 1.9985 1.6668E-03 2.0033 1.6667E-03 2.0034
    1/10 6.5709E-02 - 6.5709E-02 - 1.1339E-01 - 1.1339E-01 -
    -0.5 1/20 1.6708E-02 1.9756 1.6708E-02 1.9756 2.7078E-02 2.0661 2.7077E-02 2.0662
    1/40 4.1935E-03 1.9943 4.1935E-03 1.9943 6.7188E-03 2.0109 6.7178E-03 2.0110
    1/80 1.0487E-03 1.9995 1.0487E-03 1.9995 1.7031E-03 1.9801 1.7020E-03 1.9808

     | Show Table
    DownLoad: CSV

    In Tables 911, fixing \tau = 1/4000 , choosing h = 1/10, 1/20, 1/40, 1/80 , and changing parameters \alpha , \beta , and \theta , we provide the L^2 -errors and the time convergence rates for u and q based on the corrected scheme and uncorrected scheme. The impact of different fractional parameters on the time convergence rates of nonsmooth problems is evident from Tables 911. Furthermore, one can see that the corrected scheme with the starting part can effectively restore the second-order convergence rate.

    Table 9.  Time convergence results with \alpha = 0.1 , \beta = 0.9 , h = 1/4000 .
    \|u_h-u\| \|q_h-q\|
    \theta \tau Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 8.9204E-03 - 6.2820E-03 - 3.5216E-01 - 2.4809E-01 -
    0.1 1/20 5.2261E-03 0.7714 1.8535E-03 1.7609 2.0632E-01 0.7714 7.3209E-02 1.7608
    1/40 2.6562E-03 0.9764 4.9663E-04 1.9001 1.0486E-01 0.9764 1.9628E-02 1.8992
    1/80 1.2855E-03 1.0470 1.2782E-04 1.9580 5.0749E-02 1.0470 5.0645E-03 1.9544
    1/10 1.1291E-02 - 9.1163E-03 - 4.4575E-01 - 3.5998E-01
    0 1/20 6.8182E-03 0.7277 2.7085E-03 1.7510 2.6917E-01 0.7277 1.0696E-01 1.7509
    1/40 3.4949E-03 0.9641 7.2773E-04 1.8960 1.3797E-01 0.9641 2.8751E-02 1.8954
    1/80 1.6987E-03 1.0408 1.8766E-04 1.9553 6.7062E-02 1.0408 7.4268E-03 1.9528
    1/10 2.1457E-02 - 2.6030E-02 - 1.1105E+00 - 1.7696E+00 -
    -0.5 1/20 1.4552E-02 0.5603 8.3150E-03 1.6464 8.5207E-01 0.3822 6.2053E-01 1.5118
    1/40 7.7887E-03 0.9017 2.2980E-03 1.8554 4.7736E-01 0.8359 1.7762E-01 1.8047
    1/80 3.8350E-03 1.0222 6.0067E-04 1.9357 2.3888E-01 0.9988 4.7205E-02 1.9118

     | Show Table
    DownLoad: CSV
    Table 10.  Time convergence results with \alpha = 0.5 , \beta = 0.6 , h = 1/4000 .
    \|u_h-u\| \|q_h-q\|
    \theta \tau Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 4.3621E-03 - 3.6704E-03 - 1.7226E-01 - 1.4498E-01 -
    0.5 1/20 1.0876E-03 2.0039 9.5152E-04 1.9476 4.2941E-02 2.0042 3.7576E-02 1.9480
    1/40 3.3133E-04 1.7148 2.4178E-04 1.9765 1.3080E-02 1.7150 9.5356E-03 1.9784
    1/80 1.1132E-04 1.5735 6.1138E-05 1.9835 4.3948E-03 1.5735 2.3985E-03 1.9912
    1/10 1.4643E-03 - 1.0614E-03 - 5.8318E-02 - 4.2803E-02 -
    0.2 1/20 4.8956E-04 1.5806 3.0032E-04 1.8214 1.9326E-02 1.5934 1.2126E-02 1.8197
    1/40 1.6670E-04 1.5542 7.8625E-05 1.9335 6.5811E-03 1.5541 3.1895E-03 1.9267
    1/80 5.7051E-05 1.5470 1.9768E-05 1.9918 2.2523E-03 1.5470 8.1546E-04 1.9676
    1/10 8.7609E-03 - 6.8360E-03 - 3.4601E-01 - 2.7011E-01 -
    0 1/20 2.2404E-03 1.9673 1.9129E-03 1.8374 8.8510E-02 1.9669 7.5599E-02 1.8371
    1/40 5.6418E-04 1.9895 5.0061E-04 1.9340 2.2304E-02 1.9886 1.9798E-02 1.9330
    1/80 1.5985E-04 1.8194 1.2738E-04 1.9746 6.3107E-03 1.8214 5.0505E-03 1.9709

     | Show Table
    DownLoad: CSV
    Table 11.  Time convergence results with \alpha = 0.9 , \beta = 0.1 , h = 1/4000 .
    \|u_h-u\| \|q_h-q\|
    \theta \tau Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 1.2779E-03 - 4.4043E-04 - 5.0452E-02 - 2.5629E-02 -
    0.1 1/20 1.0267E-03 0.3157 1.1804E-04 1.8996 4.0534E-02 0.3158 7.0942E-03 1.8531
    1/40 7.5884E-04 0.4362 3.0793E-05 1.9386 2.9957E-02 0.4362 1.8662E-03 1.9265
    1/80 5.0089E-04 0.5993 8.1141E-06 1.9241 1.9774E-02 0.5993 4.7828E-04 1.9642
    1/10 4.3621E-03 - 1.4545E-03 - 7.7482E-02 - 6.1261E-02 -
    0 1/20 1.8873E-03 0.6822 3.9496E-04 1.8807 4.6434E-02 0.7387 1.6763E-02 1.8697
    1/40 9.2034E-04 0.3539 1.0228E-04 1.9492 3.6333E-02 0.3539 4.3730E-03 1.9386
    1/80 6.1337E-04 0.5854 2.5740E-05 1.9904 2.4215E-02 0.5854 1.1169E-03 1.9692
    1/10 9.0746E-03 - 6.1035E-03 - 3.5896E-01 - 2.4209E-01 -
    -0.1 1/20 2.3761E-03 1.9332 1.7550E-03 1.7982 9.4044E-02 1.9324 6.9621E-02 1.7980
    1/40 7.1647E-04 1.7296 4.6664E-04 1.9111 2.8284E-02 1.7333 1.8526E-02 1.9100
    1/80 5.9682E-04 0.2636 1.1984E-04 1.9612 2.3561E-02 0.2636 4.7711E-03 1.9572

     | Show Table
    DownLoad: CSV

    To further validate the performance of the parameter \theta in numerical simulations with nonsmooth solutions, we provide the computing data in Table 12, from which one can see that the parameter \theta still needs to satisfy \theta\le \min\{\alpha, \beta, \frac{1}{2}\} , whether before or after correction. Notably, when \theta is negative, as long as it is not much less than 0, we can still obtain second-order convergence accuracy.

    Table 12.  Time convergence results with \alpha = 0.7 , \beta = 0.3 , h = 1/4000 .
    \|u_h-u\| \|q_h-q\|
    \theta \tau Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 3.3675E-03 - 2.0604E-03 - 1.3333E-01 - 8.2027E-02 -
    0.31 1/20 1.2977E-03 1.3757 5.3018E-04 1.9584 5.1287E-02 1.3783 2.1127E-02 1.9570
    1/40 1.9442E-03 -0.5833 1.4145E-04 1.9062 7.6738E-02 -0.5813 5.6232E-03 1.9096
    1/80 6.1733E-02 -4.9888 1.3510E-04 0.0663 2.4372E+00 -4.9892 5.3212E-03 0.0797
    1/10 4.5472E-02 - 3.0346E-02 - 1.7952E+00 - 1.1983E+00 -
    -0.5 1/20 1.2127E-02 1.9067 9.1861E-03 1.7240 4.7880E-01 1.9066 3.6273E-01 1.7240
    1/40 3.1344E-03 1.9520 2.4851E-03 1.8861 1.2376E-01 1.9518 9.8141E-02 1.8859
    1/80 7.9608E-04 1.9772 6.4304E-04 1.9504 3.1447E-02 1.9766 2.5407E-02 1.9496
    1/10 1.1762E+00 - 3.4223E-01 - 4.6430E+01 - 1.3512E+01 -
    -5 1/20 3.9521E-01 1.5734 1.9704E-01 0.7964 1.5601E+01 1.5734 7.7788E+00 0.7966
    1/40 1.2069E-01 1.7113 7.7857E-02 1.3396 4.7643E+00 1.7113 3.0736E+00 1.3396
    1/80 3.3458E-02 1.8509 2.4673E-02 1.6579 1.3208E+00 1.8509 9.7402E-01 1.6579

     | Show Table
    DownLoad: CSV

    The time convergence rates of u and q are compared before and after correction with different parameters \alpha , \beta , and \theta in Figure 5, where the slope of the line segment indicates the convergence rate. The slope of each line segment in the corrected images is the same regardless of the parameters chosen, indicating that the introduction of the starting part has a significant effect on the time convergence rates for the case with nonsmooth solutions.

    Figure 5.  The time convergence rates in L^2 -errors with different parameters \alpha , \beta , and \theta .

    In this article, the spatial mixed finite element method with the generalized BDF2- \theta for solving the time-fractional generalized Rosenau-RLW-Burgers equation was presented. Detailed proofs of stability were shown. The numerical scheme's effectiveness and feasibility were verified by conducting numerical examples that included both smooth and nonsmooth solutions. The numerical examples with good regularity indicated that our algorithm with changed parameters \alpha , \beta , and \theta can maintain second-order convergence in time. Especially, the nonsmooth examples demonstrated that adding the correction term could effectively solve the problem of reduced order caused by weak singularity.

    N. Yang: Writing–original draft, Formal analysis, Software; Y. Liu: Methodology, Validation, Formal analysis, Funding acquisition, Supervision, Writing–review & editing. All authors have read and agreed to the published version of the manuscript.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was supported by the National Natural Science Foundation of China (12061053), Young Innovative Talents Project of Grassland Talents Project and Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region (NMGIRT2413).

    The authors declare that they have no conflicts of interest.



    [1] Sayers C, Shields D (2001) Electricity prices and cost factors. Productivity Commission Staff Research Paper, Melbourne. Available from: https://www.pc.gov.au/research/supporting/electricity-prices.
    [2] Robert S, Pindyck S (1979) The structure of world energy demand. 2nd ed. Cambridge: MIT Press. Available from: https://mitpress.mit.edu/9780262661775/the-structure-of-world-energy-demand/.
    [3] Bhattacharyya S (2011) Energy Economics Concepts, Issues, Markets and Governance. 1st ed. London: Springer-Verlag London Limited. Available from: https://link.springer.com/book/10.1007/978-0-85729-268-1.
    [4] Girish GP, Vijayalakshmi S (2013) Determinants of electricity price in competitive power market. Int J Bus Manage 8: 70–75. https://doi.org/10.5539/ijbm.v8n21p70 doi: 10.5539/ijbm.v8n21p70
    [5] Suliman MS, Farzaneh H (2022) Econometric analysis of pricing and energy policy regulations in Japan electric power exchange spot market. Clean Eng Technol 9: 100523. https://doi.org/10.1016/j.clet.2022.100523. doi: 10.1016/j.clet.2022.100523
    [6] Watchwire (2018) Electricity market drivers. Energy Watch, 1–6. Available from: https://watchwire.ai/electricity-pricing-market-drivers/.
    [7] Uribe JM, Mosquera-López S, Arenas OJ (2022) Assessing the relationship between electricity and natural gas prices in European markets in times of distress. Energy Policy 166: 113018. https://doi.org/10.1016/j.enpol.2022.113018 doi: 10.1016/j.enpol.2022.113018
    [8] Akay EC, Uyar SGK (2016) Determining the functional form of relationships between oil prices and macroeconomic variables: The case of Mexico, Indonesia, South Korea, Turkey countries. Int J Econ Financ Issues 6: 880–891. Available from: https://dergipark.org.tr/en/pub/ijefi/issue/32012/353753.
    [9] Kojima M, Han JJ (2017) Electricity tariffs for nonresidential customers in sub-saharan Africa. Electr Tarif Nonresidential Cust Sub-Saharan Africa, https://doi.org/10.1596/26571 doi: 10.1596/26571
    [10] Afanasyev DO, Fedorova EA, Gilenko EV (2021) The fundamental drivers of electricity price: a multi-scale adaptive regression analysis. Empir Econ 60: 1913–1938. https://doi.org/10.1007/s00181-020-01825-3 doi: 10.1007/s00181-020-01825-3
    [11] Alves B (2022) Distribution of energy sources used for gross electricity generation in Germany. Available from: https://www.statista.com/statistics/736640/energy-mix-germany/.
    [12] Mosquera-López S, Nursimulu A (2019) Drivers of electricity price dynamics: comparative analysis of spot and futures markets. Energy Policy 126: 76–87. https://doi.org/10.1016/j.enpol.2018.11.020 doi: 10.1016/j.enpol.2018.11.020
    [13] EIA (2022) What is U.S. electricity generation by energy source? Available from: https://www.eia.gov/tools/faqs/faq.php?id=427&t=3.
    [14] Briceño-Garmendia C, Shkaratan M (2011) Power tariffs: caught between cost recovery and affordability. Policy research working paper, World Bank Group, Washington, D.C.[Online]. Available from: http://elibrary.worldbank.org/doi/book/10.1596/1813-9450-5904.
    [15] Gil-Alana LA, Martin-Valmayor M, Wanke P (2020) The relationship between energy consumption and prices: Evidence from futures and spot markets in Spain and Portugal. Energy Strateg Rev 31: 100522. https://doi.org/10.1016/j.esr.2020.100522 doi: 10.1016/j.esr.2020.100522
    [16] Ruksans O, Oleinikova I (2014) Analysis of factors that are affecting electricity prices in Baltic Countries. In IEEE, 55th Int. Sc. Conf. on Power and Elec. Eng Riga Tech Un (RTUCON), 232–237. https://doi.org/10.1109/RTUCON.2014.6998197
    [17] Sirin SM, Yilmaz BN (2021) The impact of variable renewable energy technologies on electricity markets: An analysis of the Turkish balancing market. Energy Policy 151: 112093. https://doi.org/10.1016/j.enpol.2020.112093 doi: 10.1016/j.enpol.2020.112093
    [18] Foroni C, Ravazzolo F, Rossini L (2019) Forecasting daily electricity prices with monthly macroeconomic variables. SSRN Electron J, 2250. https://doi.org/10.2139/ssrn.3357361 doi: 10.2139/ssrn.3357361
    [19] Gil-Alana LA, Mudida R, Carcel H (2017) Shocks affecting electricity prices in Kenya, a fractional integration study. Energy 124: 521–530, https://doi.org/10.1016/j.energy.2017.02.092 doi: 10.1016/j.energy.2017.02.092
    [20] Adjei P, Solomon K (2014) Energy consumption in Ghana and the story of economic growth, industrialization, trade openness and urbanization. Asian Bull Energy Econ Technol 1: 1–6. Available from: http://asianonlinejournals.com/index.php/ABEE/article/view/713/739.
    [21] Li M, Li L, Strielkowski W (2019) The impact of urbanization and industrialization on energy Security: A case study of China. Energies 12: 2194. https://doi.org/10.3390/en12112194 doi: 10.3390/en12112194
    [22] Mabea GA (2014) Modelling residential electricity demand for Kenya. J Econ Sustainable Dev 5: 145–153. Available from: https://core.ac.uk/reader/234646280.
    [23] Odhiambo MN (2010) Energy consumption, prices and economic growth in three SSA countries: A comparative study. Energy Policy 38: 2463–2469. https://doi.org/10.1016/j.enpol.2009.12.040 doi: 10.1016/j.enpol.2009.12.040
    [24] Asafu-Adjaye J (2000) The relationship between energy consumption, energy prices and economic growth: Time series evidence from Asian developing countries. Energy Econ 22: 615–625. https://doi.org/10.1016/S0140-9883(00)00050-5 doi: 10.1016/S0140-9883(00)00050-5
    [25] Odhiambo MN (2009) Energy consumption and economic growth nexus in Tanzania: An ARDL bounds testing approach. Energy Policy 37: 617–622. https://doi.org/10.1016/j.enpol.2008.09.077 doi: 10.1016/j.enpol.2008.09.077
    [26] Sari R, Soytas U (2007) The growth of income and energy consumption in six developing countries. Energy Policy 35: 889–898. https://doi.org/10.1016/j.enpol.2006.01.021 doi: 10.1016/j.enpol.2006.01.021
    [27] Shao Z (2017) On electricity consumption and economic growth in China. Renewable Sustainable Energy Rev 76: 353–368. https://doi.org/10.1016/j.rser.2017.03.071 doi: 10.1016/j.rser.2017.03.071
    [28] Jumbe CBL (2004) Cointegration and causality between electricity consumption and GDP: Empirical evidence from Malawi. Energy Econ 26: 61–68. https://doi.org/10.1016/S0140-9883(03)00058-6 doi: 10.1016/S0140-9883(03)00058-6
    [29] Fatai BO (2014) Energy consumption and economic growth nexus: Panel co-integration and causality tests for Sub-Saharan Africa. J Energy South Africa 25: 93–100. https://doi.org/10.17159/2413-3051/2014/v25i4a2242 doi: 10.17159/2413-3051/2014/v25i4a2242
    [30] Bayar Y, Özel H (2014) Electricity consumption and economic growth in emerging economies. J Knowl Manage Econ Inf Technol 4: 15–15. Available from: http://www.scientificpapers.org/download/351/.
    [31] Mumo M, Saulo M, Kibaara S (2015) Integrated electricity tarrif model for Kenya. Int J Energy Power Eng 4: 95–98. https://doi.org/10.11648/j.ijepe.s.2015040201.19 doi: 10.11648/j.ijepe.s.2015040201.19
    [32] KIPPRA (2010) A comprehensive study and analysis on energy consumption patterns in Kenya. The Energy Regulatory Commission (ERC), Nairobi, Kenya. Available from: https://www.cofek.africa/wp-content/uploads/2013/05/ERCStudy_ExecSummary_02082010.pdf.
    [33] Uganda Electricity Regulatory Authority (2018) Quarterly tariff adjustment methodology. Kampala, Uganda. Available from: https://www.era.go.ug/index.php/tariffs/tariff-adjustment-methodology.
    [34] Peng D, Poudineh R (2016) Sustainable electricity pricing for Tanzania. International Growth Centre (IGC), Dar es Salaam, Tanzania.[Online]. Available from: http://www.theigc.org/wp-content/uploads/2016/08/Peng-Poudineh-2016-Working-Paper.pdf.
    [35] Dragasevic Z, Milovic N, Djurisic V, et al. (2021) Analyzing the factors influencing the formation of the price of electricity in the deregulated markets of developing countries. Energy Rep 7: 937–949 https://doi.org/10.1016/j.egyr.2021.07.046 doi: 10.1016/j.egyr.2021.07.046
    [36] Oosthuizen AM, Inglesi-Lotz R, Thopil GA (2022) The relationship between renewable energy and retail electricity prices: Panel evidence from OECD countries. Energy 238: 121790. https://doi.org/10.1016/j.energy.2021.121790 doi: 10.1016/j.energy.2021.121790
    [37] Apolinário I, Felizardo N, Garcia AL, et al. (2006) Additive tariffs in the electricity sector. IEEE Power Eng Soc Gen Meet PES, 1–8. https://doi.org/10.1109/pes.2006.1709499 doi: 10.1109/pes.2006.1709499
    [38] Pérez-Arriaga IJ (2013) Regulation of the power sector. New York: Springer-Verlag London Limited. https://doi.org/10.1007/978-1-4471-5034-3
    [39] Campbell A (2018) Price and income elasticities of electricity demand: Evidence from Jamaica. Energy Econ 69: 19–32, https://doi.org/10.1016/j.eneco.2017.10.040 doi: 10.1016/j.eneco.2017.10.040
    [40] Braithwait S, Hansen D, O'Sheasy M (2007) Retail electricity pricing and rate design in evolving markets. Edison Electr Inst, 1–45. Available from: http://www.madrionline.org/wp-content/uploads/2017/02/eei_retail_elec_pricing.pdf.
    [41] Thoenes S (2014) Understanding the determinants of electricity prices and the impact of the German nuclear moratorium in 2011. Energy J 35: 61–78, https://doi.org/10.5547/01956574.35.4.3 doi: 10.5547/01956574.35.4.3
    [42] Dutta G, Mitra K (2016) A literature review on dynamic pricing of electricity. J Oper Res Soc https://doi.org/10.1057/s41274-016-0149-4 doi: 10.1057/s41274-016-0149-4
    [43] Murthy GGP, Sedidi V, Panda AK, et al. (2014) Forecasting electricity prices in deregulated wholesale spot electricity market: A review. Int J Energy Econ Policy 4: 32–42. Available from: https://www.econjournals.com/index.php/ijeep/article/view/621.
    [44] Munasinghe M, Warford JJ (1982) Electricity pricing: Theory and case studies. The International Bank for Reconstruction and Development & The World Bank, Available from: https://prdrse4all.spc.int/node/4/content/electricity-pricing-theory-and-case-studies.
    [45] Zweifel P, Praktiknjo A, Erdmann G (2017) Energy Economics. Berlin, Germany: Springer International Publishing AG 2017. https://doi.org/10.1007/978-3-662-53022-1
    [46] Bhattacharyya SC (2019) Energy economics: Concepts, issues, markets and governance, 2nd ed. 2019, 2nd ed. Springer-Verlag London. Available from: https://link.springer.com/book/10.1007/978-1-4471-7468-4.
    [47] Shi D (2002) The improvement of energy consumption efficiency in China's economic growth. Econ Res J 9: 49–56.
    [48] Berndt ER (1990) Energy use, technical progress and productivity growth: A survey of economic issues. J Product Anal 2: 67–83. https://doi.org/10.1007/BF00158709 doi: 10.1007/BF00158709
    [49] Abid M, Mraihi R (2015) Energy consumption and industrial production: Evidence from Tunisia at both aggregated and disaggregated levels. J Knowl Econ 6: 1123–1137. https://doi.org/10.1007/s13132-014-0190-y doi: 10.1007/s13132-014-0190-y
    [50] Tapsın G (2017) The link between industry value added and electricity consumption. Eur Sci J ESJ 13: 41. https://doi.org/10.19044/esj.2017.v13n13p41 doi: 10.19044/esj.2017.v13n13p41
    [51] Shahbaz M, Salah GU, Rehman IU, et al. (2014) Industrialization, electricity consumption and CO2 emissions in Bangladesh. Renewable Sustainable Energy Rev 31: 575–586. https://doi.org/10.1016/j.rser.2013.12.028 doi: 10.1016/j.rser.2013.12.028
    [52] Olufemi OJ (2015) The effects of electricity consumption on industrial growth in Nigeria. J Econ Sustainable Dev 6: 54–60. Available from: https://www.iiste.org/Journals/index.php/JEDS/article/view/24275.
    [53] Management Consulting (2012) Manual for the ERA tariff model in Uganda. Available from: https://www.ogel.org/legal-and-regulatory-detail.asp?key=17590.
    [54] Mburamatare D, Gboney WK, Hakizimana JDDK, et al. (2022) Effects of industrialization, technology and labor efficiency on electricity consumption : Panel data experience of Rwanda, Tanzania and Kenya. Int J Energy Econ Policy 12: 349–359. https://doi.org/10.32479/ijeep.12551 doi: 10.32479/ijeep.12551
    [55] Keppler JH, Bourbonnais R, Girod J (2006) The econometrics of energy systems. Econom Energy Syst, 1–266, https://doi.org/10.1057/9780230626317 doi: 10.1057/9780230626317
    [56] Carter RH, Griffiths EW, Guay CL (2011) Principles of econometrics. Fourth Edi. USA/Danvers: John Wiley & Sons, Inc. Available from: http://zalamsyah.staff.unja.ac.id/wp-content/uploads/sites/286/2019/11/7-Principles-of-Econometrics-4th-Ed.-R.Carter-Hill-et.al_.-1.pdf.
    [57] Greene WH (2002) Econometrics analysis. Fifth Ed. New Jersey: Printice Hall. Available from: https://spu.fem.uniag.sk/cvicenia/ksov/obtulovic/Mana%C5%BE.%20%C5%A1tatistika%20a%20ekonometria/EconometricsGREENE.pdf.
    [58] Wooldridge JM (2016) Introductory econometrics, a modern approach. Sixth Ed. USA, Boston: Cengage Learning. Available from: https://economics.ut.ac.ir/documents/3030266/14100645/Jeffrey_M._Wooldridge_Introductory_Econometrics_A_Modern_Approach__2012.pdf.
    [59] Gujarati DN (2004) Basic econometrics. Fourth Ed. The McGraw‑Hill Companies. Available from: https://www.nust.na/sites/default/files/documents/Basic%20Econometrics%20%2CGujarati%204e.pdf.
    [60] Johnston J, Dinardo J. Econometric methods. Fourth Ed. MacGraw-Hill. Available from: https://economics.ut.ac.ir/documents/3030266/14100645/econometric%20methods-johnston.pdf.
    [61] Stock JH, Watson MW. Introduction to econometrics. Boston: PEARSON/ Addison Wiesley. Available from: https://www.ssc.wisc.edu/~mchinn/stock-watson-econometrics-3e-lowres.pdf.
    [62] Pesaran MH, Im KS, Shin Y (2003) Testing for unit roots in heterogeneous panels. J Econom 115: 53–74. https://doi.org/10.1016/S0304-4076(03)00092-7 doi: 10.1016/S0304-4076(03)00092-7
    [63] Chen B, Mc Coskey SK, Kao C (1999) Estimation and inference of a cointegrated regression in panel data: A monte carlo study. Am J Math Manage Sci 19: 75–114. https://doi.org/10.1080/01966324.1999.10737475 doi: 10.1080/01966324.1999.10737475
    [64] Ouedraogo NS (2013) Energy consumption and economic growth: Evidence from the economic community of West African States (ECOWAS). Energy Econ 36: 637–647. https://doi.org/10.1016/j.eneco.2012.11.011 doi: 10.1016/j.eneco.2012.11.011
    [65] Levin A, Lin CF, Chu CJ (2002) Unit root tests in panel data: Asymptotic and finite-sample properties. J Econom 108: 1–24, https://doi.org/10.1016/S0304-4076(01)00098-7 doi: 10.1016/S0304-4076(01)00098-7
    [66] Eggoh JC, Bangake C, Rault C (2011) Energy consumption and economic growth revisited in African countries. Energy Policy 39: 7408–7421 https://doi.org/10.1016/j.enpol.2011.09.007 doi: 10.1016/j.enpol.2011.09.007
    [67] Pedroni P (2004) Panel cointegration: Asymptotic and finite sample properties of pooled time series tests with an application to the PPP hypothesis. Econom Theory 20: 597–625. https://doi.org/10.1017/S0266466604203073 doi: 10.1017/S0266466604203073
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3515) PDF downloads(314) Cited by(3)

Figures and Tables

Figures(11)  /  Tables(9)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog