Mislocalization and abnormal expression of N-methyl-D-aspartate glutamate receptor (NMDAR) subunits is observed in several brain disorders and pathological conditions. Recently, we have shown that intraperitoneal injection of the gut neurotoxin p-cresol induces autism-like behavior and accelerates seizure reactions in healthy and epilepsy-prone rats, respectively. In this study, we evaluated the expression of GLUN2B and GLUN2A NMDAR subunits, and assessed the activity of cAMP-response element binding protein (CREB) and Rac1 in the hippocampi and nucleus accumbens of healthy and epilepsy-prone rats following p-cresol administration. We have found that subchronic intraperitoneal injection of p-cresol induced differential expression of GLUN2B and GLUN2A between the two brain regions, and altered the GLUN2B/GLUN2A ratio, in rats in both groups. Moreover, p-cresol impaired CREB phosphorylation in both brain structures and stimulated Rac activity in the hippocampus. These data indicate that p-cresol differently modulates the expression of NMDAR subunits in the nucleus accumbens and hippocampi of healthy and epilepsy-prone rats. We propose that these differences are due to the specificity of interactions between dopaminergic and glutamatergic pathways in these structures.
Citation: Tevzadze Gigi, Zhuravliova Elene, Barbakadze Tamar, Shanshiashvili Lali, Dzneladze Davit, Nanobashvili Zaqaria, Lordkipanidze Tamar, Mikeladze David. Gut neurotoxin p-cresol induces differential expression of GLUN2B and GLUN2A subunits of the NMDA receptor in the hippocampus and nucleus accumbens in healthy and audiogenic seizure-prone rats[J]. AIMS Neuroscience, 2020, 7(1): 30-42. doi: 10.3934/Neuroscience.2020003
[1] | Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak . Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546 |
[2] | Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao . Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334 |
[3] | Miguel Vivas-Cortez, Muhammad Uzair Awan, Muhammad Zakria Javed, Artion Kashuri, Muhammad Aslam Noor, Khalida Inayat Noor . Some new generalized κ–fractional Hermite–Hadamard–Mercer type integral inequalities and their applications. AIMS Mathematics, 2022, 7(2): 3203-3220. doi: 10.3934/math.2022177 |
[4] | Jia-Bao Liu, Saad Ihsan Butt, Jamshed Nasir, Adnan Aslam, Asfand Fahad, Jarunee Soontharanon . Jensen-Mercer variant of Hermite-Hadamard type inequalities via Atangana-Baleanu fractional operator. AIMS Mathematics, 2022, 7(2): 2123-2141. doi: 10.3934/math.2022121 |
[5] | Yanping Yang, Muhammad Shoaib Saleem, Waqas Nazeer, Ahsan Fareed Shah . New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus via exponentially convex fuzzy interval-valued function. AIMS Mathematics, 2021, 6(11): 12260-12278. doi: 10.3934/math.2021710 |
[6] | Yamin Sayyari, Mana Donganont, Mehdi Dehghanian, Morteza Afshar Jahanshahi . Strongly convex functions and extensions of related inequalities with applications to entropy. AIMS Mathematics, 2024, 9(5): 10997-11006. doi: 10.3934/math.2024538 |
[7] | Jamshed Nasir, Saber Mansour, Shahid Qaisar, Hassen Aydi . Some variants on Mercer's Hermite-Hadamard like inclusions of interval-valued functions for strong Kernel. AIMS Mathematics, 2023, 8(5): 10001-10020. doi: 10.3934/math.2023506 |
[8] | Tahir Ullah Khan, Muhammad Adil Khan . Hermite-Hadamard inequality for new generalized conformable fractional operators. AIMS Mathematics, 2021, 6(1): 23-38. doi: 10.3934/math.2021002 |
[9] | Shahid Mubeen, Rana Safdar Ali, Iqra Nayab, Gauhar Rahman, Kottakkaran Sooppy Nisar, Dumitru Baleanu . Some generalized fractional integral inequalities with nonsingular function as a kernel. AIMS Mathematics, 2021, 6(4): 3352-3377. doi: 10.3934/math.2021201 |
[10] | Paul Bosch, Héctor J. Carmenate, José M. Rodríguez, José M. Sigarreta . Generalized inequalities involving fractional operators of the Riemann-Liouville type. AIMS Mathematics, 2022, 7(1): 1470-1485. doi: 10.3934/math.2022087 |
Mislocalization and abnormal expression of N-methyl-D-aspartate glutamate receptor (NMDAR) subunits is observed in several brain disorders and pathological conditions. Recently, we have shown that intraperitoneal injection of the gut neurotoxin p-cresol induces autism-like behavior and accelerates seizure reactions in healthy and epilepsy-prone rats, respectively. In this study, we evaluated the expression of GLUN2B and GLUN2A NMDAR subunits, and assessed the activity of cAMP-response element binding protein (CREB) and Rac1 in the hippocampi and nucleus accumbens of healthy and epilepsy-prone rats following p-cresol administration. We have found that subchronic intraperitoneal injection of p-cresol induced differential expression of GLUN2B and GLUN2A between the two brain regions, and altered the GLUN2B/GLUN2A ratio, in rats in both groups. Moreover, p-cresol impaired CREB phosphorylation in both brain structures and stimulated Rac activity in the hippocampus. These data indicate that p-cresol differently modulates the expression of NMDAR subunits in the nucleus accumbens and hippocampi of healthy and epilepsy-prone rats. We propose that these differences are due to the specificity of interactions between dopaminergic and glutamatergic pathways in these structures.
For a convex function σ:I⊆R→R on I with ν1,ν2∈I and ν1<ν2, the Hermite-Hadamard inequality is defined by [1]:
σ(ν1+ν22)≤1ν2−ν1∫ν2ν1σ(η)dη≤σ(ν1)+σ(ν2)2. | (1.1) |
The Hermite-Hadamard integral inequality (1.1) is one of the most famous and commonly used inequalities. The recently published papers [2,3,4] are focused on extending and generalizing the convexity and Hermite-Hadamard inequality.
The situation of the fractional calculus (integrals and derivatives) has won vast popularity and significance throughout the previous five decades or so, due generally to its demonstrated applications in numerous seemingly numerous and great fields of science and engineering [5,6,7].
Now, we recall the definitions of Riemann-Liouville fractional integrals.
Definition 1.1 ([5,6,7]). Let σ∈L1[ν1,ν2]. The Riemann-Liouville integrals Jϑν1+σ and Jϑν2−σ of order ϑ>0 with ν1≥0 are defined by
Jϑν1+σ(x)=1Γ(ϑ)∫xν1(x−η)ϑ−1σ(η)dη, ν1<x | (1.2) |
and
Jϑν2−σ(x)=1Γ(ϑ)∫ν2x(η−x)ϑ−1σ(η)dη, x<ν2, | (1.3) |
respectively. Here Γ(ϑ) is the well-known Gamma function and J0ν1+σ(x)=J0ν2−σ(x)=σ(x).
With a huge application of fractional integration and Hermite-Hadamard inequality, many researchers in the field of fractional calculus extended their research to the Hermite-Hadamard inequality, including fractional integration rather than ordinary integration; for example see [8,9,10,11,12,13,14,15,16,17,18,19,20,21].
In this paper, we consider the integral inequality of Hermite-Hadamard-Mercer type that relies on the Hermite-Hadamard and Jensen-Mercer inequalities. For this purpose, we recall the Jensen-Mercer inequality: Let 0<x1≤x2≤⋯≤xn and μ=(μ1,μ2,…,μn) nonnegative weights such that ∑ni=1μi=1. Then, the Jensen inequality [22,23] is as follows, for a convex function σ on the interval [ν1,ν2], we have
σ(n∑i=1μixi)≤n∑i=1μiσ(xi), | (1.4) |
where for all xi∈[ν1,ν2] and μi∈[0,1], (i=¯1,n).
Theorem 1.1 ([2,23]). If σ is convex function on [ν1,ν2], then
σ(ν1+ν2−n∑i=1μixi)≤σ(ν1)+σ(ν2)−n∑i=1μiσ(xi), | (1.5) |
for each xi∈[ν1,ν2] and μi∈[0,1], (i=¯1,n) with ∑ni=1μi=1. For some results related with Jensen-Mercer inequality, see [24,25,26].
In view of above indices, we establish new integral inequalities of Hermite-Hadamard-Mercer type for convex functions via the Riemann-Liouville fractional integrals in the current project. Particularly, we see that our results can cover the previous researches.
Theorem 2.1. For a convex function σ:[ν1,ν2]⊆R→R with x,y∈[ν1,ν2], we have:
σ(ν1+ν2−x+y2)≤2ϑ−1Γ(ϑ+1)(y−x)ϑ[Jϑ(ν1+ν2−y)+σ(ν1+ν2−x+y2)+Jϑ(ν1+ν2−x)−σ(ν1+ν2−x+y2)]≤σ(ν1)+σ(ν2)−σ(x)+σ(y)2. | (2.1) |
Proof. By using the convexity of σ, we have
σ(ν1+ν2−u+v2)≤12[σ(ν1+ν2−u)+σ(ν1+ν2−v)], | (2.2) |
and above with u=1−η2x+1+η2y, v=1+η2x+1−η2y, where x,y∈[ν1,ν2] and η∈[0,1], leads to
σ(ν1+ν2−x+y2)≤12[σ(ν1+ν2−(1−η2x+1+η2y))+σ(ν1+ν2−(1+η2x+1−η2y))]. | (2.3) |
Multiplying both sides of (2.3) by ηϑ−1 and then integrating with respect to η over [0,1], we get
1ϑσ(ν1+ν2−x+y2)≤12[∫10ηϑ−1σ(ν1+ν2−(1−η2x+1+η2y))dη+∫10ηϑ−1σ(ν1+ν2−(1+η2x+1−η2y))dη]=12[2ϑ(y−x)ϑ∫ν1+ν2−x+y2ν1+ν2−y((ν1+ν2−x+y2)−w)ϑ−1σ(w)dw+2ϑ(y−x)ϑ∫ν1+ν2−xν1+ν2−x+y2(w−(ν1+ν2−x+y2))ϑ−1σ(w)dw]=2ϑ−1Γ(ϑ)(y−x)ϑ[Jϑ(ν1+ν2−y)+σ(ν1+ν2−x+y2)+Jϑ(ν1+ν2−x)−σ(ν1+ν2−x+y2)], |
and thus the proof of first inequality in (2.1) is completed.
On the other hand, we have by using the Jensen-Mercer inequality:
σ(ν1+ν2−(1−η2x+1+η2y))≤σ(ν1)+σ(ν2)−(1−η2σ(x)+1+η2σ(y)) | (2.4) |
σ(ν1+ν2−(1+η2x+1−η2y))≤σ(ν1)+σ(ν2)−(1+η2σ(x)+1−η2σ(y)). | (2.5) |
Adding inequalities (2.4) and (2.5) to get
σ(ν1+ν2−(1−η2x+1+η2y))+σ(ν1+ν2−(1+η2x+1−η2y))≤2[σ(ν1)+σ(ν2)]−[σ(x)+σ(y)]. | (2.6) |
Multiplying both sides of (2.6) by ηϑ−1 and then integrating with respect to η over [0,1] to obtain
∫10ηϑ−1σ(ν1+ν2−(1−η2x+1+η2y))dη+∫10ηϑ−1σ(ν1+ν2−(1+η2x+1−η2y))dη≤2ϑ[σ(ν1)+σ(ν2)]−1ϑ[σ(x)+σ(y)]. |
By making use of change of variables and then multiplying by ϑ2, we get the second inequality in (2.1).
Remark 2.1. If we choose ϑ=1, x=ν1 and y=ν2 in Theorem 2.1, then the inequality (2.1) reduces to (1.1).
Corollary 2.1. Theorem 2.1 with
● ϑ=1 becomes [24, Theorem 2.1].
● x=ν1 and y=ν2 becomes:
σ(ν1+ν22)≤2ϑ−1Γ(ϑ+1)(ν2−ν1)ϑ[Jϑν1+σ(ν1+ν22)+Jϑν2−σ(ν1+ν22)]≤σ(ν1)+σ(ν2)2, |
which is obtained by Mohammed and Brevik in [10].
The following Lemma linked with the left inequality of (2.1) is useful to obtain our next results.
Lemma 2.1. Let σ:[ν1,ν2]⊆R→R be a differentiable function on (ν1,ν2) and σ′∈L[ν1,ν2] with ν1≤ν2 and x,y∈[ν1,ν2]. Then, we have:
2ϑ−1Γ(ϑ+1)(y−x)ϑ[Jϑ(ν1+ν2−y)+σ(ν1+ν2−x+y2)+Jϑ(ν1+ν2−x)−σ(ν1+ν2−x+y2)]−σ(ν1+ν2−x+y2)=(y−x)4∫10ηϑ[σ′(ν1+ν2−(1−η2x+1+η2y))−σ′(ν1+ν2−(1+η2x+1−η2y))]dη. | (2.7) |
Proof. From right hand side of (2.7), we set
ϖ1−ϖ2:=∫10ηϑ[σ′(ν1+ν2−(1−η2x+1+η2y))−σ′(ν1+ν2−(1+η2x+1−η2y))]dη=∫10ηϑσ′(ν1+ν2−(1−η2x+1+η2y))dη−∫10ηϑσ′(ν1+ν2−(1+η2x+1−η2y))dη. | (2.8) |
By integrating by parts with w=ν1+ν2−(1−η2x+1+η2y), we can deduce:
ϖ1=−2(y−x)σ(ν1+ν2−y)+2ϑ(y−x)∫10ηϑ−1σ(ν1+ν2−(1−η2x+1+η2y))dη=−2(y−x)σ(ν1+ν2−y)+2ϑ+1ϑ(y−x)ϑ+1∫ν1+ν2−x+y2ν1+ν2−yσ((ν1+ν2−x+y2)−w)ϑ−1σ(w)dw=−2(y−x)σ(ν1+ν2−y)+2ϑ+1Γ(ϑ+1)(y−x)ϑ+1Jϑ(ν1+ν2−y)+σ(ν1+ν2−x+y2). |
Similarly, we can deduce:
ϖ2=2y−xσ(ν1+ν2−x)−2ϑ+1Γ(ϑ+1)(y−x)ϑ+1Jϑ(ν1+ν2−x)−σ(ν1+ν2−x+y2). |
By substituting ϖ1 and ϖ2 in (2.8) and then multiplying by (y−x)4, we obtain required identity (2.7).
Corollary 2.2. Lemma 2.1 with
● ϑ=1 becomes:
1y−x∫ν1+ν2−xν1+ν2−yσ(w)dw−σ(ν1+ν2−x+y2)=(y−x)4∫10η[σ′(ν1+ν2−(1−η2x+1+η2y))−σ′(ν1+ν2−(1+η2x+1−η2y))]dη. |
● ϑ=1, x=ν1 and y=ν2 becomes:
1ν2−ν1∫ν2ν1σ(w)dw−σ(ν1+ν22)=(ν2−ν1)4∫10η[σ′(ν1+ν2−(1−η2ν1+1+η2ν2))−σ′(ν1+ν2−(1+η2ν1+1−η2ν2))]dη. |
● x=ν1 and y=ν2 becomes:
2ϑ−1Γ(ϑ+1)(ν2−ν1)ϑ[Jϑν1+σ(ν1+ν22)+Jϑν2−σ(ν1+ν22)]−σ(ν1+ν22)=(ν2−ν1)4∫10ηϑ[σ′(ν1+ν2−(1−η2ν1+1+η2ν2))−σ′(ν1+ν2−(1+η2ν1+1−η2ν2))]dη. |
Theorem 2.2. Let σ:[ν1,ν2]⊆R→R be a differentiable function on (ν1,ν2) and |σ′| is convex on [ν1,ν2] with ν1≤ν2 and x,y∈[ν1,ν2]. Then, we have:
|2ϑ−1Γ(ϑ+1)(y−x)ϑ[Jϑ(ν1+ν2−y)+σ(ν1+ν2−x+y2)+Jϑ(ν1+ν2−x)−σ(ν1+ν2−x+y2)]−σ(ν1+ν2−x+y2)|≤(y−x)2(1+ϑ)[|σ′(ν1)|+|σ′(ν2)|−|σ′(x)|+|σ′(y)|2]. | (2.9) |
Proof. By taking modulus of identity (2.7), we get
|2ϑ−1Γ(ϑ+1)(y−x)ϑ[Jϑ(ν1+ν2−y)+σ(ν1+ν2−x+y2)+Jϑ(ν1+ν2−x)−σ(ν1+ν2−x+y2)]−σ(ν1+ν2−x+y2)|≤(y−x)4[∫10ηϑ|σ′(ν1+ν2−(1−η2x+1+η2y))|dη+∫10ηϑ|σ′(ν1+ν2−(1+η2x+1−η2y))|dη]. |
Then, by applying the convexity of |σ′| and the Jensen-Mercer inequality on above inequality, we get
|2ϑ−1Γ(ϑ+1)(y−x)ϑ[Jϑ(ν1+ν2−y)+σ(ν1+ν2−x+y2)+Jϑ(ν1+ν2−x)−σ(ν1+ν2−x+y2)]−σ(ν1+ν2−x+y2)|≤(y−x)4[∫10ηϑ[|σ′(ν1)|+|σ′(ν2)|−(1+η2|σ′(x)|+1−η2)|σ′(y)|]dη+∫10ηϑ[|σ′(ν1)|+|σ′(ν2)|−(1−η2|σ′(x)|+1+η2)|σ′(y)|]dη]=(y−x)2(1+ϑ)[|σ′(ν1)|+|σ′(ν2)|−|σ′(x)|+|σ′(y)|2], |
which completes the proof of Theorem 2.2.
Corollary 2.3. Theorem 2.2 with
● ϑ=1 becomes:
|1y−x∫ν1+ν2−xν1+ν2−yσ(w)dw−σ(ν1+ν2−x+y2)|≤(y−x)4[|σ′(ν1)|+|σ′(ν2)|−|σ′(x)|+|σ′(y)|2]. |
● ϑ=1, x=ν1 and y=ν2 becomes [27, Theorem 2.2].
● x=ν1 and y=ν2 becomes:
|1ν2−ν1∫ν2ν1σ(w)dw−σ(ν1+ν22)|≤(ν2−ν1)4[|σ′(ν1)|+|σ′(ν2)|2]. |
Theorem 2.3. Let σ:[ν1,ν2]⊆R→R be a differentiable function on (ν1,ν2) and |σ′|q,q>1 is convex on [ν1,ν2] with ν1≤ν2 and x,y∈[ν1,ν2]. Then, we have:
|2ϑ−1Γ(ϑ+1)(y−x)ϑ[Jϑ(ν1+ν2−y)+σ(ν1+ν2−x+y2)+Jϑ(ν1+ν2−x)−σ(ν1+ν2−x+y2)]−σ(ν1+ν2−x+y2)|≤(y−x)4p√ϑp+1[(|σ′(ν1)|q+|σ′(ν2)|q−(|σ′(x)|q+3|σ′(y)|q4))1q+(|σ′(ν1)|q+|σ′(ν2)|q−(3|σ′(x)|q+|σ′(y)|q4))1q], | (2.10) |
where 1p+1q=1.
Proof. By taking modulus of identity (2.7) and using Hölder's inequality, we get
|2ϑ−1Γ(ϑ+1)(y−x)ϑ[Jϑ(ν1+ν2−y)+σ(ν1+ν2−x+y2)+Jϑ(ν1+ν2−x)−σ(ν1+ν2−x+y2)]−σ(ν1+ν2−x+y2)|≤(y−x)4(∫10ηϑp)1p{(∫10|σ′(ν1+ν2−(1−η2x+1+η2y))|qdη)1q+(∫10|σ′(ν1+ν2−(1+η2x+1−η2y))|qdη)1q}. |
Then, by applying the Jensen-Mercer inequality with the convexity of |σ′|q, we can deduce
|2ϑ−1Γ(ϑ+1)(y−x)ϑ[Jϑ(ν1+ν2−y)+σ(ν1+ν2−x+y2)+Jϑ(ν1+ν2−x)−σ(ν1+ν2−x+y2)]−σ(ν1+ν2−x+y2)|≤(y−x)4(∫10ηϑp)1p{(∫10|σ′(ν1)|q+|σ′(ν2)|q−(1−η2|σ′(x)|q+1+η2|σ′(y)|q))1q+(∫10|σ′(ν1)|q+|σ′(ν2)|q−(1+η2|σ′(x)|q+1−η2|σ′(y)|q))1q}=(y−x)4p√ϑp+1[(|σ′(ν1)|q+|σ′(ν2)|q−(|σ′(x)|q+3|σ′(y)|q4))1q+(|σ′(ν1)|q+|σ′(ν2)|q−(3|σ′(x)|q+|σ′(y)|q4))1q], |
which completes the proof of Theorem 2.3.
Corollary 2.4. Theorem 2.3 with
● ϑ=1 becomes:
|1y−x∫ν1+ν2−xν1+ν2−yσ(w)dw−σ(ν1+ν2−x+y2)|≤(y−x)4p√p+1[(|σ′(ν1)|q+|σ′(ν2)|q−(|σ′(x)|q+3|σ′(y)|q4))1q+(|σ′(ν1)|q+|σ′(ν2)|q−(3|σ′(x)|q+|σ′(y)|q4))1q]. |
● ϑ=1, x=ν1 and y=ν2 becomes:
|1ν2−ν1∫ν2ν1σ(w)dw−σ(ν1+ν22)|≤(ν2−ν1)22p(1p+1)1p[|σ′(ν1)|+|σ′(ν2)|]. |
● x=ν1 and y=ν2 becomes:
|2ϑ−1Γ(ϑ+1)(ν2−ν1)ϑ[Jϑν1+σ(ν1+ν22)+Jϑν2−σ(ν1+ν22)]−σ(ν1+ν22)|≤2ϑ−1−2qν2−ν1(1p+1)1p[|σ′(ν1)|+|σ′(ν2)|]. |
Theorem 2.4. Let σ:[ν1,ν2]⊆R→R be a differentiable function on (ν1,ν2) and |σ′|q,q≥1 is convex on [ν1,ν2] with ν1≤ν2 and x,y∈[ν1,ν2]. Then, we have:
|2ϑ−1Γ(ϑ+1)(y−x)ϑ[Jϑ(ν1+ν2−y)+σ(ν1+ν2−x+y2)+Jϑ(ν1+ν2−x)−σ(ν1+ν2−x+y2)]−σ(ν1+ν2−x+y2)|≤(y−x)4(ϑ+1)[(|σ′(ν1)|q+|σ′(ν2)|q−(|σ′(x)|q+(2ϑ+3)|σ′(y)|q2(ϑ+2)))1q+(|σ′(ν1)|q+|σ′(ν2)|q−((2ϑ+3)|σ′(x)|q+|σ′(y)|q2(ϑ+2)))1q]. | (2.11) |
Proof. By taking modulus of identity (2.7) with the well-known power mean inequality, we can deduce
|2ϑ−1Γ(ϑ+1)(y−x)ϑ[Jϑ(ν1+ν2−y)+σ(ν1+ν2−x+y2)+Jϑ(ν1+ν2−x)−σ(ν1+ν2−x+y2)]−σ(ν1+ν2−x+y2)|≤(y−x)4(∫10ηϑ)1−1q{(∫10ηϑ|σ′(ν1+ν2−(1−η2x+1+η2y))|qdη)1q+(∫10ηϑ|σ′(ν1+ν2−(1+η2x+1−η2y))|qdη)1q}. |
By applying the Jensen-Mercer inequality with the convexity of |σ′|q, we can deduce
|2ϑ−1Γ(ϑ+1)(y−x)ϑ[Jϑ(ν1+ν2−y)+σ(ν1+ν2−x+y2)+Jϑ(ν1+ν2−x)−σ(ν1+ν2−x+y2)]−σ(ν1+ν2−x+y2)|≤(y−x)4(∫10ηϑ)1−1q{(∫10ηϑ[|σ′(ν1)|q+|σ′(ν2)|q−(1−η2|σ′(x)|q+1+η2|σ′(y)|q)])1q+(∫10ηϑ[|σ′(ν1)|q+|σ′(ν2)|q−(1+η2|σ′(x)|q+1−η2|σ′(y)|q)])1q}=(y−x)4(ϑ+1)[(|σ′(ν1)|q+|σ′(ν2)|q−(|σ′(x)|q+(2ϑ+3)|σ′(y)|q2(ϑ+2)))1q+(|σ′(ν1)|q+|σ′(ν2)|q−((2ϑ+3)|σ′(x)|q+|σ′(y)|q2(ϑ+2)))1q], |
which completes the proof of Theorem 2.4.
Corollary 5. Theorem 2.4 with
● q=1 becomes Theorem 2.2.
● ϑ=1 becomes:
|1y−x∫ν1+ν2−xν1+ν2−yσ(w)dw−σ(ν1+ν2−x+y2)|≤(y−x)8[(|σ′(ν1)|q+|σ′(ν2)|q−(|σ′(x)|q+5|σ′(y)|q6))1q+(|σ′(ν1)|q+|σ′(ν2)|q−(5|σ′(x)|q+|σ′(y)|q6))1q]. |
● ϑ=1, x=ν1 and y=ν2 becomes:
|1ν2−ν1∫ν2ν1σ(w)dw−σ(ν1+ν22)|≤(y−x)8[(5|σ′(ν1)|q+|σ′(ν2)|q6)1q+(|σ′(ν1)|q+5|σ′(ν2)|q6)1q]. |
● x=ν1 and y=ν2 becomes:
|2ϑ−1Γ(ϑ+1)(ν2−ν1)ϑ[Jϑν1+σ(ν1+ν22)+Jϑν2−σ(ν1+ν22)]−σ(ν1+ν22)|≤(ν2−ν1)4(ϑ+1)[((2ϑ+3)|σ′(ν1)|q+|σ′(ν2)|q2(ϑ+2))1q+(|σ′(ν1)|q+(2ϑ+3)|σ′(ν2)|q2(ϑ+2))1q]. |
Here, we consider the following special means:
● The arithmetic mean:
A(ν1,ν2)=ν1+ν22,ν1,ν2≥0. |
● The harmonic mean:
H(ν1,ν2)=2ν1ν2ν1+ν2,ν1,ν2>0. |
● The logarithmic mean:
L(ν1,ν2)={ν2−ν1lnν2−lnν1,ifν1≠ν2,ν1,ifν1=ν2,ν1,ν2>0. |
● The generalized logarithmic mean:
Ln(ν1,ν2)={[νn+12−νn+11(n+1)(ν2−ν1)]1n,ifν1≠ν2ν1,ifν1=ν2,ν1,ν2>0;n∈Z∖{−1,0}. |
Proposition 3.1. Let 0<ν1<ν2 and n∈N, n≥2. Then, for all x,y∈[ν1,ν2], we have:
|Lnn(ν1+ν2−y,ν1+ν2−x)−(2A(ν1,ν2)−A(x,y))n|≤n(y−x)4[2A(νn−11,νn−12)−A(xn−1,yn−1)]. | (3.1) |
Proof. By applying Corollary 2.3 (first item) for the convex function σ(x)=xn,x>0, one can obtain the result directly.
Proposition 3.2. Let 0<ν1<ν2. Then, for all x,y∈[ν1,ν2], we have:
|L−1(ν1+ν2−y,ν1+ν2−x)−(2A(ν1,ν2)−A(x,y))−1|≤(y−x)4[2H−1(ν21,ν22)−H−1(x2,y2)]. | (3.2) |
Proof. By applying Corollary 2.3 (first item) for the convex function σ(x)=1x,x>0, one can obtain the result directly.
Proposition 3.3. Let 0<ν1<ν2 and n∈N, n≥2. Then, we have:
|Lnn(ν1,ν2)−An(ν1,ν2)|≤n(ν2−ν1)4[A(νn−11,νn−12)], | (3.3) |
and
|L−1(ν1,ν2)−A−1(ν1,ν2)|≤(ν2−ν1)4H−1(ν21,ν22). | (3.4) |
Proof. By setting x=ν1 and y=ν2 in results of Proposition 3.1 and Proposition 3.2, one can obtain the Proposition 3.3.
Proposition 3.4. Let 0<ν1<ν2 and n∈N, n≥2. Then, for q>1,1p+1q=1 and for all x,y∈[ν1,ν2], we have:
|Lnn(ν1+ν2−y,ν1+ν2−x)−(2A(ν1,ν2)−A(x,y))n|≤n(y−x)4p√p+1{[2A(νq(n−1)1,νq(n−1)2)−12A(xq(n−1),3yq(n−1))]1q+[2A(νq(n−1)1,νq(n−1)2)−12A(3xq(n−1),yq(n−1))]1q}. | (3.5) |
Proof. By applying Corollary 2.4 (first item) for convex function σ(x)=xn,x>0, one can obtain the result directly.
Proposition 3.5. Let 0<ν1<ν2. Then, for q>1,1p+1q=1 and for all x,y∈[ν1,ν2], we have:
|L−1(ν1+ν2−y,ν1+ν2−x)−(2A(ν1,ν2)−A(x,y))−1|≤q√2(y−x)4p√p+1{[H−1(ν2q1,ν2q2)−34H−1(x2q,3y2q)]1q+[H−1(ν2q1,ν2q2)−34H−1(3x2q,y2q)]1q}. | (3.6) |
Proof. By applying Corollary 2.4 (first item) for the convex function σ(x)=1x,x>0, one can obtain the result directly.
Proposition 3.6. Let 0<ν1<ν2 and n∈N, n≥2. Then, for q>1 and 1p+1q=1, we have:
|Lnn(ν1,ν2)−An(ν1,ν2)|≤n(ν2−ν1)4p√p+1{[2A(νq(n−1)1,νq(n−1)2)−12A(νq(n−1)1,3νq(n−1)2)]1q+[2A(νq(n−1)1,νq(n−1)2)−12A(3νq(n−1)1,νq(n−1)2)]1q}, | (3.7) |
and
|L−1(ν1,ν2)−A−1(ν1,ν2)|≤q√2(ν2−ν1)4p√p+1{[H−1(ν2q1,ν2q2)−34H−1(ν2q1,3ν2q2)]1q+[H−1(ν2q1,ν2q2)−34H−1(3ν2q1,ν2q2)]1q}. | (3.8) |
Proof. By setting x=ν1 and y=ν2 in results of Proposition 3.4 and Proposition 3.5, one can obtain the Proposition 3.6.
As we emphasized in the introduction, integral inequality is the most important field of mathematical analysis and fractional calculus. By using the well-known Jensen-Mercer and power mean inequalities, we have proved new inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional operators. In the last section, we have considered some propositions in the context of special functions; these confirm the efficiency of our results.
We would like to express our special thanks to the editor and referees. Also, the first author would like to thank Prince Sultan University for funding this work through research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM) group number RG-DES-2017-01-17.
The authors declare no conflict of interest.
[1] |
Yamamoto H, Hagino Y, Kasai S, et al. (2015) Specific roles of NMDA receptor subunits in mental disorders. Curr Mol Med 15: 193-205. doi: 10.2174/1566524015666150330142807
![]() |
[2] |
Zhou Q, Sheng M (2013) NMDA receptors in nervous system diseases. Neuropharmacology 74: 69-75. doi: 10.1016/j.neuropharm.2013.03.030
![]() |
[3] |
Sanz-Clemente A, Nicoll RA, Roche KW (2013) Diversity in NMDA receptor composition: many regulators, many consequences. Neuroscientist 19: 62-75. doi: 10.1177/1073858411435129
![]() |
[4] | Mao LM, Guo ML, Jin DZ, et al. (2011) Post-translational modification biology of glutamate receptors and drug addiction. Front Neuroanat 5: 19. |
[5] |
Koster KP, Francesconi W, Berton F, et al. (2019) Developmental NMDA receptor dysregulation in the infantile neuronal ceroid lipofuscinosis mouse model. Elife 8: pii: e40316. doi: 10.7554/eLife.40316
![]() |
[6] |
Hardingham GE, Bading H (2010) Synaptic versus extrasynaptic NMDA receptor signalling: Implications for neurodegenerative disorders. Nat Rev Neurosci 11: 682-696. doi: 10.1038/nrn2911
![]() |
[7] |
Monti B, Marri L, Contestabile A (2002) NMDA receptor-dependent CREB activation in survival of cerebellar granule cells during in vivo and in vitro development. Eur J Neurosci 16: 1490-1498. doi: 10.1046/j.1460-9568.2002.02232.x
![]() |
[8] |
Lee B, Butcher GQ, Hoyt KR, et al. (2005) Activity-dependent neuroprotection and cAMP response element-binding protein (CREB): Kinase coupling, stimulus intensity, and temporal regulation of CREB phosphorylation at serine 133. J Neurosci 25: 1137-1148. doi: 10.1523/JNEUROSCI.4288-04.2005
![]() |
[9] |
Chen BS, Roche KW (2009) Growth factor-dependent trafficking of cerebellar NMDA receptors via protein kinase B/Akt phosphorylation of NR2C. Neuron 62: 471-478. doi: 10.1016/j.neuron.2009.04.015
![]() |
[10] |
Duffney LJ, Wei J, Cheng J, et al. (2013) Shank3 deficiency induces NMDA receptor hypofunction via an actin-dependent mechanism. J Neurosci 33: 15767-15778. doi: 10.1523/JNEUROSCI.1175-13.2013
![]() |
[11] |
Ridley AJ (2006) Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol 16: 522-529. doi: 10.1016/j.tcb.2006.08.006
![]() |
[12] |
Li J, Xing H, Jiang G, et al. (2016) Increased expression of Rac1 in epilepsy patients and animal models. Neurochem Res 41: 836-843. doi: 10.1007/s11064-015-1759-y
![]() |
[13] |
Liu L, Wong TP, Pozza MF, et al. (2004) Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science 304: 1021-1024. doi: 10.1126/science.1096615
![]() |
[14] |
Krapivinsky G, Krapivinsky L, Manasian Y, et al. (2003) The NMDA receptor is coupled to the ERK pathway by a direct interaction between NR2B and RasGRF1. Neuron 40: 775-784. doi: 10.1016/S0896-6273(03)00645-7
![]() |
[15] |
Liu XY, Chu XP, Mao LM, et al. (2006) Modulation of D2R-NR2B interactions in response to cocaine. Neuron 52: 897-909. doi: 10.1016/j.neuron.2006.10.011
![]() |
[16] |
Hsiao EY, McBride SW, Hsien S, et al. (2013) Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155: 1451-1463. doi: 10.1016/j.cell.2013.11.024
![]() |
[17] | Thakur AK, Shakya A, Husain GM, et al. (2014) Gut-Microbiota and mental health: current and future perspectives. J Pharmacol Clin Toxicol 2: 1016. |
[18] |
Persico AM, Napolioni V (2013) Autism genetics. Behav Brain Res 251: 95-112. doi: 10.1016/j.bbr.2013.06.012
![]() |
[19] |
Nicholson JK, Holmes E, Kinross J, et al. (2012) Host-gut microbiota metabolic interactions. Science 336: 1262-1267. doi: 10.1126/science.1223813
![]() |
[20] |
Goodhart PJ, DeWolf WE, Kruse LI (1987) Mechanism-based inactivation of dopamine .beta.-hydroxylase by p-cresol and related alkylphenols. Biochemistry 26: 2576-2583. doi: 10.1021/bi00383a025
![]() |
[21] |
Southan C, DeWolf WE, Kruse LI (1990) Inactivation of dopamine β-hydroxylase by p-cresol: Evidence for a second, minor site of covalent modification at tyrosine 357. Biochim Biophys Acta 1037: 256-258. doi: 10.1016/0167-4838(90)90176-G
![]() |
[22] |
Pavăl D (2017) A dopamine hypothesis of autism spectrum disorder. Dev Neurosci 39: 355-360. doi: 10.1159/000478725
![]() |
[23] |
Tevzadze G, Oniani N, Zhuravliova E, et al. (2018) Effects of a gut microbiome toxin, p-cresol, on the indices of social behavior in rats. Neurophysiology 50: 372-377. doi: 10.1007/s11062-019-09764-1
![]() |
[24] |
Tevzadze G, Nanobashvili Z, Zhuravliova E, et al. (2018) Effects of a gut microbiome toxin, p-Cresol, on the susceptibility to seizures in rats. Neurophysiology 50: 424-427. doi: 10.1007/s11062-019-09774-z
![]() |
[25] |
Tevzadze G, Zhuravliova E, Meparishvili M, et al. (2019) Effects of a Gut Microbiome Toxin, p-Cresol, on the Contents of the NMDA2B Receptor Subunit in the Nucl. Accumbens of Rats. Neurophysiology 51: 72-76. doi: 10.1007/s11062-019-09795-8
![]() |
[26] |
Poletaeva II, Surina NM, Kostina ZA, et al. (2017) The Krushinsky-Molodkina rat strain: The study of audiogenic epilepsy for 65 years. Epilepsy Behav 71: 130-141. doi: 10.1016/j.yebeh.2015.04.072
![]() |
[27] | Ma L, Chung WK (2014) Quantitative analysis of copy number variants based on real-time lightcycler PCR. Curr Protoc Hum Genet 80. |
[28] |
Ishii A, Hirose S (2017) New genes for epilepsy–autism comorbidity. J Pediatr Neurol 15: 105-114. doi: 10.1055/s-0037-1602822
![]() |
[29] |
Ryley PR, Albertson AJ, Buckingham SC, et al. (2013) Status epilepticus triggers early and late alterations in brain-derived neurotrophic factor and NMDA glutamate receptor Grin2b DNA methylation levels in the hippocampus. Neuroscience 248: 602-619. doi: 10.1016/j.neuroscience.2013.06.029
![]() |
[30] |
Paoletti P, Bellone C, Zhou Q (2013) NMDA receptor subunit diversity: Impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 14: 383-400. doi: 10.1038/nrn3504
![]() |
[31] |
Endele S, Rosenberger G, Geider K, et al. (2010) Mutations in GRIN2A and GRIN2B encoding regulatory subunits of NMDA receptors cause variable neurodevelopmental phenotypes. Nat Genet 42: 1021-1026. doi: 10.1038/ng.677
![]() |
[32] |
Sebat J, Levy DL, McCarthy SE (2009) Rare structural variants in schizophrenia: one disorder, multiple mutations; one mutation, multiple disorders. Trends Genet 25: 528-535. doi: 10.1016/j.tig.2009.10.004
![]() |
[33] |
Weiss LA, Shen Y, Korn JM, et al. (2008) Association between microdeletion and microduplication at 16p11.2 and autism. N Engl J Med 358: 667-675. doi: 10.1056/NEJMoa075974
![]() |
[34] |
Coe BP, Witherspoon K, Rosenfeld JA, et al. (2014) Refining analyses of copy number variation identifies specific genes associated with developmental delay. Nat Genet 46: 1063-1071. doi: 10.1038/ng.3092
![]() |
[35] |
Gladding CM, Raymond LA (2011) Mechanisms underlying NMDA receptor synaptic/extrasynaptic distribution and function. Mol Cell Neurosci 48: 308-320. doi: 10.1016/j.mcn.2011.05.001
![]() |
[36] |
Chen M, Lu TJ, Chen XJ, et al. (2008) Differential roles of NMDA receptor subtypes in ischemic neuronal cell death and ischemic tolerance. Stroke 39: 3042-3048. doi: 10.1161/STROKEAHA.108.521898
![]() |
[37] |
Nakayama AY, Harms MB, Luo L (2000) Small GTPases Rac and Rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons. J Neurosci 20: 5329-5338. doi: 10.1523/JNEUROSCI.20-14-05329.2000
![]() |
[38] |
Kowski AB, Voges J, Heinze HJ, et al. (2015) Nucleus accumbens stimulation in partial epilepsy - A randomized controlled case series. Epilepsia 56: e78-82. doi: 10.1111/epi.12999
![]() |
[39] |
Fu J, Liu Y, Yang K, et al. (2018) Effect of accumbens nucleus shell lesioning on bitemporal lobe epilepsy in rat model. Folia Neuropathol 56: 346-353. doi: 10.5114/fn.2018.80868
![]() |
[40] |
Yang CR, Mogenson GJ (1984) Electrophysiological responses of neurones in the nucleus accumbens to hippocampal stimulation and the attenuation of the excitatory responses by the mesolimbic dopaminergic system. Brain Res 324: 69-84. doi: 10.1016/0006-8993(84)90623-1
![]() |
[41] |
Pennartz CMA, Dolleman-Van der Weel MJ, Lopes da Silva FHL (1992) Differential membrane properties and dopamine effects in the shell and core of the rat nucleus accumbens studied in vitro. Neurosci Lett 136: 109-112. doi: 10.1016/0304-3940(92)90660-Y
![]() |
[42] |
Gonon F, Sundstrom L (1996) Excitatory effects of dopamine released by impulse flow in the rat nucleus accumbens in vivo. Neuroscience 75: 13-18. doi: 10.1016/0306-4522(96)00320-X
![]() |
[43] |
Shen H, Moussawi K, Zhou W, et al. (2011) Heroin relapse requires long-term potentiation-like plasticity mediated by NMDA2b-containing receptors. Proc Natl Acad Sci U S A 108: 19407-19412. doi: 10.1073/pnas.1112052108
![]() |
[44] |
Vega-Villar M, Horvitz JC, Nicola SM (2019) NMDA receptor-dependent plasticity in the nucleus accumbens connects reward-predictive cues to approach responses. Nat Commun 10: 4429. doi: 10.1038/s41467-019-12387-z
![]() |
[45] |
Ortega-Martínez S (2015) A new perspective on the role of the CREB family of transcription factors in memory consolidation via adult hippocampal neurogenesis. Front Mol Neurosci 8: 46. doi: 10.3389/fnmol.2015.00046
![]() |
[46] |
Sakamoto K, Karelina K, Obrietan K (2011) CREB: A multifaceted regulator of neuronal plasticity and protection. J Neurochem 116: 1-9. doi: 10.1111/j.1471-4159.2010.07080.x
![]() |
[47] |
Marie H, Morishita W, Yu X, et al. (2005) Generation of silent synapses by acute in vivo expression of CaMKIV and CREB. Neuron 45: 741-752. doi: 10.1016/j.neuron.2005.01.039
![]() |
[48] |
Brown TE, Lee BR, Mu P, et al. (2011) A silent synapse-based mechanism for cocaine-induced locomotor sensitization. J Neurosci 31: 8163-8174. doi: 10.1523/JNEUROSCI.0016-11.2011
![]() |
[49] |
Wayman GA, Impey S, Marks D, et al. (2006) Activity-dependent dendritic arborization mediated by CaM-kinase I activation and enhanced CREB-dependent transcription of Wnt-2. Neuron 50: 897-909. doi: 10.1016/j.neuron.2006.05.008
![]() |
[50] |
Gao C, Wolf ME (2008) Dopamine receptors regulate NMDA receptor surface expression in prefrontal cortex neurons. J Neurochem 106: 2489-2501. doi: 10.1111/j.1471-4159.2008.05597.x
![]() |
[51] |
Hu JL, Liu G, Li YC, et al. (2010) Dopamine D1 receptor-mediated NMDA receptor insertion depends on Fyn but not Src kinase pathway in prefrontal cortical neurons. Mol Brain 3: 20. doi: 10.1186/1756-6606-3-20
![]() |
[52] |
Dudman JT, Eaton ME, Rajadhyaksha A, et al. (2003) Dopamine D1 receptors mediate CREB phosphorylation via phosphorylation of the NMDA receptor at Ser897-NR1. J Neurochem 87: 922-934. doi: 10.1046/j.1471-4159.2003.02067.x
![]() |
[53] |
Dunah AW, Sirianni AC, Fienberg AA, et al. (2004) Dopamine D1-dependent trafficking of striatal N-Methyl-D-aspartate glutamate receptors requires Fyn protein tyrosine kinase but not DARPP-32. Mol Pharmacol 65: 121-129. doi: 10.1124/mol.65.1.121
![]() |
[54] |
Chernigovskaya EV, Korotkov AA, Dorofeeva NA, et al. (2019) Delayed audiogenic seizure development in a genetic rat model is associated with overactivation of ERK1/2 and disturbances in glutamatergic signaling. Epilepsy Behav 99: 106494. doi: 10.1016/j.yebeh.2019.106494
![]() |
1. | Tariq A. Aljaaidi, Deepak B. Pachpatte, Ram N. Mohapatra, The Hermite–Hadamard–Mercer Type Inequalities via Generalized Proportional Fractional Integral Concerning Another Function, 2022, 2022, 1687-0425, 1, 10.1155/2022/6716830 | |
2. | Saad Ihsan Butt, Ahmet Ocak Akdemir, Muhammad Nadeem, Nabil Mlaiki, İşcan İmdat, Thabet Abdeljawad, (m,n)-Harmonically polynomial convex functions and some Hadamard type inequalities on the co-ordinates, 2021, 6, 2473-6988, 4677, 10.3934/math.2021275 | |
3. | Ifra Bashir Sial, Nichaphat Patanarapeelert, Muhammad Aamir Ali, Hüseyin Budak, Thanin Sitthiwirattham, On Some New Ostrowski–Mercer-Type Inequalities for Differentiable Functions, 2022, 11, 2075-1680, 132, 10.3390/axioms11030132 | |
4. | Deniz Uçar, Inequalities for different type of functions via Caputo fractional derivative, 2022, 7, 2473-6988, 12815, 10.3934/math.2022709 | |
5. | Soubhagya Kumar Sahoo, Y.S. Hamed, Pshtiwan Othman Mohammed, Bibhakar Kodamasingh, Kamsing Nonlaopon, New midpoint type Hermite-Hadamard-Mercer inequalities pertaining to Caputo-Fabrizio fractional operators, 2023, 65, 11100168, 689, 10.1016/j.aej.2022.10.019 | |
6. | Muhammad Imran Asjad, Waqas Ali Faridi, Mohammed M. Al-Shomrani, Abdullahi Yusuf, The generalization of Hermite-Hadamard type Inequality with exp-convexity involving non-singular fractional operator, 2022, 7, 2473-6988, 7040, 10.3934/math.2022392 | |
7. | Churong Chen, Discrete Caputo Delta Fractional Economic Cobweb Models, 2023, 22, 1575-5460, 10.1007/s12346-022-00708-5 | |
8. | Soubhagya Kumar Sahoo, Ravi P. Agarwal, Pshtiwan Othman Mohammed, Bibhakar Kodamasingh, Kamsing Nonlaopon, Khadijah M. Abualnaja, Hadamard–Mercer, Dragomir–Agarwal–Mercer, and Pachpatte–Mercer Type Fractional Inclusions for Convex Functions with an Exponential Kernel and Their Applications, 2022, 14, 2073-8994, 836, 10.3390/sym14040836 | |
9. | Muhammad Tariq, Sotiris K. Ntouyas, Asif Ali Shaikh, A Comprehensive Review of the Hermite–Hadamard Inequality Pertaining to Fractional Integral Operators, 2023, 11, 2227-7390, 1953, 10.3390/math11081953 | |
10. | Loredana Ciurdariu, Eugenia Grecu, Hermite–Hadamard–Mercer-Type Inequalities for Three-Times Differentiable Functions, 2024, 13, 2075-1680, 413, 10.3390/axioms13060413 | |
11. | Muhammad Aamir Ali, Thanin Sitthiwirattham, Elisabeth Köbis, Asma Hanif, Hermite–Hadamard–Mercer Inequalities Associated with Twice-Differentiable Functions with Applications, 2024, 13, 2075-1680, 114, 10.3390/axioms13020114 | |
12. | Muhammad Aamir Ali, Christopher S. Goodrich, On some new inequalities of Hermite–Hadamard–Mercer midpoint and trapezoidal type in q-calculus, 2024, 44, 0174-4747, 35, 10.1515/anly-2023-0019 | |
13. | Thanin Sitthiwirattham, Ifra Sial, Muhammad Ali, Hüseyin Budak, Jiraporn Reunsumrit, A new variant of Jensen inclusion and Hermite-Hadamard type inclusions for interval-valued functions, 2023, 37, 0354-5180, 5553, 10.2298/FIL2317553S | |
14. | Muhammad Aamir Ali, Zhiyue Zhang, Michal Fečkan, GENERALIZATION OF HERMITE–HADAMARD–MERCER AND TRAPEZOID FORMULA TYPE INEQUALITIES INVOLVING THE BETA FUNCTION, 2024, 54, 0035-7596, 10.1216/rmj.2024.54.331 | |
15. | Bahtiyar Bayraktar, Péter Kórus, Juan Eduardo Nápoles Valdés, Some New Jensen–Mercer Type Integral Inequalities via Fractional Operators, 2023, 12, 2075-1680, 517, 10.3390/axioms12060517 | |
16. | THANIN SITTHIWIRATTHAM, MIGUEL VIVAS-CORTEZ, MUHAMMAD AAMIR ALI, HÜSEYIN BUDAK, İBRAHIM AVCI, A STUDY OF FRACTIONAL HERMITE–HADAMARD–MERCER INEQUALITIES FOR DIFFERENTIABLE FUNCTIONS, 2024, 32, 0218-348X, 10.1142/S0218348X24400164 | |
17. | Muhammad Ali, Hüseyin Budak, Elisabeth Köbis, Some new and general versions of q-Hermite-Hadamard-Mercer inequalities, 2023, 37, 0354-5180, 4531, 10.2298/FIL2314531A |