Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Review

Genetic diversity and utilization of ginger (Zingiber officinale) for varietal improvement: A review

  • Ginger is widely cultivated globally and considered the third most important spice crop due to its medicinal properties. It is cultivated for its therapeutic potential in treating different medical conditions and has been extensively researched for its pharmacological and biochemical properties. Despite its significant value, the potential for genetic improvement and sustainable cultivation has been largely ignored compared to other crop species. Similarly, ginger cultivation is affected by various biotic stresses such as viral, bacterial, and fungal infections, leading to a significant reduction in its potential yields. Several techniques, such as micropropagation, germplasm conservation, mutation breeding, and transgenic have been extensively researched in enhancing sustainable ginger production. These techniques have been utilized to enhance the quality of ginger, primarily due to its vegetative propagation mode. However, the ginger breeding program has encountered challenges due to the limited genetic diversity. In the selection process, it is imperative to have a broad range of genetic variations to allow for an efficient search for the most effective plant types. Despite a decline in the prominence of traditional mutation breeding, induced mutations remain extremely important, aided by a range of biotechnological tools. The utilization of in vitro culture techniques serves as a viable alternative for the propagation of plants and as a mechanism for enhancing varietal improvement. This review synthesizes knowledge on limitations to ginger cultivation, conservation, utilization of cultivated ginger, and the prospects for varietal improvement.

    Citation: Yusuff Oladosu, Mohd Y Rafii, Fatai Arolu, Suganya Murugesu, Samuel Chibuike Chukwu, Monsuru Adekunle Salisu, Ifeoluwa Kayode Fagbohun, Taoheed Kolawole Muftaudeen, Asma Ilyani Kadar. Genetic diversity and utilization of ginger (Zingiber officinale) for varietal improvement: A review[J]. AIMS Agriculture and Food, 2024, 9(1): 183-208. doi: 10.3934/agrfood.2024011

    Related Papers:

    [1] Shumoua F. Alrzqi, Fatimah A. Alrawajeh, Hany N. Hassan . An efficient numerical technique for investigating the generalized Rosenau–KDV–RLW equation by using the Fourier spectral method. AIMS Mathematics, 2024, 9(4): 8661-8688. doi: 10.3934/math.2024420
    [2] Xiaoli Wang, Lizhen Wang . Traveling wave solutions of conformable time fractional Burgers type equations. AIMS Mathematics, 2021, 6(7): 7266-7284. doi: 10.3934/math.2021426
    [3] Zhengang Zhao, Yunying Zheng, Xianglin Zeng . Finite element approximation of fractional hyperbolic integro-differential equation. AIMS Mathematics, 2022, 7(8): 15348-15369. doi: 10.3934/math.2022841
    [4] Ailing Zhu, Yixin Wang, Qiang Xu . A weak Galerkin finite element approximation of two-dimensional sub-diffusion equation with time-fractional derivative. AIMS Mathematics, 2020, 5(5): 4297-4310. doi: 10.3934/math.2020274
    [5] Jian-Gen Liu, Jian Zhang . A new approximate method to the time fractional damped Burger equation. AIMS Mathematics, 2023, 8(6): 13317-13324. doi: 10.3934/math.2023674
    [6] Weiwen Wan, Rong An . Convergence analysis of Euler and BDF2 grad-div stabilization methods for the time-dependent penetrative convection model. AIMS Mathematics, 2024, 9(1): 453-480. doi: 10.3934/math.2024025
    [7] Shanhao Yuan, Yanqin Liu, Yibin Xu, Qiuping Li, Chao Guo, Yanfeng Shen . Gradient-enhanced fractional physics-informed neural networks for solving forward and inverse problems of the multiterm time-fractional Burger-type equation. AIMS Mathematics, 2024, 9(10): 27418-27437. doi: 10.3934/math.20241332
    [8] Xin Zhao, Xin Liu, Jian Li . Convergence analysis and error estimate of finite element method of a nonlinear fluid-structure interaction problem. AIMS Mathematics, 2020, 5(5): 5240-5260. doi: 10.3934/math.2020337
    [9] Zhichao Fang, Ruixia Du, Hong Li, Yang Liu . A two-grid mixed finite volume element method for nonlinear time fractional reaction-diffusion equations. AIMS Mathematics, 2022, 7(2): 1941-1970. doi: 10.3934/math.2022112
    [10] Muhammad Asim Khan, Norma Alias, Umair Ali . A new fourth-order grouping iterative method for the time fractional sub-diffusion equation having a weak singularity at initial time. AIMS Mathematics, 2023, 8(6): 13725-13746. doi: 10.3934/math.2023697
  • Ginger is widely cultivated globally and considered the third most important spice crop due to its medicinal properties. It is cultivated for its therapeutic potential in treating different medical conditions and has been extensively researched for its pharmacological and biochemical properties. Despite its significant value, the potential for genetic improvement and sustainable cultivation has been largely ignored compared to other crop species. Similarly, ginger cultivation is affected by various biotic stresses such as viral, bacterial, and fungal infections, leading to a significant reduction in its potential yields. Several techniques, such as micropropagation, germplasm conservation, mutation breeding, and transgenic have been extensively researched in enhancing sustainable ginger production. These techniques have been utilized to enhance the quality of ginger, primarily due to its vegetative propagation mode. However, the ginger breeding program has encountered challenges due to the limited genetic diversity. In the selection process, it is imperative to have a broad range of genetic variations to allow for an efficient search for the most effective plant types. Despite a decline in the prominence of traditional mutation breeding, induced mutations remain extremely important, aided by a range of biotechnological tools. The utilization of in vitro culture techniques serves as a viable alternative for the propagation of plants and as a mechanism for enhancing varietal improvement. This review synthesizes knowledge on limitations to ginger cultivation, conservation, utilization of cultivated ginger, and the prospects for varietal improvement.



    In this article, we consider the following time-fractional generalized Rosenau-RLW-Burgers equation:

    utC0Dαtuxx+C0Dβtuxxxx+uxuxx+f(u)x=g(x,t), (x,t)Ω×J, (1.1)

    with boundary conditions

    u(x,t)=uxx(x,t)=0, (x,t)Ω×ˉJ, (1.2)

    and initial condition

    u(x,0)=u0(x), xΩ, (1.3)

    where Ω=(a,b) is the spatial domain, J=(0,T] is the time interval with T(0,), and g(x,t) is a known source term function. The nonlinear term f(u) satisfies the assumption condition |f(u)|cf(u)|u|, where cf(u) is a positive constant on u. C0Dαtu and C0Dβtu are both Caputo fractional derivatives with 0<α,β<1. Since C0Dγtu=γ(uu0)tγ, all of the above Caputo fractional derivatives can be converted into the Riemann-Liouville fractional derivative, note that

    γutγ=1Γ(1γ)tt0u(x,s)(ts)γds,0<γ<1. (1.4)

    Specifically, when α=1, β=1, (1.1) degenerates into the generalized Rosenau-RLW-Burgers equation which can be seen as the combined system between the generalized Rosenau-RLW equation and the generalized Rosenau-Burgers equation.

    The RLW equation, the Rosenau equation, and their combined systems with other equations are significant mathematical and physical equations that effectively describe nonlinear wave behaviors. These equations have become interesting topics in the study of nonlinear dispersion dynamics. Since obtaining analytical solutions for these equations is challenging, studying their numerical methods is paramount. Over the years, there has been extensive research on numerical methods for solving this type of equation. In [1], Atouani and Omrani discussed the numerical solution of the Rosenau-RLW (RRLW) equation based on the Galerkin finite element method. In [2], He and Pan developed a three-level, linearly implicit finite difference method for solving the generalized Rosenau-Kawahara-RLW equation. In [3], Wongsaijai and Poochinapan developed a pseudo-compact finite difference scheme for solving the generalized Rosenau-RLW-Burgers equation. In [4], Mouktonglang et al. analyzed a generalized Rosenau-RLW-Burgers equation with periodic initial-boundary value. For more papers on related equations, please refer to [5,6,7,8]. It is worth noting that the literature on the fractional generalized Rosenau-RLW-Burgers equation is relatively scarce, and its analytical solution is difficult to obtain. Therefore, we have to consider effective numerical methods such as finite element methods [9,10,11,12], finite difference methods [13,14,15], finite volume methods [16], spectral methods [17,18,19], and mixed finite element methods [20,21,22]. In addition, the existence of time-fractional derivatives increases the difficulty of studying numerical methods. Therefore, it is crucial to choose an appropriate high-order approximation formula for the fractional derivative to establish a stable numerical scheme for (1.1).

    In 1986, Lubich [23] proposed the convolution quadrature (CQ) formula for Riemann Liouville fractional operators using the discrete convolution. In [24], Chen et al. developed an alternating direction implicit fractional trapezoidal rule type to solve a two-dimensional fractional evolution equation. In [25], Jin et al. proposed a corrected approximation formula for high-order BDFs through appropriate initial modifications to discretize fractional evolution equations. Based on the CQ formula, in [26], Liu et al. developed the shifted convolution quadrature (SCQ) theory, which extended the CQ formula at xnθ and discussed the constraints of parameter θ. In [27], Yin et al. studied the generalized BDF2-θ with the finite element method for solving the fractional mobile/immobile transport model, and also developed a correction scheme by adding the starting part to restore convergence order. For more related papers, please refer to [28,29,30,31,32,33].

    In this article, we develop the generalized BDF2-θ in time combined with the mixed finite element method in space to solve (1.1). The focuses of this article are as follows:

    ● It is noted that the time-fractional generalized Rosenau-RLW-Burgers equation containing two time-fractional operators is studied.

    ● The stability of the time-fractional generalized Rosenau-RLW-Burgers equation (1.1) based on the mixed finite element method is given.

    ● Based on a comprehensive analysis of some numerical examples, the numerical method's feasibility and effectiveness have been extensively validated. Specifically, the issue of decreasing the convergence rate of nonsmooth solutions is solved by adding correction terms.

    The structure of this article is as follows: In Section 2, the generalized BDF2-θ is introduced, and the fully discrete mixed finite element scheme is provided. In Section 3, the existence and uniqueness theorem for the fully discrete mixed finite element scheme is given. In Section 4, the stability of the scheme is proved. In Section 5, some numerical examples with smooth and nonsmooth solutions based on the discrete scheme are presented. In Section 6, some conclusions are given.

    In this section, we present the fully discrete mixed finite element scheme for (1.1) in space, which combines the generalized BDF2-θ in time. The generalized BDF2-θ with the starting part is introduced in [27]. Further, we divide the time interval [0,T] into 0=t0<t1<<tN1<tN=T, and let tn=nτ(n=1,2,,N), where τ is time step length size and N is a positive integer.

    For the convenience of research, set ˆu:=uu0, and assume that ˆu has the following form:

    ˆu(x,t)=ˆu1(x,t)+ˆu2(x,t):=κj=1cjtσj+tσκ+1ϕ(x,t), (2.1)

    where cj=c(x), 1<σ1<σ2<<σκ<σκ+1 and ϕ(x,t) is sufficiently differentiable with respect to t.

    Using ˆu:=uu0, we can write (1.1)–(1.3) as

    ˆutαˆuxxtα+βˆuxxxxtβ+ˆuxˆuxx+f(ˆu)x=ˆg(x,t),(x,t)Ω×J, (2.2)

    with boundary conditions

    ˆu(x,t)=ˆuxx(x,t)=0,(x,t)Ω×ˉJ, (2.3)

    and initial condition

    ˆu(x,0)=0,xΩ, (2.4)

    where ˆg(x,t)=g(x,t)+(u0)x(u0)xx.

    Now, we introduce an auxiliary variable q=ˆuxx to obtain the following coupled system:

    ˆutαˆuxxtα+βqxxtβ+ˆuxˆuxx+f(ˆu)x=ˆg(x,t), (2.5)

    and

    q=ˆuxx. (2.6)

    Multiplying (2.5) and (2.6) by vH10 and wH10, respectively, integrating the result equations, and using integration by parts, we obtain the following weak form:

    (ˆut,v)+(αˆuxtα,vx)(βqxtβ,vx)(ˆu,vx)+(ˆux,vx)(f(ˆu),vx)=(ˆg,v),vH10, (2.7)

    and

    (q,w)+(ˆux,wx)=0,wH10. (2.8)

    To provide the fully discrete numerical scheme, we first introduce the relevant formulas and lemmas for the generalized BDF2-θ.

    For smooth functions ˆu and q in [0,T], we let ˆun=ˆu(,tn), qn=(,tn). The approximation formula for the Riemann-Liouville fractional derivative at time tnθ with the generalized BDF2-θ is

    γˆunθtγ=τγnj=0ω(γ)jˆunj+τγκj=1ω(γ)n,jˆuj+Rnθγ:=Ψγ,nτˆu+Sγ,nτ,κˆu+Rnθγ, (2.9)

    where |Rnθγ|Cτ2.

    The discrete convolution part is denoted as

    Ψγ,nτˆu:=τγnj=0ω(γ)jˆunj, (2.10)

    and the starting part is

    Sγ,nτ,κˆu:=τγκj=1ω(γ)n,jˆuj. (2.11)

    The convolution weights {ω(γ)j}j=0 in (2.10) are generated by the following generating function:

    ω(γ)(ξ)=(3γ2θ2γ2γ2θγξ+γ2θ2γξ2)γ. (2.12)

    Lemma 2.1. [27] We give the convolution weights {ω(γ)j}j=0 of the generalized BDF2-θ as follows:

    ω(γ)0=(3γ2θ2γ)γ,ω(γ)1=2(θγ)(2γ3γ2θ)1γ,ω(γ)j=2γj(3γ2θ)[2(γθ)(j1γ1)ω(γ)j1+(γ2θ)(1j22γ)ω(γ)j2],j2. (2.13)

    Lemma 2.2. [27] The starting weights {ω(γ)n,j}κj=1 of the generalized BDF2-θ are given as the following:

    κj=1ω(γ)n,jj=Γ(+1)Γ(γ+1)(nθ)γnj=1ω(γ)njj,=σ1,σ2,,σκ. (2.14)

    Lemma 2.3. [12,15] For ˆuC4[0,π], the following two approximate formulas at tnθ hold:

    g(tnθ)=gnθ+O(τ2),f(ˆu(tnθ))=f(ˆunθ)+O(τ2), (2.15)

    where gnθ:=(1θ)gn+θgn1 and f(ˆunθ):=(2θ)f(ˆun1)(1θ)f(ˆun2).

    Next, we have the following approximate formula:

    ˆu(tnθ)=ˆunθ+S0,nτ,κˆu+O(τ2):=(1θ)ˆun+θˆun1+S0,nτ,κˆu+O(τ2). (2.16)

    Without considering the starting part, we can obtain the weak form of (2.5) and (2.6) at tnθ:

    (Ψ1,nτˆu,v)+(Ψα,nτˆux,vx)(Ψβ,nτqx,vx)(ˆunθ,vx)+(ˆunθx,vx)=(f(ˆunθ),vx)+(ˆgnθ,v)(Rnθ1,v), (2.17)

    and

    (qnθ,w)+(ˆunθx,wx)=(Rnθ2,w), (2.18)

    where Rnθ1=O(τ2) and Rnθ2=O(τ2).

    To establish the fully discrete mixed finite element scheme, we introduce the following finite element space:

    Vh={vh|vhH10,vh|IiPk(Ii),IiTh,k1},

    where Th is a subdivision of ˉΩ=[a,b] into M subintervals Ii=[xi1,xi], with hi=xixi1, h=max1iMhi, and Pk(Ii) represent the polynomials with a degree less than or equal to k in Ii.

    Next, we provide linear basis functions {φi}Mi=1 of finite element space Vh as follows:

    φi(x)={1+xxihi,xIi,1xxihi+1,xIi+1,0,others, (2.19)
    φM(x)={1+xxMhM,xIM,0,others. (2.20)

    Based on the above finite element space, we find {Unθ,Qnθ}Vh×Vh satisfying

    (Ψ1,nτU,V)+(Ψα,nτUx,Vx)(Ψβ,nτQx,Vx)(Unθ,Vx)+(Unθx,Vx)=(f(Unθ),Vx)+(ˆgnθ,V),VVh, (2.21)

    and

    (Qnθ,W)+(Unθx,Wx)=0,WVh. (2.22)

    Theorem 3.1. The solution of the fully discrete mixed finite element scheme (2.21) and (2.22) is uniquely solvable.

    Proof. Taking basis functions {φi}Mi=1 of finite element space Vh, we have

    Un=Mi=1uniφi,Qn=Mi=1qniφi. (3.1)

    Taking V=φj and W=φj from (2.21) and (2.22), we have

    τ1ω(1)0AUn+ταω(α)0BUn+(1θ)BUn(1θ)CUnτβω(β)0BQn=Fnθ+Gnθτ1nk=1ω(1)kAUnkταnk=1ω(α)kBUnkθBUn1+θCUn1+τβnk=1ω(β)kBQnk, (3.2)

    and

    (1θ)BUn+(1θ)AQn=θBUnθAQn, (3.3)

    where

    A=[(φi,φj)]T1i,jM,B=[(φix,φjx)]T1i,jM,C=[(φi,φjx)]T1i,jM,Fnθ=[(f(Unθ),φ1x),,(f(Unθ),φMx)]T,Gnθ=[(gnθ,φ1),,(gnθ,φM)]T.

    Obviously, A and B are symmetric and positive definite. Further, processing the boundary and simplifying the right-hand term, we have

    (τ1ω(1)0˜A+ταω(α)0˜B+(1θ)˜B(1θ)˜C)Unτβω(β)0˜BQn=Hn1, (3.4)

    and

    (1θ)˜BUn+(1θ)˜AQn=Hn2, (3.5)

    where

    Hn1=Fnθ+Gnθτ1nk=1ω(1)kAUnkταnk=1ω(α)kBUnkθBUn1+θCUn1+τβnk=1ω(β)kBQnk,Hn2=θBUnθAQn.

    Multiplying (3.4) by τ˜A1, we have

    (ω(1)0E+τ1αω(α)0˜A1˜B+τ(1θ)˜A1˜Bτ(1θ)˜A1˜C)Unτ1βω(β)0˜A1˜BQn=τ˜A1Hn1. (3.6)

    Further, rewrite (3.5) as

    Qn=Hn3, (3.7)

    where Hn3=(1θ)1˜A1Hn2˜A1˜BUn.

    Substitute (3.7) into (3.6) to obtain

    KUn=Hn4, (3.8)

    where

    K=ω(1)0E+τ1αω(α)0˜A1˜B+τ(1θ)˜A1˜Bτ(1θ)˜A1˜C+τ1βω(β)0˜A1˜B˜A1˜B,
    Hn4=τ˜A1Hn1+τ1β(1θ)1ω(β)0˜A1˜B˜A1Hn2.

    It is easy to see that (3.7) and (3.8) are equivalent to (3.4) and (3.5). Due to τ being small enough and E being an identity matrix, the matrix K is invertible. Additionally, since Uk(k=0,1,,n1) is known, after multiple iterations, (3.7) and (3.8) have a unique solution.

    Remark 3.1. Since we introduce the auxiliary variable q=ˆuxx to transform (2.2) into a first-order system (2.5) and (2.6), according to [34,35], the mixed finite element scheme (2.21) and (2.22) do not need to satisfy the LBB condition. In [36], the LBB condition is a condition for the problem to be well posed. From this perspective, typically satisfying the LBB condition is to obtain the existence and uniqueness of a solution. Although the mixed finite element scheme in this article does not need to satisfy the LBB condition, it still satisfies the existence and uniqueness of a solution.

    Lemma 4.1. [12,14] For UmVh, satisfying Um=0(m<0), we have

    (Ψ1,mtU,Umθ)14τ(H[Um]H[Um1]), m1,

    where

    H[Um]=(32θ)

    and

    \mathbb{H}[U^m]\ge\frac{1}{1-\theta}\|U^m\|^2,\ m\ge1.

    Lemma 4.2. [27] } {For any vector (v^0, v^1, \cdots, v^{n-1})\in \mathbb{R}^n , defining \{\omega_k^{(\gamma)}\}_{k = 0}^{\infty}\; (0 < \gamma < 1) be a sequence of coefficients of the generating function \omega^{(\gamma)}(\xi) in (2.12) and 0\le\theta\le\min\{\gamma, \frac{1}{2}\} , we have

    \sum\limits_{m = 1}^{n-1}v^m\sum\limits_{k = 1}^{m}\omega_{m-k}^{(\gamma)} v^k\ge0,\ n\ge1.

    Theorem 4.1. Let u^n_h = U^n+\bar{u}_h^0 , where \bar{u}_h^0 is an approximation of u_0 , the following stability of the fully discrete scheme (2.21) and (2.22) holds:

    \begin{equation} \|u_h^L\|^2\ \le\ C\left(\|\bar{u}_h^0 \|^2+\tau\sum\limits_{n = 1}^{L}\|g^{n-\theta} \|^2\right),\ 1\le L \le N, \end{equation} (4.1)

    where C is a positive constant independent of h and \tau .

    Proof. Taking V = U^{n-\theta} , W = \Psi_{\tau}^{\beta, n}Q , (2.21) and (2.22) can be written as

    \begin{equation} \begin{split} &(\Psi_{\tau}^{1,n} U,U^{n-\theta})+(\Psi_{\tau}^{\alpha,n} U_{x},U^{n-\theta}_x)-(\Psi_{\tau}^{\beta,n}Q_{x},U^{n-\theta}_x)+\|U_{x}^{n-\theta }\|^2\\ = &(U^{n-\theta},U^{n-\theta}_x)+(f(U^{n-\theta}),U^{n-\theta}_x)+(\hat{g}^{n-\theta},U^{n-\theta}), \end{split} \end{equation} (4.2)

    and

    \begin{equation} (Q^{n-\theta},\Psi_{\tau}^{\beta,n}Q)+(U^{n-\theta}_{x},\Psi_{\tau}^{\beta,n}Q_x) = 0. \end{equation} (4.3)

    Adding (4.2) and (4.3), we have

    \begin{equation} \begin{split} &(\Psi_{\tau}^{1,n} U,U^{n-\theta})+(\Psi_{\tau}^{\alpha,n} U_{x},U^{n-\theta}_x)+(Q^{n-\theta},\Psi_{\tau}^{\beta,n}Q)+\|U_{x}^{n-\theta }\|^2\\ = &(U^{n-\theta},U^{n-\theta}_x)+(f(U^{n-\theta}),U^{n-\theta}_x)+(\hat{g}^{n-\theta},U^{n-\theta}). \end{split} \end{equation} (4.4)

    Using Lemma 4.1, we obtain

    \begin{equation} \begin{split} &\frac{1}{4\tau}(\mathbb{H}[U^n]-\mathbb{H}[U^{n-1}])+(\Psi_{\tau}^{\alpha,n} U_{x},U^{n-\theta}_x)+(Q^{n-\theta},\Psi_{\tau}^{\beta,n}Q)+\|U_{x}^{n-\theta }\|^2\\ \le&(U^{n-\theta},U^{n-\theta}_x)+(f(U^{n-\theta}),U^{n-\theta}_x)+(\hat{g}^{n-\theta},U^{n-\theta}). \end{split} \end{equation} (4.5)

    Multiply (4.5) by 4\tau and sum it with respect to n from 1 to L to get

    \begin{equation} \begin{split} &\mathbb{H}[U^L]-\mathbb{H}[U^{0}]+ 4\tau\sum\limits_{n = 1}^{L}(\Psi_t^{\alpha,n} U_{x},U^{n-\theta}_x)+ 4\tau\sum\limits_{n = 1}^{L}(Q^{n-\theta},\Psi_{\tau}^{\beta,n}Q)+ 4\tau\sum\limits_{n = 1}^{L}\|U_{x}^{n-\theta }\|^2\\ \le&4\tau\left(\sum\limits_{n = 1}^{L}(U^{n-\theta},U^{n-\theta}_x)+\sum\limits_{n = 1}^{L}(f(U^{n-\theta}),U^{n-\theta}_x)+\sum\limits_{n = 1}^{L}(\hat{g}^{n-\theta},U^{n-\theta})\right). \end{split} \end{equation} (4.6)

    By the Hölder inequality and Young inequality, the three terms on the right-hand side of (4.6) can be expanded to

    \begin{equation} \sum\limits_{n = 1}^{L}(U^{n-\theta},U^{n-\theta}_x)\le\frac{1}{2}\sum\limits_{n = 1}^{L}\|U^{n-\theta}\|^2+\frac{1}{2}\sum\limits_{n = 1}^{L}\|U_{x}^{n-\theta }\|^2, \end{equation} (4.7)
    \begin{equation} \begin{split} \sum\limits_{n = 1}^{L}(f(U^{n-\theta}),U^{n-\theta}_x) \le&\sum\limits_{n = 1}^{L}\|c_f(U^{n-\theta})\|_{\infty}\|U^{n-\theta}\|\|U^{n-\theta}_x\| \\ \le& C\sum\limits_{n = 1}^{L}\|U^{n-\theta}\|^2+\frac{1}{2}\sum\limits_{n = 1}^{L}\|U_{x}^{n-\theta }\|^2, \end{split} \end{equation} (4.8)
    \begin{equation} \sum\limits_{n = 1}^{L}(\hat{g}^{n-\theta},U^{n-\theta})\le\frac{1}{2}\sum\limits_{n = 1}^{L}\|\hat{g}^{n-\theta}\|^2 +\frac{1}{2}\sum\limits_{n = 1}^{L}\|U^{n-\theta}\|^2, \end{equation} (4.9)

    where we use the bounded condition \|c_f(U^{n-\theta})\|_{\infty}\leq C .

    Substituting (4.7)–(4.9) into (4.6), we arrive at

    \begin{equation} \begin{split} & \mathbb{H}[U^L]-\mathbb{H}[U^{0}]+ 4\tau\sum\limits_{n = 1}^{L}(\Psi_t^{\alpha,n} U_{x},U^{n-\theta}_x)+ 4\tau\sum\limits_{n = 1}^{L}(Q^{n-\theta},\Psi_{\tau}^{\beta,n}Q)\\ \le& C\tau \left(\sum\limits_{n = 1}^{L}\|\hat{g}^{n-\theta}\|^2+\sum\limits_{n = 1}^{L}\|U^{n-\theta}\|^2\right). \end{split} \end{equation} (4.10)

    In what follows, using Lemmas 4.1 and 4.2 and the Gronwall inequality, we have

    \begin{equation} \|U^L\|^2-\|U^0\|^2\le C\tau\sum\limits_{n = 1}^{L}\|\hat{g}^{n-\theta}\|^2. \end{equation} (4.11)

    Since U^0 = 0 , we obtain

    \begin{equation} \|U^L\|^2\le C\tau\sum\limits_{n = 1}^{L}\|\hat{g}^{n-\theta}\|^2. \end{equation} (4.12)

    Noting that U^L = u^L_h-\bar{u}_h^0 and using the triangle inequality, the conclusion of this theorem is derived.

    In this section, we present numerical simulation results for both smooth and nonsmooth solutions to verify the effectiveness of the numerical scheme. Next, we set the nonlinear term f(u) = u^2 , the spatial domain \Omega = (0, 1) , and the time interval J = (0, 1] .

    Example 5.1 The exact solution is u(x, t) = t^{2}\sin(2\pi x) satisfying u(x, 0) = 0 , and the known source function g(x, t) is given by

    \begin{equation} g(x,t) = \sin(2\pi x)\left(2t+\frac{8\pi ^2t^{2-\alpha}}{\Gamma(3-\alpha)}+\frac{32\pi^4t^{2-\beta}}{\Gamma(3-\beta)}+4\pi^2t^2\right)+2\pi t^2\cos(2\pi x)+2\pi t^4\sin(4\pi x ). \end{equation} (5.1)

    In Table 1, fixing \tau = 1/1000 and choosing h = 1/10, 1/20, 1/40, 1/80 , we provide the L^2 -errors and the spatial convergence rates for u and q with different parameters \alpha , \beta , and \theta , where \theta\le\min\{\alpha, \beta, \frac{1}{2}\} . Similarly, in Table 2, taking h = 1/1000 , we calculate the L^2 -errors and the time convergence rates with \tau = 1/10, 1/20, 1/40, 1/80 . From Tables 1 and 2, one can see that the convergence rates in both space and time are close to 2 when the exact solution is smooth. In Table 3, if \theta > \min\{\alpha, \beta, \frac{1}{2}\} , the convergence accuracy will be unstable, which verifies the range of \theta values from a numerical perspective. To observe the effect of numerical simulation more clearly, we provide the comparison images between numerical solutions and exact solutions. In Figure 1, we show distinct comparison images of the numerical solutions of u_h and q_h and the exact solutions of u and q with \tau = 1/1000 , h = 1/80 , \alpha = 0.2 , \beta = 0.8 , and \theta = 0.2 .

    Table 1.  Spatial convergence results with \tau = 1/1000 .
    \alpha \beta \theta h \|u_h-u\| Rate \|q_h-q\| Rate
    1/10 2.2165E-02 - 2.6449E-02 -
    0.2 1/20 5.6375E-03 1.9752 6.1401E-03 2.1069
    1/40 1.4151E-03 1.9941 1.5121E-03 2.0217
    1/80 3.5399E-04 1.9992 3.8250E-04 1.9830
    1/10 2.2165E-02 - 2.6470E-02 -
    0.2 0.8 -0.5 1/20 5.6369E-03 1.9753 6.1607E-03 2.1032
    1/40 1.4146E-03 1.9945 1.5327E-03 2.0070
    1/80 3.5346E-04 2.0008 4.0308E-04 1.9269
    1/10 2.2164E-02 - 2.6490E-02 -
    -1 1/20 5.6364E-03 1.9754 6.1810E-03 2.0996
    1/40 1.4141E-03 1.9949 1.5530E-03 1.9928
    1/80 3.5293E-04 2.0024 4.2346E-04 1.8747
    1/10 2.1828E-02 - 4.0463E-02 -
    0.5 1/20 5.5499E-03 1.9756 9.6844E-03 2.0629
    1/40 1.3932E-03 1.9941 2.3964E-03 2.0148
    1/80 3.4861E-04 1.9987 5.9910E-04 2.0000
    1/10 2.1828E-02 - 4.0465E-02 -
    0.5 0.5 0.2 1/20 5.5499E-03 1.9757 9.6868E-03 2.0626
    1/40 1.3931E-03 1.9941 2.3988E-03 2.0137
    1/80 3.4854E-04 1.9989 6.0151E-04 1.9956
    1/10 2.1826E-02 - 4.0523E-02 -
    -1 1/20 5.5484E-03 1.9759 9.7445E-03 2.0561
    1/40 1.3916E-03 1.9953 2.4564E-03 1.9880
    1/80 3.4706E-04 2.0035 6.5921E-04 1.8977
    1/10 2.1399E-02 - 5.8275E-02 -
    0.2 1/20 5.4386E-03 1.9763 1.4195E-02 2.0375
    1/40 1.3651E-03 1.9943 3.5279E-03 2.0085
    1/80 3.4156E-04 1.9988 8.8248E-04 1.9992
    1/10 2.1399E-02 - 5.8276E-02 -
    0.8 0.2 0 1/20 5.4386E-03 1.9763 1.4196E-02 2.0374
    1/40 1.3650E-03 1.9943 3.5290E-03 2.0082
    1/80 3.4153E-04 1.9989 8.8360E-04 1.9978
    1/10 2.1396E-02 - 5.8410E-02 -
    -1 1/20 5.4352E-03 1.9769 1.4329E-02 2.0272
    1/40 1.3616E-03 1.9970 3.6619E-03 1.9683
    1/80 3.3812E-04 2.0097 1.0167E-03 1.8487

     | Show Table
    DownLoad: CSV
    Table 2.  Time convergence results with h = 1/1000 .
    \alpha \beta \theta \tau \|u_h-u\| Rate \|q_h-q\| Rate
    1/10 1.9614E-03 - 7.7510E-02 -
    0.2 1/20 5.0017E-04 1.9714 1.9814E-02 1.9679
    1/40 1.2703E-04 1.9773 5.0533E-03 1.9712
    1/80 3.2128E-05 1.9832 1.2867E-03 1.9736
    1/10 7.2565E-03 - 2.8650E-01 -
    0.2 0.8 -0.5 1/20 1.8309E-03 1.9867 7.2335E-02 1.9858
    1/40 4.6032E-04 1.9919 1.8206E-02 1.9903
    1/80 1.1551E-04 1.9946 4.5778E-03 1.9917
    1/10 1.2197E-02 - 4.8151E-01 -
    -1 1/20 3.1215E-03 1.9662 1.2329E-01 1.9655
    1/40 7.8542E-04 1.9907 3.1091E-02 1.9875
    1/80 1.9579E-04 2.0042 7.8135E-03 1.9924
    1/10 5.3041E-04 - 2.1042E-02 -
    0.5 1/20 1.3386E-04 1.9863 5.3622E-03 1.9724
    1/40 3.3676E-05 1.9910 1.3637E-03 1.9753
    1/80 8.4582E-06 1.9933 3.4761E-04 1.9720
    1/10 1.1457E-03 - 4.5326E-02 -
    0.5 0.5 0.2 1/20 2.8884E-04 1.9879 1.1461E-02 1.9836
    1/40 7.2679E-05 1.9907 2.8911E-03 1.9871
    1/80 1.8260E-05 1.9929 7.2972E-04 1.9862
    1/10 1.5622E-02 - 6.1668E-01 -
    -1 1/20 4.0111E-03 1.9615 1.5838E-01 1.9611
    1/40 1.0095E-03 1.9904 3.9868E-02 1.9901
    1/80 2.5362E-04 1.9929 1.0017E-02 1.9928
    1/10 5.2861E-04 - 2.0885E-02 -
    0.5 1/20 1.3465E-04 1.9730 5.3245E-03 1.9717
    1/40 3.4107E-05 1.9811 1.3530E-03 1.9765
    1/80 8.5857E-06 1.9901 3.4270E-04 1.9812
    1/10 2.2763E-03 - 8.9851E-02 -
    0.8 0.5 0 1/20 5.7402E-04 1.9875 2.2660E-02 1.9874
    1/40 1.4460E-04 1.9890 5.7086E-03 1.9889
    1/80 3.6405E-05 1.9899 1.4372E-03 1.9898
    1/10 1.5534E-02 - 6.1313E-01 -
    -1 1/20 3.9902E-03 1.9609 1.5749E-01 1.9609
    1/40 1.0033E-03 1.9917 3.9605E-02 1.9916
    1/80 2.5177E-04 1.9946 9.9391E-03 1.9945

     | Show Table
    DownLoad: CSV
    Table 3.  Time convergence results with h = 1/1000 .
    \alpha \beta \theta \tau \|u_h-u\| Rate \|q_h-q\| Rate
    1/10 2.4519E-03 - 9.6803E-02 -
    0.1 0.9 0.11 1/20 6.2095E-04 1.9813 2.4519E-02 1.9811
    1/40 5.2080E-04 0.2538 2.0647E-02 0.2480
    1/80 4.0699E+02 -19.5758 1.6068E+04 -19.5699
    1/10 1.8093E-03 - 7.1425E-02 -
    0.5 0.5 0.51 1/20 4.5109E-04 2.0039 1.7808E-02 2.0039
    1/40 2.0018E-04 1.1721 7.8154E-03 1.1881
    1/80 5.1099E-04 -1.3520 2.0090E-02 -1.3621
    1/10 4.8552E-04 - 1.9119E-02 -
    0.8 0.2 0.21 1/20 1.2438E-04 1.9647 4.8398E-03 1.9820
    1/40 5.8298E-05 1.0933 2.2123E-03 1.1294
    1/80 2.3759E-02 -8.6708 9.3790E-01 -8.7277

     | Show Table
    DownLoad: CSV
    Figure 1.  u_h , q_h and u , q with \tau = 1/1000 , h = 1/80 , \alpha = 0.2 , \beta = 0.8 , \theta = 0.2 .

    Example 5.2 In this example, we consider the case where the nonsmooth solution is taken as u = (t^{\alpha+\beta}+t^3) \sin(2\pi x) , and the known source term g(x, t) is

    \begin{equation} \begin{split} g(x,t) = &\sin(2\pi x)\left[(\alpha+\beta)t^{\alpha+\beta-1}+3t^2+4\pi^2\left(\frac{t^{\beta}\Gamma(\alpha+\beta+1)}{\Gamma(\beta+1)}+\frac{6t^{3-\alpha}}{\Gamma(4-\alpha)}\right)\right]\\ &+\sin(2\pi x)\left[16\pi^4\left(\frac{t^{\alpha}\Gamma(\alpha+\beta+1)}{\Gamma(\alpha+1)}+\frac{6t^{3-\beta}}{\Gamma(4-\beta)}\right)+4\pi^2(t^{\alpha+\beta}+t^3)\right]\\ &+2\pi (t^{\alpha+\beta}+t^3)\cos(2\pi x)+2\pi(t^{\alpha+\beta} +t^3)^2\sin(4\pi x ). \end{split} \end{equation} (5.2)

    Table 4 presents the L^2 -errors and the spatial convergence rates of u and q before and after adding the starting parts with h = 1/10, 1/20, 1/40, 1/80 , \tau = 1/2000 , where Erroro denotes the error before adding the starting parts and Errorc denotes the error after adding the starting parts.

    Table 4.  Spatial convergence results with \alpha = 0.9 , \beta = 0.2 , \tau = 1/2000 .
    \|u_h-u\| \|q_h-q\|
    \theta h Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 4.2694E-02 - 4.2693E-02 - 1.2162E-01 - 1.2163E-01 -
    0.2 1/20 1.0850E-02 1.9763 1.0850E-02 1.9763 2.9675E-02 2.0351 2.9679E-02 2.0349
    1/40 2.7235E-03 1.9942 2.7234E-03 1.9942 7.3708E-03 2.0094 7.3746E-03 2.0088
    1/80 6.8165E-04 1.9984 6.8155E-04 1.9985 1.8361E-03 2.0051 1.8400E-03 2.0029
    1/10 4.2693E-02 - 4.2692E-02 - 1.2165E-01 - 1.2168E-01 -
    -0.5 1/20 1.0849E-02 1.9764 1.0849E-02 1.9764 2.9706E-02 2.0340 2.9728E-02 2.0331
    1/40 2.7227E-03 1.9945 2.7221E-03 1.9947 7.4017E-03 2.0048 7.4237E-03 2.0016
    1/80 6.8085E-04 1.9996 6.8028E-04 2.0005 1.8671E-03 1.9871 1.8891E-03 1.9744
    1/10 4.2691E-02 - 4.2690E-02 - 1.2172E-01 - 1.2177E-01 -
    -1 1/20 1.0848E-02 1.9766 1.0846E-02 1.9767 2.9776E-02 2.0314 2.9822E-02 2.0297
    1/40 2.7209E-03 1.9952 2.7197E-03 1.9957 7.4714E-03 1.9947 7.5178E-03 1.9880
    1/80 6.7905E-04 2.0025 6.7786E-04 2.0044 1.9368E-03 1.9477 1.9833E-03 1.9224

     | Show Table
    DownLoad: CSV

    The spatial convergence rate is almost unaffected before and after correction, based on a comparison of the data in Table 5. In Tables 6 and 7, we present the L^2 -errors and the time convergence rates of u and q before and after adding the starting parts. Without the addition of the starting parts, the time convergence rates are unstable and cannot reach the second-order convergence results computed by the generalized BDF2- \theta . After adding the starting parts, the time convergence rates keep around 2 , indicating that the starting part plays a major role in correcting the time convergence rates.

    Table 5.  Spatial convergence results with \alpha = 0.5 , \beta = 0.7 , \tau = 1/2000 .
    \|u_h-u\| \|q_h-q\|
    \theta h Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 4.3949E-02 - 4.3948E-02 - 6.8838E-02 - 6.8891E-02 -
    0.5 1/20 1.1177E-02 1.9753 1.1176E-02 1.9754 1.6266E-02 2.0814 1.6318E-02 2.0778
    1/40 2.8070E-03 1.9934 2.8057E-03 1.9940 3.9696E-03 2.0348 4.0219E-03 2.0205
    1/80 7.0358E-04 1.9963 7.0222E-04 1.9984 9.4708E-04 2.0674 9.9935E-04 2.0088
    1/10 4.3949E-02 - 4.3948E-02 - 6.8842E-02 - 6.8897E-02 -
    0.2 1/20 1.1177E-02 1.9753 1.1176E-02 1.9754 1.6270E-02 2.0811 1.6324E-02 2.0774
    1/40 2.8069E-03 1.9935 2.8055E-03 1.9940 3.9739E-03 2.0336 4.0279E-03 2.0189
    1/80 7.0346E-04 1.9964 7.0206E-04 1.9986 9.5140E-04 2.0624 1.0054E-03 2.0023
    1/10 4.3948E-02 - 4.3946E-02 - 6.8877E-02 - 6.8974E-02 -
    -1 1/20 1.1176E-02 1.9754 1.1174E-02 1.9756 1.6304E-02 2.0788 1.6401E-02 2.0722
    1/40 2.8061E-03 1.9938 2.8035E-03 1.9948 4.0077E-03 2.0244 4.1049E-03 1.9984
    1/80 7.0259E-04 1.9978 7.0007E-04 2.0017 9.8520E-04 2.0243 1.0824E-03 1.9231

     | Show Table
    DownLoad: CSV
    Table 6.  Time convergence results with \alpha = 0.9 , \beta = 0.2 , h = 1/2000 .
    \|u_h-u\| \|q_h-q\|
    \theta \tau Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 2.1916E-03 - 4.2694E-02 - 8.6515E-02 - 1.2162E-01 -
    0.2 1/20 1.6194E-03 0.4365 1.0850E-02 1.9763 6.3929E-02 0.4365 2.9675E-02 2.0351
    1/40 1.0890E-03 0.5725 2.7235E-03 1.9942 4.2990E-02 0.5725 7.3710E-03 2.0093
    1/80 6.8790E-04 0.6627 6.8165E-04 1.9984 2.7157E-02 0.6627 1.8364E-03 2.0050
    1/10 2.5540E-03 - 4.2693E-02 - 1.0123E-01 - 1.2164E-01 -
    0 1/20 1.1111E-03 1.2007 1.0850E-02 1.9763 4.3864E-02 1.2065 2.9692E-02 2.0345
    1/40 7.7616E-04 0.5176 2.7231E-03 1.9944 3.0641E-02 0.5176 7.3878E-03 2.0069
    1/80 5.0234E-04 0.6277 6.8122E-04 1.9990 1.9831E-02 0.6277 1.8531E-03 1.9952
    1/10 2.4652E-02 - 4.2689E-02 - 9.7312E-01 - 1.2182E-01 -
    -0.5 1/20 7.1878E-03 1.7781 1.0845E-02 1.9768 2.8376E-01 1.7779 2.9872E-02 2.0279
    1/40 1.9420E-03 1.8880 2.7184E-03 1.9962 7.6702E-02 1.8874 7.5673E-03 1.9809
    1/80 5.5906E-04 1.7965 6.7658E-04 2.0064 2.2071E-02 1.7971 2.0329E-03 1.8962

     | Show Table
    DownLoad: CSV
    Table 7.  Time convergence results with \alpha = 0.5 , \beta = 0.7 , h = 1/2000 .
    \|u_h-u\| \|q_h-q\|
    \theta \tau Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 1.1456E-02 - 4.3948E-02 - 4.5228E-01 - 6.8880E-02 -
    0.5 1/20 5.0680E-03 1.1767 1.1176E-02 1.9754 2.0008E-01 1.1767 1.6307E-02 2.0786
    1/40 2.2184E-03 1.1919 2.8060E-03 1.9939 8.7577E-02 1.1919 4.0110E-03 2.0235
    1/80 9.6796E-04 1.1965 7.0250E-04 1.9979 3.8213E-02 1.1965 9.8850E-04 2.0207
    1/10 5.4375E-03 - 4.3948E-02 - 2.1466E-01 - 6.8904E-02 -
    0.2 1/20 2.5220E-03 1.1084 1.1176E-02 1.9754 9.9562E-02 1.1084 1.6332E-02 2.0769
    1/40 1.1387E-03 1.1472 2.8053E-03 1.9941 4.4952E-02 1.1472 4.0351E-03 2.0170
    1/80 5.0160E-04 1.1828 7.0188E-04 1.9989 1.9802E-02 1.1827 1.0126E-03 1.9946
    1/10 2.8636E-02 - 4.3948E-02 - 1.1304E+00 - 6.8904E-02 -
    -1 1/20 7.7097E-03 1.8931 1.1176E-02 1.9754 3.0439E-01 1.8929 1.6332E-02 2.0769
    1/40 1.9098E-03 2.0133 2.8053E-03 1.9941 7.5437E-02 2.0126 4.0351E-03 2.0170
    1/80 6.3574E-04 1.5869 7.0188E-04 1.9989 2.5098E-02 1.5877 1.0126E-03 1.9946

     | Show Table
    DownLoad: CSV

    In Figure 2, we obtain the comparison images between the numerical solution and the exact solution with \tau = 1/1000 , h = 1/80 , \alpha = 0.9 , \beta = 0.2 , and \theta = 0.2 . In Figures 3 and 4, we present the space and time convergence rate images of u_h and q_h under different parameters \alpha , \beta , and \theta . From Figure 4, one can see that the corrected scheme with the starting parts can effectively restore the second-order convergence rate for the nonsmooth problem.

    Figure 2.  u_h , q_h and u , q with \tau = 1/2000 , h = 1/80 , \alpha = 0.9 , \beta = 0.2 , \theta = 0.2 .
    Figure 3.  The spatial convergence rates in L^2 -errors with different parameters \alpha , \beta , and \theta .
    Figure 4.  The time convergence rates in L^2 -errors with different parameters \alpha , \beta , and \theta .

    Example 5.3. To better investigate the effect of changes of two fractional parameters \alpha and \beta on the convergence rates, we introduce the numerical example with two nonsmooth terms. Here, we take the nonsmooth solution u with

    u = (t^{1+\alpha}+t^{1+\beta}+t^3) \sin(2\pi x),

    and the known source term

    \begin{equation} \begin{split} g(x,t) = &\sin(2\pi x)\left[(1+\alpha)t^\alpha+(1+\beta)t^\beta+3t^2+4\pi^2\left(t\Gamma(2+\alpha)+\frac{t^{1+\beta-\alpha}\Gamma(2+\beta)}{\Gamma(2+\beta-\alpha)}+\frac{6t^{3-\alpha}}{\Gamma(4-\alpha)}\right)\right]\\ &+\sin(2\pi x)\left[16\pi^4\left(\frac{t^{1+\alpha-\beta}\Gamma(2+\alpha)}{\Gamma(2+\alpha-\beta)}+t\Gamma(2+\beta)+\frac{6t^{3-\beta}}{\Gamma(4-\beta)}\right)+4\pi^2(t^{1+\alpha}+t^{1+\beta}+t^3)\right]\\ &+2\pi (t^{1+\alpha}+t^{1+\beta}+t^3)\cos(2\pi x)+2\pi(t^{1+\alpha}+t^{1+\beta}+t^3)^2\sin(4\pi x ). \end{split} \end{equation} (5.3)

    In Table 8, we provide the errors of \|u_h-u\| and \|q_h-q\| and the spatial convergence rates under different parameters, which indicate that the corrected term hardly affects the spatial convergence rate.

    Table 8.  Spatial convergence results with \alpha = 0.5 , \beta = 0.6 , \tau = 1/2000 .
    \|u_h-u\| \|q_h-q\|
    \theta h Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 6.5710E-02 - 6.5710E-02 - 1.1335E-01 - 1.1335E-01 -
    0.5 1/20 1.6709E-02 1.9755 1.6709E-02 1.9755 2.7037E-02 2.0678 2.7037E-02 2.0678
    1/40 4.1946E-03 1.9940 4.1946E-03 1.9940 6.6773E-03 2.0176 6.6775E-03 2.0175
    1/80 1.0498E-03 1.9984 1.0498E-03 1.9984 1.6615E-03 2.0068 1.6617E-03 2.0066
    1/10 6.5710E-02 - 6.5710E-02 - 1.1336E-01 - 1.1336E-01 -
    0.2 1/20 1.6708E-02 1.9755 1.6708E-02 1.9755 2.7042E-02 2.0676 2.7042E-02 2.0676
    1/40 4.1944E-03 1.9940 4.1944E-03 1.9940 6.6826E-03 2.0167 6.6825E-03 2.0167
    1/80 1.0497E-03 1.9986 1.0497E-03 1.9985 1.6668E-03 2.0033 1.6667E-03 2.0034
    1/10 6.5709E-02 - 6.5709E-02 - 1.1339E-01 - 1.1339E-01 -
    -0.5 1/20 1.6708E-02 1.9756 1.6708E-02 1.9756 2.7078E-02 2.0661 2.7077E-02 2.0662
    1/40 4.1935E-03 1.9943 4.1935E-03 1.9943 6.7188E-03 2.0109 6.7178E-03 2.0110
    1/80 1.0487E-03 1.9995 1.0487E-03 1.9995 1.7031E-03 1.9801 1.7020E-03 1.9808

     | Show Table
    DownLoad: CSV

    In Tables 911, fixing \tau = 1/4000 , choosing h = 1/10, 1/20, 1/40, 1/80 , and changing parameters \alpha , \beta , and \theta , we provide the L^2 -errors and the time convergence rates for u and q based on the corrected scheme and uncorrected scheme. The impact of different fractional parameters on the time convergence rates of nonsmooth problems is evident from Tables 911. Furthermore, one can see that the corrected scheme with the starting part can effectively restore the second-order convergence rate.

    Table 9.  Time convergence results with \alpha = 0.1 , \beta = 0.9 , h = 1/4000 .
    \|u_h-u\| \|q_h-q\|
    \theta \tau Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 8.9204E-03 - 6.2820E-03 - 3.5216E-01 - 2.4809E-01 -
    0.1 1/20 5.2261E-03 0.7714 1.8535E-03 1.7609 2.0632E-01 0.7714 7.3209E-02 1.7608
    1/40 2.6562E-03 0.9764 4.9663E-04 1.9001 1.0486E-01 0.9764 1.9628E-02 1.8992
    1/80 1.2855E-03 1.0470 1.2782E-04 1.9580 5.0749E-02 1.0470 5.0645E-03 1.9544
    1/10 1.1291E-02 - 9.1163E-03 - 4.4575E-01 - 3.5998E-01
    0 1/20 6.8182E-03 0.7277 2.7085E-03 1.7510 2.6917E-01 0.7277 1.0696E-01 1.7509
    1/40 3.4949E-03 0.9641 7.2773E-04 1.8960 1.3797E-01 0.9641 2.8751E-02 1.8954
    1/80 1.6987E-03 1.0408 1.8766E-04 1.9553 6.7062E-02 1.0408 7.4268E-03 1.9528
    1/10 2.1457E-02 - 2.6030E-02 - 1.1105E+00 - 1.7696E+00 -
    -0.5 1/20 1.4552E-02 0.5603 8.3150E-03 1.6464 8.5207E-01 0.3822 6.2053E-01 1.5118
    1/40 7.7887E-03 0.9017 2.2980E-03 1.8554 4.7736E-01 0.8359 1.7762E-01 1.8047
    1/80 3.8350E-03 1.0222 6.0067E-04 1.9357 2.3888E-01 0.9988 4.7205E-02 1.9118

     | Show Table
    DownLoad: CSV
    Table 10.  Time convergence results with \alpha = 0.5 , \beta = 0.6 , h = 1/4000 .
    \|u_h-u\| \|q_h-q\|
    \theta \tau Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 4.3621E-03 - 3.6704E-03 - 1.7226E-01 - 1.4498E-01 -
    0.5 1/20 1.0876E-03 2.0039 9.5152E-04 1.9476 4.2941E-02 2.0042 3.7576E-02 1.9480
    1/40 3.3133E-04 1.7148 2.4178E-04 1.9765 1.3080E-02 1.7150 9.5356E-03 1.9784
    1/80 1.1132E-04 1.5735 6.1138E-05 1.9835 4.3948E-03 1.5735 2.3985E-03 1.9912
    1/10 1.4643E-03 - 1.0614E-03 - 5.8318E-02 - 4.2803E-02 -
    0.2 1/20 4.8956E-04 1.5806 3.0032E-04 1.8214 1.9326E-02 1.5934 1.2126E-02 1.8197
    1/40 1.6670E-04 1.5542 7.8625E-05 1.9335 6.5811E-03 1.5541 3.1895E-03 1.9267
    1/80 5.7051E-05 1.5470 1.9768E-05 1.9918 2.2523E-03 1.5470 8.1546E-04 1.9676
    1/10 8.7609E-03 - 6.8360E-03 - 3.4601E-01 - 2.7011E-01 -
    0 1/20 2.2404E-03 1.9673 1.9129E-03 1.8374 8.8510E-02 1.9669 7.5599E-02 1.8371
    1/40 5.6418E-04 1.9895 5.0061E-04 1.9340 2.2304E-02 1.9886 1.9798E-02 1.9330
    1/80 1.5985E-04 1.8194 1.2738E-04 1.9746 6.3107E-03 1.8214 5.0505E-03 1.9709

     | Show Table
    DownLoad: CSV
    Table 11.  Time convergence results with \alpha = 0.9 , \beta = 0.1 , h = 1/4000 .
    \|u_h-u\| \|q_h-q\|
    \theta \tau Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 1.2779E-03 - 4.4043E-04 - 5.0452E-02 - 2.5629E-02 -
    0.1 1/20 1.0267E-03 0.3157 1.1804E-04 1.8996 4.0534E-02 0.3158 7.0942E-03 1.8531
    1/40 7.5884E-04 0.4362 3.0793E-05 1.9386 2.9957E-02 0.4362 1.8662E-03 1.9265
    1/80 5.0089E-04 0.5993 8.1141E-06 1.9241 1.9774E-02 0.5993 4.7828E-04 1.9642
    1/10 4.3621E-03 - 1.4545E-03 - 7.7482E-02 - 6.1261E-02 -
    0 1/20 1.8873E-03 0.6822 3.9496E-04 1.8807 4.6434E-02 0.7387 1.6763E-02 1.8697
    1/40 9.2034E-04 0.3539 1.0228E-04 1.9492 3.6333E-02 0.3539 4.3730E-03 1.9386
    1/80 6.1337E-04 0.5854 2.5740E-05 1.9904 2.4215E-02 0.5854 1.1169E-03 1.9692
    1/10 9.0746E-03 - 6.1035E-03 - 3.5896E-01 - 2.4209E-01 -
    -0.1 1/20 2.3761E-03 1.9332 1.7550E-03 1.7982 9.4044E-02 1.9324 6.9621E-02 1.7980
    1/40 7.1647E-04 1.7296 4.6664E-04 1.9111 2.8284E-02 1.7333 1.8526E-02 1.9100
    1/80 5.9682E-04 0.2636 1.1984E-04 1.9612 2.3561E-02 0.2636 4.7711E-03 1.9572

     | Show Table
    DownLoad: CSV

    To further validate the performance of the parameter \theta in numerical simulations with nonsmooth solutions, we provide the computing data in Table 12, from which one can see that the parameter \theta still needs to satisfy \theta\le \min\{\alpha, \beta, \frac{1}{2}\} , whether before or after correction. Notably, when \theta is negative, as long as it is not much less than 0, we can still obtain second-order convergence accuracy.

    Table 12.  Time convergence results with \alpha = 0.7 , \beta = 0.3 , h = 1/4000 .
    \|u_h-u\| \|q_h-q\|
    \theta \tau Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 3.3675E-03 - 2.0604E-03 - 1.3333E-01 - 8.2027E-02 -
    0.31 1/20 1.2977E-03 1.3757 5.3018E-04 1.9584 5.1287E-02 1.3783 2.1127E-02 1.9570
    1/40 1.9442E-03 -0.5833 1.4145E-04 1.9062 7.6738E-02 -0.5813 5.6232E-03 1.9096
    1/80 6.1733E-02 -4.9888 1.3510E-04 0.0663 2.4372E+00 -4.9892 5.3212E-03 0.0797
    1/10 4.5472E-02 - 3.0346E-02 - 1.7952E+00 - 1.1983E+00 -
    -0.5 1/20 1.2127E-02 1.9067 9.1861E-03 1.7240 4.7880E-01 1.9066 3.6273E-01 1.7240
    1/40 3.1344E-03 1.9520 2.4851E-03 1.8861 1.2376E-01 1.9518 9.8141E-02 1.8859
    1/80 7.9608E-04 1.9772 6.4304E-04 1.9504 3.1447E-02 1.9766 2.5407E-02 1.9496
    1/10 1.1762E+00 - 3.4223E-01 - 4.6430E+01 - 1.3512E+01 -
    -5 1/20 3.9521E-01 1.5734 1.9704E-01 0.7964 1.5601E+01 1.5734 7.7788E+00 0.7966
    1/40 1.2069E-01 1.7113 7.7857E-02 1.3396 4.7643E+00 1.7113 3.0736E+00 1.3396
    1/80 3.3458E-02 1.8509 2.4673E-02 1.6579 1.3208E+00 1.8509 9.7402E-01 1.6579

     | Show Table
    DownLoad: CSV

    The time convergence rates of u and q are compared before and after correction with different parameters \alpha , \beta , and \theta in Figure 5, where the slope of the line segment indicates the convergence rate. The slope of each line segment in the corrected images is the same regardless of the parameters chosen, indicating that the introduction of the starting part has a significant effect on the time convergence rates for the case with nonsmooth solutions.

    Figure 5.  The time convergence rates in L^2 -errors with different parameters \alpha , \beta , and \theta .

    In this article, the spatial mixed finite element method with the generalized BDF2- \theta for solving the time-fractional generalized Rosenau-RLW-Burgers equation was presented. Detailed proofs of stability were shown. The numerical scheme's effectiveness and feasibility were verified by conducting numerical examples that included both smooth and nonsmooth solutions. The numerical examples with good regularity indicated that our algorithm with changed parameters \alpha , \beta , and \theta can maintain second-order convergence in time. Especially, the nonsmooth examples demonstrated that adding the correction term could effectively solve the problem of reduced order caused by weak singularity.

    N. Yang: Writing–original draft, Formal analysis, Software; Y. Liu: Methodology, Validation, Formal analysis, Funding acquisition, Supervision, Writing–review & editing. All authors have read and agreed to the published version of the manuscript.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was supported by the National Natural Science Foundation of China (12061053), Young Innovative Talents Project of Grassland Talents Project and Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region (NMGIRT2413).

    The authors declare that they have no conflicts of interest.



    [1] Kizhakkayil J, Sasikumar B (2011) Diversity, characterization and utilization of ginger: A review. Plant Genet Resour 9: 464–477. https://doi.org/10.1017/S1479262111000670 doi: 10.1017/S1479262111000670
    [2] Ravindran PN, Nirmal Babu K, Shiva KN (2005) Botany and crop improvement of ginger. In: Ravindran PN, Nirmal Babu K (Eds.), Ginger: The Genus Zingiber, CRC Press, New York, 15–85. https://doi.org/10.1201/9781420023367
    [3] Kiyama R (2020) Nutritional implications of ginger: Chemistry, biological activities and signaling pathways. J Nutr Biochem 86: 108486. https://doi.org/10.1016/j.jnutbio.2020.108486 doi: 10.1016/j.jnutbio.2020.108486
    [4] FAOSTAT Database Collections (2024) Food and Agriculture Organization of the United Nations, Rome, Italy. Available from: http://www.fao.org/faostat/en/#data/QC.
    [5] Nair KP (2019) Production, marketing, and economics of ginger. In: Turmeric (Curcuma longa L.) and Ginger (Rosc.)—World's Invaluable Medicinal Spices: The Agronomy and Economy of Turmeric and Ginger, 493–518. https://doi.org/10.1007/978-3-030-29189-1_24
    [6] Padulosi S, Leaman D, Quek P (2002) Challenges and opportunities in enhancing the conservation and use of medicinal and aromatic plants. J Herbs, Spices Med Plants 9: 243–267. https://doi.org/10.1300/J044v09n04_01 doi: 10.1300/J044v09n04_01
    [7] Shao X, Lishuang L, Tiffany P, et al. (2010) Quantitative analysis of ginger components in commercial products using liquid chromatography with electrochemical array detection. J Agric Food Chem 58: 12608–12614. https://doi.org/10.1021/jf1029256 doi: 10.1021/jf1029256
    [8] Sangwan A, Kawatra A, Sehgal S (2014) Nutritional composition of ginger powder prepared using various drying methods. J Food Sci Technol 51: 2260–2262. https://doi.org/10.1007/s13197–012–0703–2 doi: 10.1007/s13197–012–0703–2
    [9] Bischoff-Kont I, Fürst R (2021) Benefits of ginger and its constituent 6-shogaol in inhibiting inflammatory processes. Pharmaceuticals 14: 571. https://doi.org/10.3390/ph14060571 doi: 10.3390/ph14060571
    [10] Russo R, Costa MA, Lampiasi N, et al. (2023) A new ginger extract characterization: Immunomodulatory, antioxidant effects and differential gene expression. Food Biosci 53: 102746. https://doi.org/10.1016/j.fbio.2023.102746 doi: 10.1016/j.fbio.2023.102746
    [11] Eleazu CO, Amadi CO, Iwo G, et al. (2013) Chemical composition and free radical scavenging activities of 10 elite accessions of ginger (Zingiber officinale Roscoe). J Clinic Toxicol 3: 155. https://doi.org/10.4172/2161-0495.1000155 doi: 10.4172/2161-0495.1000155
    [12] Wang J, Ke W, Bao R, et al. (2017) Beneficial effects of ginger Zingiber officinale Roscoe on obesity and metabolic syndrome: A review. Ann N Y Acad Sci 1398: 83–98. https://doi.org/10.1111/nyas.13375 doi: 10.1111/nyas.13375
    [13] Lakshmi BVS, Sudhakar MA (2010) Protective effect of Z. officinale on gentamicin induced nephrotoxicity in rats. Int J Pharmacol 6: 58–62. https://doi.org/10.3923/ijp.2010.58.62 doi: 10.3923/ijp.2010.58.62
    [14] Nammi S, Satyanarayana S, Roufogalis BD (2009) Protective effects of ethanolic extract of Zingiber officinale rhizome on the development of metabolic syndrome in high-fat diet-fed rats. Basic Clin Pharmacol Toxicol 104: 366–373. https://doi.org/10.1111/j.1742-7843.2008.00362.x doi: 10.1111/j.1742-7843.2008.00362.x
    [15] Grant KL, Lutz RB (2000) Alternative therapies: Ginger. Am J Health Syst Pharm 57: 945–947. https://doi.org/10.4236/ojmm.2012.23013 doi: 10.4236/ojmm.2012.23013
    [16] Iqbal Z, Lateef M, Akhtar MS, et al. (2006) In vivo anthelmintic activity of ginger against gastrointestinal nematodes of sheep. J Ethnopharmacol 106: 285–287. https://doi.org/10.1016/j.jep.2005.12.031 doi: 10.1016/j.jep.2005.12.031
    [17] El–Baroty GS, Abd El-Baky HH, Farag RS, et al. (2010) Characterization of antioxidant and antimicrobial compounds of cinnamon and ginger essential oils. Afr J Biochem Res 4: 167–174.
    [18] Hsu YL, Chen CY, Hou MF, et al. (2010) 6‐Dehydrogingerdione, an active constituent of dietary ginger, induces cell cycle arrest and apoptosis through reactive oxygen species/c‐Jun N‐terminal kinase pathways in human breast cancer cells. Mol Nutr Food Res 54: 1307–1317. https://doi.org/10.1002/mnfr.200900125 doi: 10.1002/mnfr.200900125
    [19] Koh EM, Kim HJ, Kim S, et al. (2008) Modulation of macrophage functions by compounds isolated from Zingiber officinale. Planta Med 75: 148–151. https://doi.org/10.1055/s-0028-1088347 doi: 10.1055/s-0028-1088347
    [20] Imm J, Zhang G, Chan LY, et al. (2010)[6]-Dehydroshogaol, a minor component in ginger rhizome, exhibits quinone reductase inducing and anti–inflammatory activities that rival those of curcumin. Food Res Int 43: 2208–2213. https://doi.org/10.1016/j.foodres.2010.07.028 doi: 10.1016/j.foodres.2010.07.028
    [21] Yang G, Zhong L, Jiang L, et al. (2010) Genotoxic effect of 6–gingerol on human hepatoma G2 cells. Chem Biol Interact 185: 12–17. https://doi.org/10.1016/j.cbi.2010.02.017 doi: 10.1016/j.cbi.2010.02.017
    [22] Paret ML, Cabos R, Kratky BA, et al. (2010) Effect of plant essential oils on Ralstonia solanacearum race 4 and bacterial wilt of edible ginger. Plant Dis 94: 521–527. https://doi.org/10.1094/PDIS-94-5-0521 doi: 10.1094/PDIS-94-5-0521
    [23] Sharma BR, Dutta S, Roy S, et al. (2010) The effect of soil physicochemical properties on rhizome rot and wilt disease complex incidence of ginger under hill agro climatic region of West Bengal. J Plant Pathol 26: 198–202. https://doi.org/10.5423/PPJ.2010.26.2.198 doi: 10.5423/PPJ.2010.26.2.198
    [24] So IY (1980) Studies on ginger mosaic virus. Korean J Appl Entomol 19: 67–72.
    [25] Hull R (1977) The grouping of small spherical plant viruses with single RNA components. J Gen Virol 36: 289–295. https://doi.org/10.1099/0022-1317-36-2-289 doi: 10.1099/0022-1317-36-2-289
    [26] Janse J (1996) Potato brown rot in Western Europe-History, present occurrence and some remarks on possible origin, epidemiology and control strategies. Bull OEPP/EPPO Bull 26: 679–695. https://doi.org/10.1111/j.1365-2338.1996.tb01512.x doi: 10.1111/j.1365-2338.1996.tb01512.x
    [27] Swanson JK, Yao J, Tans–Kersten JK, et al. (2005) Behavior of Ralstonia solanacearum race 3 biovar 2 during latent and active infection of geranium. Phytopathology 95: 136–114. https://doi.org/10.1094/PHYTO-95-0136 doi: 10.1094/PHYTO-95-0136
    [28] Meenu G, Jebasingh T (2019) Diseases of ginger. In: Wang H (Ed.), Ginger Cultivation and Its Antimicrobial and Pharmacological Potentials, IntechOpen, 1–31. https://doi.org/10.5772/intechopen.88839
    [29] Dohroo NP (2001) Etiology and management of storage rot of ginger in Himachal Pradesh. Indian Phytopathol 54: 49–54.
    [30] Joshi LK, Sharma ND (1980) Diseases of ginger and turmeric. In: Nair MK, Premkumar T, Ravindran PN, et al. (Eds.), Proceedings of National Seminar on Ginger Turmeric, Calicut: CPCRI, 104–119.
    [31] Dohroo NP (2005) Diseases of ginger. In: Ravindran PN, Babu KN (Eds.), Ginger: The Genus Zingiber, Boca Raton: CRC Press, 305–340.
    [32] ISPS (2005) Experiences in collaboration. Ginger pests and diseases. Indo-Swiss Project Sikkim Series 1, 75.
    [33] Moreira SI, Dutra DC, Rodrigues AC, et al. (2013) Fungi and bacteria associated with post-harvest rot of ginger rhizomes in Espírito Santo, Brazil. Trop Plant Pathol 38: 218–226. https://doi.org/10.1590/S1982-56762013000300006 doi: 10.1590/S1982-56762013000300006
    [34] Dake JN (1995) Diseases of ginger (Zingiber officinale Rosc.) and their management. J Spices Aromat Crops 4: 40–48.
    [35] Le DP, Smith M, Hudler GW, et al. (2014) Pythium soft rot of ginger: Detection and identification of the causal pathogens and their control. Crop Prot 65: 153–167. https://doi.org/10.1016/j.cropro.2014.07.021 doi: 10.1016/j.cropro.2014.07.021
    [36] Bhai RS, Sasikumar B, Kumar A (2013) Evaluation of ginger germplasm for resistance to soft rot caused by Pythium myriotylum. Indian Phytopathol 66: 93–95.
    [37] Yang KD, Kim HM, Lee WH, et al. (1988) Studies on rhizome rot of ginger caused by Fusarium oxysporum f.sp. zingiberi and Pythium zingiberum. Plant Pathol J 4: 271–277.
    [38] Ram J, Thakore BBL (2009) Management of storage rot of ginger by using plant extracts and biocontrol agents. J Mycol Plant Pathol 39: 475–479.
    [39] Jadhav SN, Aparadh VT, Bhoite AS (2013) Plant extract using for management of storage rot of ginger in Satara Tehsil (M.S.). Int J Pharm Phytopharm Res 4: 1–2.
    [40] Babu N, Suraby EJ, Cissin J, et al. (2013) Status of transgenics in Indian spices. J Trop Agric 51: 1–14.
    [41] Shivakumar N (2019) Biotechnology and crop improvement of ginger (Zingiber officinale Rosc.). In: Wang H (Ed.), Ginger Cultivation and Its Antimicrobial and Pharmacological Potentials, IntechOpen, 2020: 13. https://doi.org/10.5772/intechopen.88574
    [42] Deme K, Konate M, Ouedraogo HM, et al. (2021) Importance, genetic diversity and prospects for varietal improvement of ginger (Zingiber officinale Roscoe) in Burkina Faso. World J Agric Res 9: 92–99. https://doi.org/10.12691/wjar-9-3-3 doi: 10.12691/wjar-9-3-3
    [43] Doveri S, Powell W, Maheswaran M, et al. (2007) Molecular markers—History, features and application. In: Kole C, Abbott AG (Eds.), Molecular Markers-History, Science Publishing Group, New York, 23–67. Available from: www.scipub.net/botany/principlespractices-plant-genomics.html.
    [44] Poczai P, Varga I, Bell NE, et al. (2012) Genomics meets biodiversity: advances in molecular marker development and their applications in plant genetic diversity assessment. Mol Basis Plant Genet Diversity 30: 978–953.
    [45] Nayak S, Naik PK, Acharya L, et al. (2005) Assessment of genetic diversity among 16 promising cultivars of ginger using cytological and molecular markers. Zeitschrift für Naturforschung C 60: 485–492. https://doi.org/10.1515/znc-2005-5-618 doi: 10.1515/znc-2005-5-618
    [46] Huang H, Layne DR, Kulisiak TL (2000) RAPD inheritance and diversity in pawpaw (Asimina triloba). J Am Soc Hortic Sci 125: 454–459. https://doi.org/10.21273/JASHS.125.4.454 doi: 10.21273/JASHS.125.4.454
    [47] Zambrano Blanco E, Baldin Pinheiro J (2017) Agronomie evaluation and clonal selection of ginger genotypes (Zingiber officinale Roseoe) in Brazil. Agron Colomb 35: 275–284. https://doi.org/10.15446/agron.colomb.v35n3.62454. doi: 10.15446/agron.colomb.v35n3.62454
    [48] Das A, Sahoo RK, Barik DP, et al. (2020) Identification of duplicates in ginger germplasm collection from Odisha using morphological and molecular characterization. Proc Natl Acad Sci, India Sect B: Biol Sci 90: 1057–1066. https://doi.org/10.1007/s40011-020-01178-y doi: 10.1007/s40011-020-01178-y
    [49] Wang L, Gao FS, Xu K, et al. (2014) Natural occurrence of mixploid ginger (Zingiber officinale Rosc.) in China and its morphological variations. Sci Hortic 172: 54–60. https://doi.org/10.1016/j.scienta.2014.03.043 doi: 10.1016/j.scienta.2014.03.043
    [50] Ismail NA, Rafii MY, Mahmud TMM, et al. (2016) Molecular markers: A potential resource for ginger genetic diversity studies. Mol Biol Rep 43: 1347–1358. https://doi.org/10.1007/s11033-016-4070-3 doi: 10.1007/s11033-016-4070-3
    [51] Henry RJ (1997) Practical applications of plant molecular biology. Chapman & Hall, London.
    [52] Sarwat M, Nabi G, Das S, et al. (2012) Molecular markers in medicinal plant biotechnology: past and present. Crit Rev Biotechnol 32: 74–92. https://doi.org/10.3109/07388551.2011.551872 doi: 10.3109/07388551.2011.551872
    [53] Powell W, Morgante M, Andre C, et al. (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2: 225–238. https://doi.org/10.1007/BF00564200 doi: 10.1007/BF00564200
    [54] Varshney RK, Hoisington DA, Nayak SN, et al. (2009) Molecular plant breeding: Methodology and achievements. Plant Genomics: Methods Protoc 513: 283–304. https://doi.org/10.1007/978-1-59745-427-8_15 doi: 10.1007/978-1-59745-427-8_15
    [55] Barcaccia G (2010) Molecular markers for characterizing and conserving crop plant germplasm. In: Jain SM, Brar DS (Eds.), Molecular techniques in crop improvement, Springer, Dordrecht, 231–253. https://doi.org/10.1007/978-90-481-2967-6_10
    [56] Shivakumar N, Agrawal P (2018) The effect of chemical mutagens upon morphological characters of ginger in M0 generation. Asian J Microbiol Biotechnol Environ Sci 20: 126–135.
    [57] Ravinderan PN, Nirmal BK, Shiva KN (2005) Botany and crop improvement of ginger. In: Ravinderan PN, Nirmal BK (Eds.), Ginger: The Genus Zingiber, New York: CRC Press, 15–85.
    [58] Das A, Kesari V, Satyanarayana VM, et al. (2011) Genetic relationship of Curcuma species from Northeast India using PCR-based markers. Mol Biotechnol 49: 65–76. https://doi.org/10.1007/s12033-011-9379-5 doi: 10.1007/s12033-011-9379-5
    [59] Zou X, Dai Z, Ding C, et al. (2011). Relationships among six medicinal species of Curcuma assessed by RAPD markers. J Med Plant Res 5: 1349–1354.
    [60] Kaewsri W, Paisooksantivatana Y, Veesommai U, et al. (2007) Phylogenetic analysis of Thai Amomum (Alpinioideae: Zingiberaceae) using AFLP markers. Agric Natl Resour 41: 213–226.
    [61] Sigrist MS, Pinheiro JB, Azevedo‐Filho JA, et al. (2010) Development and characterization of microsatellite markers for turmeric (Curcuma longa). Plant Breed 129: 570–573. https://doi.org/10.1111/j.1439-0523.2009.01720.x doi: 10.1111/j.1439-0523.2009.01720.x
    [62] Pandotra P, Gupta AP, Husain MK, et al. (2013) Evaluation of genetic diversity and chemical profile of ginger cultivars in north–western Himalayas. Biochem Syst Ecol 48: 281–287. https://doi.org/10.1016/j.bse.2013.01.004 doi: 10.1016/j.bse.2013.01.004
    [63] Jatoi SA, Kikuchi A, San SY, et al. (2006) Use of rice SSR markers as RAPD markers for genetic diversity analysis in Zingiberaceae. Breed Sci 56: 107–111. https://doi.org/10.1270/jsbbs.56.107 doi: 10.1270/jsbbs.56.107
    [64] Oladosu Y, Rafii MY, Abdullah N, et al. (2016) Principle and application of plant mutagenesis in crop improvement: A review. Biotechnol Biotechnol Equip 30: 1–16. https://doi.org/10.1080/13102818.2015.1087333 doi: 10.1080/13102818.2015.1087333
    [65] Aisha AH, Rafii MY, Rahim HA, et al. (2018) Radio-sensitivity test of acute gamma irradiation of two variety of chili pepper chili Bangi 3 and chili Bangi 5. Int J Sci Technol Res 7: 90–95.
    [66] Prasath D, Bhai RS, Nair RR (2015) Induction of variability in ginger through induced mutation for disease resistance. In: Conference: National Symposium on Spices and Aromatic Crops, 16–18.
    [67] Oladosu Y, Rafii MY, Abdullah N, et al. (2014) Genetic variability and selection criteria in rice mutant lines as revealed by quantitative traits. The Scientific World Journal. https://doi.org/10.1155/2014/190531 doi: 10.1155/2014/190531
    [68] Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5: 213–218. https://doi.org/10.1007/BF01969712 doi: 10.1007/BF01969712
    [69] Suma B, Keshavachandran R, Nybe EV (2008) Agrobacterium tumefaciens mediated transformation and regeneration of ginger (Zingiber officinale Rosc). J Trop Agric 46: 38–44.
    [70] Fugisawa M, Harada H, Kenmoku H, et al. (2010) Cloning and characterization of a novel gene that encodes (S)-beta-bisabolene synthase from ginger, Zingiber officinale. Planta 232: 121–130.
    [71] Laurent D, Frederic P, Laurence L, et al. (1998) Genetic characterization of RRS1, a recessive locus in Arabidopsis thaliana that confers resistance to the bacterial soil borne pathogen Ralstonia solanacearum. Mol Plant-Microbe Interact 11: 659–667. https://doi.org/10.1094/MPMI.1998.11.7.659 doi: 10.1094/MPMI.1998.11.7.659
    [72] Aswati Nair R, Kiran AG, Sivakumar KC, et al. (2010) Molecular characterization of an oomycete-responsive PR-5 protein gene from Zingiber zerumbet. Plant Mol Biol Rep 28: 128–135. https://doi.org/10.1007/s11105–009–0132–1 doi: 10.1007/s11105–009–0132–1
    [73] Priya RS, Subramanian RB (2008) Isolation and molecular analysis of R-gene in resistant Zingiber officinale (ginger) varieties against Fusarium oxysporum f.sp. zingiberi. Bioresour Technol 99: 4540–4543. https://doi.org/10.1016/j.biortech.2007.06.053 doi: 10.1016/j.biortech.2007.06.053
    [74] Kavitha PG, Thomas G (2006) Zingiber zerumbet, A potential Donor for Soft Rot Resistance in Ginger: Genetic Structure and Functional Genomics. Extended Abstract XVⅢ, Kerala Science Congress, 169–171.
    [75] Renner T, Bragg J, Driscoll HE, et al. (2009) Virusinduced gene silencing in the culinary ginger (Zingiber officinale): An effective mechanism for down-regulating gene expression in tropical monocots. Mol Plant 2: 1084–1094. https://doi.org/ 10.1093/mp/ssp033 doi: 10.1093/mp/ssp033
    [76] Chen ZH, Kai GY, Liu XJ, et al. (2005) cDNA cloning and characterization of a mannose-binding lectin from Zingiber officinale Roscoe (ginger) rhizomes. J Biol Sci 30: 213–220. https://doi.org/10.1007/BF02703701 doi: 10.1007/BF02703701
    [77] Yua F, Haradab H, Yamasakia K, et al. (2008) Isolation and functional characterization of a β-eudesmol synthase, a new sesquiterpene synthase from Zingiber zerumbet Smith. FEBS Letters 582: 565–572. https://doi.org/10.1016/j.febslet.2008.01.020 doi: 10.1016/j.febslet.2008.01.020
    [78] Huang JL, Cheng LL, Zhang ZX (2007) Molecular cloning and characterization of violaxanthin depoxidase (VDE) in Zingiber officinale. Plant Sci 172: 228–235. https://doi.org/10.1371/journal.pone.0064383 doi: 10.1371/journal.pone.0064383
    [79] Nirmal Babu K, Samsudeen K, Divakaran M, et al. (2016) Protocols for in vitro propagation, conservation, synthetic seed production, embryo rescue, microrhizome production, molecular profiling, and genetic transformation in ginger (Zingiber officinale Roscoe.). In: Mohan Jain S (Ed.), Protocols for In Vitro Cultures and Secondary Metabolite Analysis of Aromatic and Medicinal Plants, 2nd Edition, 403–426. https://doi.org/10.1007/978-1-4939-3332-7_28
    [80] Seran TH (2013) In vitro propagation of ginger (Zingiber officinale) through direct organogenesis: A review. Pak J Biol Sci 16: 1826–1835. https://doi.org/10.3923/pjbs.2013.1826.1835 doi: 10.3923/pjbs.2013.1826.1835
    [81] El-Nabarawya MA, El-Kafafia SH, Hamzab MA, et al. (2015) The effect of some factors on stimulating the growth and production of active substances in Zingiber officinale callus cultures. Ann Agric Sci 60: 1–9. https://doi.org/10.1016/j.aoas.2014.11.020 doi: 10.1016/j.aoas.2014.11.020
    [82] Shivakumar N, Agrawal P (2014) Callus induction and regeneration from adventitious buds of Zingiber officinale. Asian J Microbiol Biotechnol Environ Sci 16: 881–885.
    [83] Nery FC, Goulart VLA, Paiva PDO, et al. (2015) Micropropagation and chemical composition of Zingiber Spectabile callus. Acta Hortic 1083: 197–204. https://doi.org/10.17660/ActaHortic.2015.1083.23 doi: 10.17660/ActaHortic.2015.1083.23
    [84] Rostiana O, Syahid SF (2008) Somatic embryogenesis, from meristem explants of ginger. Biotropia 15: 12–16. https://doi.org/10.11598/btb.2008.15.1.2 doi: 10.11598/btb.2008.15.1.2
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2037) PDF downloads(244) Cited by(0)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog