Citation: Kedong Wang, Xianguo Geng, Mingming Chen, Ruomeng Li. Long-time asymptotics for the generalized Sasa-Satsuma equation[J]. AIMS Mathematics, 2020, 5(6): 7413-7437. doi: 10.3934/math.2020475
[1] | N. Sasa, J. Satsuma, New-type of soliton solutions for a higher-order nonlinear Schrödinger equation, J. Phys. Soc. Jpn, 60 (1991), 409-417. |
[2] | Y. Kivshar, G. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, Waltham: Academic Press, 2003. |
[3] | K. Porsezian, Soliton models in resonant and nonresonant optical fibers, Pramana, 57 (2001), 1003-1039. |
[4] | A. V. Slunyaev, A high-order nonlinear envelope equation for gravity waves in finite-depth water, J. Exp. Theor. Phys., 101 (2005), 926-941. |
[5] | M. Trippenbach, Y. B. Band, Effects of self-steepening and self-frequency shifting on short-pulse splitting in disper-sive nonlinear media, Phys. Rev. A, 57 (1991), 4791-4803. |
[6] | J. K. Yang, D. J. Kaup, Squared eigenfunctions for the Sasa-Satsuma equation, J. Math. Phys., 50 (2009), 023504. |
[7] | C. Gilson, J. Hietarinta, J. Nimmo, et al. Sasa-Satsuma higher-order nonlinear Schrödinger equation and its bilinearization and multisoliton solutions, Phys. Rev. E, 68 (2003), 016614. |
[8] | J. J. C. Nimmo, H. Yilmaz, Binary Darboux transformation for the Sasa-Satsuma equation, J. Phys. A, 48 (2015), 425202. |
[9] | X. G. Geng, R. M. Li, B. Xue, A vector general nonlinear Schrödinger equation with (m + n) components, J. Nonlinear Sci., 30 (2020), 991-1013. |
[10] | R. M. Li, X. G. Geng, On a vector long wave-short wave-type model, Stud, Appl. Math., 144 (2020), 164-184. |
[11] | R. M. Li, X. G. Geng, Rogue periodic waves of the sine-Gordon equation, Appl. Math. Lett., 102 (2020), 106147. |
[12] | J. Xu, Q. Z. Zhu, E. G. Fan, The initial-boundary value problem for the Sasa-Satsuma equation on a finite interval via the Fokas method, J. Math. Phys., 59 (2018), 073508. |
[13] | Y. Y. Zhai, X. G. Geng, The coupled Sasa-Satsuma hierarchy: trigonal curve and finite genus solutions, Anal. Appl., 15 (2017), 667-697. |
[14] | X. G. Geng, L. H. Wu, G. L. He, Quasi-periodic solutions of the Kaup-Kupershmidt hierarchy, J. Nonlinear Sci., 23 (2013), 527-555. |
[15] | X. G. Geng, Y. Y. Zhai, H. H. Dai, Algebro-geometric solutions of the coupled modified Kortewegde Vries hierarchy, Adv. Math., 263 (2014), 123-153. |
[16] | J. Wei, X. G. Geng, X. Zeng, The Riemann theta function solutions for the hierarchy of Bogoyavlensky lattices, Trans. Amer. Math. Soc., 371 (2019), 1483-1507. |
[17] | J. Wei, X. G. Geng, A super Sasa-Satsuma hierarchy and bi-Hamiltonian structures, Appl. Math. Lett., 83 (2018), 46-52. |
[18] | P. Deift, X. Zhou, A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation, Ann. of Math., 137 (1993), 295-368. |
[19] | K. Grunert, G. Teschl, Long-time asymptotics for the Korteweg-de Vries equation via nonlinear steepest descent, Math. Phys. Anal. Geom., 12 (2009), 287-324. |
[20] | P. J. Cheng, S. Venakides, X. Zhou, Long-time asymptotics for the pure radiation solution of the sine-Gordon equation, Comm. Partial Differential Equations, 24 (1999), 1195-1262. |
[21] | A. V. Kitaev, A. H. Vartanian, Leading-order temporal asymptotics of the modified nonlinear Schrödinger equation: Solitonless sector, Inverse Problem, 13 (1997), 1311-1339. |
[22] | A. V. Kitaev, A. H. Vartanian, Asymptotics of solutions to the modified nonlinear Schrödinger equation: Solution on a nonvanishing continuous background, SIAM J. Math. Anal., 30 (1999), 787-832. |
[23] | A. H. Vartanian, Higher order asymptotics of the modified nonlinear Schrödinger equation, Comm. Partial Differential Equations, 25 (2000), 1043-1098. |
[24] | A. Boutet de Monvel, A. Kostenko, D. Shepelsky, G. Teschl, Long-time asymptotics for the Camassa-Holm equation, SIAM J. Math. Anal., 41 (2009), 1559-1588. |
[25] | L. K. Arruda, J. Lenells, Long-time asymptotics for the derivative nonlinear Schrödinger equation on the half-line, Nonlinearity, 30 (2017), 4141-4172. |
[26] | A. Boutet de Monvel, A. Its, V. Kotlyarov, Long-time asymptotics for the focusing NLS equation with time-periodic boundary condition on the half-line, Comm. Math. Phys., 290 (2009), 479-522. |
[27] | P. Deift, J. Park, Long-time asymptotics for solutions of the NLS equation with a delta potential and even initial data, Int. Math. Res. Not. IMRN, 24 (2011), 5505-5624. |
[28] | I. Egorova, J. Michor, G. Teschl, Rarefaction waves for the Toda equation via nonlinear steepest descent, Discrete Contin. Dyn. Syst., 38 (2018), 2007-2028. |
[29] | H. Yamane, Long-time asymptotics for the defocusing integrable discrete nonlinear Schrödinger equation, J. Math. Soc. Japan, 66 (2014), 765-803. |
[30] | J. Lenells, The nonlinear steepest descent method: asymptotics for initial-boundary value problems, SIAM J. Math. Anal., 48 (2016), 2076-2118. |
[31] | A. Boutet de Monvel, D. Shepelsky, A Riemann-Hilbert approach for the Degasperis-Procesi equation, Nonlinearity, 26 (2013), 2081-2107. |
[32] | A. Boutet de Monvel, J. Lenells, D. Shepelsky, Long-time asymptotics for the Degasperis-Procesi equation on the half-line, Ann. Inst. Fourier, 69 (2019), 171-230. |
[33] | X. G. Geng, H. Liu, The nonlinear steepest descent method to long-time asymptotics of the coupled nonlinear Schrödinger equation, J. Nonlinear Sci., 28 (2018), 739-763. |
[34] | H. Liu, X. G. Geng, B. Xue, The Deift-Zhou steepest descent method to long-time asymptotics for the Sasa-Satsuma equation, J. Differential Equations, 265 (2018), 5984-6008. |
[35] | B. B. Hu, T. C. Xia, W. X. Ma, Riemann-Hilbert approach for an initial-boundary value problem of the two-component modified Korteweg-de Vries equation on the half-line, Appl. Math. Comput., 332 (2018), 148-159. |
[36] | B. B. Hu, T. C. Xia, N. Zhang, et al. Initial-boundary value problems for the coupled higher-order nonlinear Schrödinger equations on the half-line, Int. J. Nonlinear Sci. Numer. Simul., 19 (2018), 83-92. |
[37] | N. Zhang, T. C. Xia, E. G. Fan, A Riemann-Hilbert approach to the Chen-Lee-Liu equation on the half line, Acta Math. Appl. Sin. Engl. Ser., 34 (2018), 493-515. |
[38] | X. G. Geng, J. P. Wu, Riemann-Hilbert approach and N-soliton solutions for a generalized SasaSatsuma equation, Wave Motion, 60 (2016), 62-72. |
[39] | M. J. Ablowitz, A. S. Fokas, Complex variables: Introduction and applications, Cambridge: Cambridge University Press, 2003. |
[40] | R. Beals, R. R. Coifman, Scattering and inverse scattering for first order systems, Comm. Pure Appl. Math., 37 (1984), 39-90. |
[41] | R. Beals, R. Wong, Special functions and orthogonal polynomials, Cambridge: Cambridge University Press, 2016. |
[42] | E. T. Whittaker, G. N. Watson, A Course of Modern Analysis 4th Ed, Cambridge: Cambridge University Press, 1927. |