Research article

Generalized iterative method for the solution of linear and nonlinear fractional differential equations with composite fractional derivative operator

  • Received: 15 October 2019 Accepted: 25 February 2020 Published: 18 March 2020
  • MSC : Primary: 34A08, 35R11, 26A33; Secondary: 65J15

  • In present paper, we introduced generalized iterative method to solve linear and nonlinear fractional differential equations with composite fractional derivative operator. Linear/nonlinear fractional diffusion-wave equations, time-fractional diffusion equation, time fractional Navier-Stokes equation have been solved by using generalized iterative method. The graphical representations of the approximate analytical solutions of the fractional differential equations were provided.

    Citation: Krunal B. Kachhia, Jyotindra C. Prajapati. Generalized iterative method for the solution of linear and nonlinear fractional differential equations with composite fractional derivative operator[J]. AIMS Mathematics, 2020, 5(4): 2888-2898. doi: 10.3934/math.2020186

    Related Papers:

  • In present paper, we introduced generalized iterative method to solve linear and nonlinear fractional differential equations with composite fractional derivative operator. Linear/nonlinear fractional diffusion-wave equations, time-fractional diffusion equation, time fractional Navier-Stokes equation have been solved by using generalized iterative method. The graphical representations of the approximate analytical solutions of the fractional differential equations were provided.


    加载中


    [1] I. H. Dimovski, On an operational calculus for a class of differential operators, C. R. Acad. Bulg. Sci., 19 (1966), 1111-1114.
    [2] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, Amsterdam-Tokyo, 2006.
    [3] R. Hilfer, Fractional calculus and regular variation in thermodynamics, In: Applications of Fractional calculus in Physics, Ed. R. Hilfer, World Scientific, Singapore, 2000.
    [4] R. Hilfer, Experimental evidence for fractional time evolution in glass forming materials, Chem. Phys., 284 (2002), 399-408. doi: 10.1016/S0301-0104(02)00670-5
    [5] K. B. Kachhia, J. C. Prajapati, Solution of fractional partial differential equation aries in study of heat transfer through diathermanous materials, J. Interdiscip. Math., 18 (2015), 125-132. doi: 10.1080/09720502.2014.996017
    [6] R. K. Saxena, A. M. Mathai, H. J. Haubold, Space-time fractional reaction-diffusion equations associated with a generalized Riemann-Liouville fractional derivative, Axioms, 3 (2014), 320-334. doi: 10.3390/axioms3030320
    [7] R. K. Saxena, Z. Tomovski, T. Sandev, Fractional Helmholtz and fractional wave equations with Riesz-Feller and generalized Riemann-Liouville fractional derivatives, Eur. J. Pure Appl. Math., 7 (2014), 312-334.
    [8] Ž. Tomovski, T. Sandev, R. Metzler, et al. Generalized space-time fractional diffusion equation with composite fractional time derivative, Physica A, 391 (2012), 2527-2542. doi: 10.1016/j.physa.2011.12.035
    [9] I. Ali, N. A. Malik, Hilfer fractional advection-diffusion equations with power-law initial condition; a numerical study using variational iteration method, Comp. Math. Appl., 68 (2014), 1161-1179. doi: 10.1016/j.camwa.2014.08.021
    [10] R. Hilfer, Y. Luchko, Ž. Tomovski, Operational method for the solution of fractional differential equations with generalized Riemann-Liouville fractional derivative, Fractional Calculus Appl. Anal., 12 (2009), 299-318.
    [11] A. Wiman, Uber de fundamental satz in der theorie der funktionen Eα(x), Acta Mathematica, 29 (1905), 191-201.
    [12] A. K. Shukla, J. C. Prajapati, On a generalization of Mittag-Leffler function and its properties, J. Math. Anal. Appl., 336 (2007), 797-811. doi: 10.1016/j.jmaa.2007.03.018
    [13] A. K. Shukla, J. C. Prajapati, On a generalized Mittag-Leffler type function and generated integral operator, Math. Sci. Res. J., 12 (2008), 283-290.
    [14] A. K. Shukla, J. C. Prajapati, Some remarks on generalized Mittag-Leffler function, Proyecciones J. Math., 28 (2009), 27-34.
    [15] V. Daftardar-Gejji, H. Jafari, An iterative method for solving non linear functional equations, J. Math. Anal. Appl., 316 (2006), 753-763. doi: 10.1016/j.jmaa.2005.05.009
    [16] S. Bhalekar, V. Daftardar-Gejji, New itreative method: Application to partial differential equations, Appl. Math. Comput., 203 (2008), 778-783.
    [17] V. Daftardar-Gejji, S. Bhalekar, Solving fractional diffusion-wave equations using the new iterative method, Fractional Calculus Appl. Anal., 11 (2008), 193-202.
    [18] V. B. L. Chaurasia, D. Kumar, Solution of the time-fractional Navier-Stokes Equation, Gen. Math. Notes, 4 (2011), 49-59.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3849) PDF downloads(466) Cited by(1)

Article outline

Figures and Tables

Figures(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog