Citation: Mary B. Dratman, Joseph V. Martin. The many faces of thyroxine[J]. AIMS Neuroscience, 2020, 7(1): 17-29. doi: 10.3934/Neuroscience.2020002
[1] | Kendall EC (1919) Isolation of the iodine compound which occurs in the thyroid: First paper. J Biol Chem 39: 125-147. |
[2] | Harington CR (1926) Chemistry of thyroxine: Isolation of thyroxine from the thyroid gland. Biochem J 20: 293-299. doi: 10.1042/bj0200293 |
[3] | Kendall EC (1929) Thyroxine New York: The Chemical Catalog Co., Inc. |
[4] | Fazekas JF, Graves FB, Alman RW (1951) The influence of the thyroid on cerebral metabolism. Endocrinology 48: 169-174. doi: 10.1210/endo-48-2-169 |
[5] | Timiras PS, Woodbury DM (1956) Effect of thyroid activity on brain function and brain electrolyte distrubution in rats. Endocrinology 58: 181-192. doi: 10.1210/endo-58-2-181 |
[6] | Dunn JT (1998) What's happening to our iodine? J Clin Endocrinol Metab 83: 3398-3400. |
[7] | Wolff J (1964) Transport of Iodide and Other Anions in the Thyroid Gland. Physiol Rev 44: 45-90. doi: 10.1152/physrev.1964.44.1.45 |
[8] | Kessler J, Obinger C, Eales G (2008) Factors influencing the study of peroxidase-generated iodine species and implications for thyroglobulin synthesis. Thyroid 18: 769-774. doi: 10.1089/thy.2007.0310 |
[9] | Dunn JT, Dunn AD (2001) Update on intrathyroidal iodine metabolism. Thyroid 11: 407-414. doi: 10.1089/105072501300176363 |
[10] | Tokuyama T, Yoshinari M, Rawitch AB, et al. (1987) Digestion of thyroglobulin with purified thyroid lysosomes: preferential release of iodoamino acids. Endocrinology 121: 714-721. doi: 10.1210/endo-121-2-714 |
[11] | Yoshinari M, Taurog A (1986) Physiological-role of thiol proteases in thyroid-hormone secretion. Acta Endocrinol 113: 261-267. doi: 10.1530/acta.0.1130261 |
[12] | Dratman MB (1974) On the mechanism of action of thyroxin, an amino acid analog of tyrosine. J Theor Biol 46: 255-270. doi: 10.1016/0022-5193(74)90151-9 |
[13] | Sawin CT (2005) The Heritage of the thyroid: A brief history. Werner and Ingbar's The Thyroid: A Fundamental and Clinical Text Philadelphia: Lippincott Williams and Wilkins, 3-7. |
[14] | Scanlan TS, Suchland KL, Hart ME, et al. (2004) 3-iodothyronamine is an endogenous and rapid-acting derivative of thyroid hormone. Nat Med 10: 638-642. doi: 10.1038/nm1051 |
[15] | Berry MD, Juorio AV, Li XM, et al. (1996) Aromatic L-amino acid decarboxylase: a neglected and misunderstood enzyme. Neurochem Res 21: 1075-1087. doi: 10.1007/BF02532418 |
[16] | Lovenberg W, Weissbach H, Udenfriend S (1962) Aromatic L-amino acid decarboxylase. J Biol Chem 237: 89-93. |
[17] | Axelrod J, Saavedera JM (1974) Aromatic amino acids in the brain. Ciba Found Symp New York: Elsevier, 51-59. |
[18] | Friesema EC, Jansen J, Visser TJ (2005) Thyroid hormone transporters. Biochem Soc Trans 33: 228-232. doi: 10.1042/BST0330228 |
[19] | Gereben B, Zeold A, Dentice M, et al. (2008) Activation and inactivation of thyroid hormone by deiodinases: Local action with general consequences. Cell Mol Life Sci 65: 570-590. doi: 10.1007/s00018-007-7396-0 |
[20] | Gereben B, Zavacki AM, Ribich S, et al. (2008) Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr Rev 29: 898-938. doi: 10.1210/er.2008-0019 |
[21] | Baqui MMA, Gereben B, Harney JW, et al. (2000) Distinct subcellular localization of transiently expressed types 1 and 2 iodothyronine deiodinases as determined by immunofluorescence confocal microscopy. Endocrinology 141: 4309-4312. doi: 10.1210/endo.141.11.7872 |
[22] | Michel R, Pitt-Rivers R (1957) The relative potencies of thyroxine and triiodo-thyronine analogues in vivo. Biochim Biophys Acta 24: 213-214. doi: 10.1016/0006-3002(57)90174-9 |
[23] | Hercbergs A, Mousa SA, Davis PJ (2018) Nonthyroidal illness syndrome and thyroid hormone actions at integrin alpha v beta 3. J Clin Endocrinol Metab 103: 1291-1295. doi: 10.1210/jc.2017-01939 |
[24] | Dratman MB, Richter ME, Lynch HA (1970) Incorporation of thyroxin carbon in protein fractions of Rana catesbiana tadpole nervous system, liver and tail. Endocrinology 86: 217-224. doi: 10.1210/endo-86-2-217 |
[25] | Kozyreff V, Surks MI, Oppenheimer JH (1970) Demonstration of membrane-linked iodoprotein in hepatic microsomes following metabolism of the thyroid hormones. Endocrinology 86: 781-786. doi: 10.1210/endo-86-4-781 |
[26] | Brown DD, Cai L, Das B, et al. (2005) Thyroid hormone controls multiple independent programs required for limb development in Xenopus laevis metamorphosis. Proc Natl Acad Sci U S A 102: 12455-12458. doi: 10.1073/pnas.0505989102 |
[27] | Schreiber AM, Cai L, Brown DD (2005) Remodeling of the intestine during metamorphosis of Xenopus laevis. Proc Natl Acad Sci U S A 102: 3720-3725. doi: 10.1073/pnas.0409868102 |
[28] | Das B, Cai LQ, Carter MG, et al. (2006) Gene expression changes at metamorphosis induced by thyroid hormone in Xenopus laevis tadpoles. Dev Biol 291: 342-355. doi: 10.1016/j.ydbio.2005.12.032 |
[29] | Hones GS, Rakov H, Logan J, et al. (2017) Noncanonical thyroid hormone signaling mediates cardiometabolic effects in vivo. Proc Natl Acad Sci U S A 114: E11323-E11332. doi: 10.1073/pnas.1706801115 |