Citation: Feng Qi, Siddra Habib, Shahid Mubeen, Muhammad Nawaz Naeem. Generalized k-fractional conformable integrals and related inequalities[J]. AIMS Mathematics, 2019, 4(3): 343-358. doi: 10.3934/math.2019.3.343
[1] | Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao . Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334 |
[2] | Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable fractional integral inequalities for GG- and GA-convex functions. AIMS Mathematics, 2020, 5(5): 5012-5030. doi: 10.3934/math.2020322 |
[3] | Zitong He, Xiaolin Ma, Ghulam Farid, Absar Ul Haq, Kahkashan Mahreen . Bounds of a unified integral operator for (s,m)-convex functions and their consequences. AIMS Mathematics, 2020, 5(6): 5510-5520. doi: 10.3934/math.2020353 |
[4] | Yue Wang, Ghulam Farid, Babar Khan Bangash, Weiwei Wang . Generalized inequalities for integral operators via several kinds of convex functions. AIMS Mathematics, 2020, 5(5): 4624-4643. doi: 10.3934/math.2020297 |
[5] | Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak . Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546 |
[6] | Erhan Deniz, Ahmet Ocak Akdemir, Ebru Yüksel . New extensions of Chebyshev-Pólya-Szegö type inequalities via conformable integrals. AIMS Mathematics, 2020, 5(2): 956-965. doi: 10.3934/math.2020066 |
[7] | Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions. AIMS Mathematics, 2020, 5(5): 5106-5120. doi: 10.3934/math.2020328 |
[8] | Muhammad Tariq, Sotiris K. Ntouyas, Hijaz Ahmad, Asif Ali Shaikh, Bandar Almohsen, Evren Hincal . A comprehensive review of Grüss-type fractional integral inequality. AIMS Mathematics, 2024, 9(1): 2244-2281. doi: 10.3934/math.2024112 |
[9] | Kottakkaran Sooppy Nisar, Gauhar Rahman, Aftab Khan, Asifa Tassaddiq, Moheb Saad Abouzaid . Certain generalized fractional integral inequalities. AIMS Mathematics, 2020, 5(2): 1588-1602. doi: 10.3934/math.2020108 |
[10] | Hu Ge-JiLe, Saima Rashid, Muhammad Aslam Noor, Arshiya Suhail, Yu-Ming Chu . Some unified bounds for exponentially $tgs$-convex functions governed by conformable fractional operators. AIMS Mathematics, 2020, 5(6): 6108-6123. doi: 10.3934/math.2020392 |
Conformable derivatives are nonlocal fractional derivatives. They can be called fractional since we can derive up to arbitrary order. However, since in the community of fractional calculus nonlocal fractional derivatives only are used to be called fractional, we prefer to replace conformable fractional by conformable (as a type of local fractional). Conformable derivatives and other types of local fractional derivatives or modified conformable derivatives in [7] can gain their importance by the ability of using them to generate more generalized nonlocal fractional derivatives with singular kernels (see [4,23,27]). Fractional calculus is the study of derivatives and integrals of non-integer order and is the generalized form of classical derivatives and integrals. It is as dated as classical calculus, but it acquires more importance in recent two decades, this is due to its applications in various fields such as physics, biology, fluid dynamics, control theory, image processing, signal processing, and computer networking. See [5,11,12,13,14,15,16,17,18,25,26,31,32,34,58,63,64,65,66]. In recent years, the research has been proceeded to generalize the existing inequalities through innovative ideas and approaches of fractional calculus. One of the most popular approaches among researchers is the use of fractional integral operators. Due to their potentials to be expended for the existence of nontrivial and positive solutions of several classes of fractional differential equations, the integral inequalities involving fractional integrals are considerably important.
A large bulk of existing literature consists of generalizations of numerous inequalities via fractional integral operators and their applications [9,37,42,59,62]. Mubeen and Iqbal [38] contributed the ongoing research by presenting the improved version of generalized Grüss type integral inequalities for k-Riemann-Liouville fractional integrals. Agarwal et al. [8] obtained certain Hermite-Hadamard type inequalities for generalized k-fractional integrals. Set et al. [52] presented an integral identity and generalized Hermite-Hadamard type inequalities for Riemann-Liouville fractional integral. Mubeen et al. [39] established integral inequalities of Ostrowski type for k-fractional Riemann-Liouville integrals. Sarikaya and Budak [50] utilized local fractional integrals to derive a generalized inequality. Khan et al. [35] produced some important generalized inequalities for a finite class of positive decreasing functions for fractional conformable integrals. Jleli et al. [28] determined a Hartman-Winter type inequality involving fractional derivative with respect to another function. In the papers [6,24,56,57,61] and closely related references therein, there are more information on this topic.
The main object of this paper is to develop a new notion "generalized k-fractional conformable integral" which is the generalized form of fractional operators reported in [27]. Hereafter, we also generalize some integral inequalities given in [35] for a finite class of positive and decreasing functions to ones involving our newly introduced k-fractional conformable integrals. For details of those inequalities, their applications, and their stability, we refer readers to [2,3,33,36,54,55].
The notion of left and right fractional conformable derivatives for a differentiable function f, introduced by Abdeljawad [1], can be expressed as
Tαa+f(t)=(t−a)1−αf′(t)andTαb−f(t)=(b−t)1−αf′(t). |
Correspondingly, left and right fractional conformable integrals for 0<α<1 can be represented by
Hαa+f(t)=∫taf(x)(x−a)1−αdxandHαb−f(t)=∫btf(x)(b−x)1−αdx. |
Let Γ(z) for ℜ(z)>0 denote the classical gamma function [43,45]. The left and right fractional conformable integral (LFCI and RFCI) operators of order β∈C for ℜ(β)>0 can be defined [27] respectively by
βHαa+f(x)=1Γ(β)∫xa[(x−a)α−(t−a)αα]β−1f(t)(t−a)1−αdt |
and
βHαb−f(x)=1Γ(β)∫bx[(b−x)α−(b−t)αα]β−1f(t)(b−t)1−αdt. |
Díaz and Pariguan [19] generalized the classical Pochhammer symbol (λ)n, the classical gamma function Γ(z), and the classical beta function B(u,v) respectively as
(λ)n,k={1,n=0;λ(λ+k)⋯(λ+(n−1)k),n∈N,Γk(x)=limn→∞n!kn(nk)x/k−1(x)n,k, |
and
Bk(u,v)=1k∫10tu/k−1(1−t)v/k−1dt. |
See also [40,41,44,46,47]. It is not difficult to see that the k-gamma function Γk(x) and the k-beta function Bk(u,v) satisfy
Γk(x)=∫∞0ux−1e−uk/kdu,Γ(x)=limk→1Γk(x),Γk(x)=kx/k−1Γ(xk),Γk(x+k)=xΓk(x), |
and
Bk(u,v)=1kB(uk,vk),Bk(u,v)=Γk(u)Γk(v)Γk(u+v). |
In this section, we introduce the generalized left and right k-fractional conformable integrals which generalize the Riemann-Liouville fractional integrals [49,p. 44], Hadamard fractional integrals [10], Katugampola fractional integrals [29], and generalized fractional integrals [51].
Definition 3.1. Let f be a continuous function on a finite real interval [a,b]. Then the generalized left and right k-fractional conformable integrals (k-FCI) of order β∈C for ℜ(β)>0 are respectively defined as
βkHαa+f(x)=1kΓk(β)∫xa[(x−a)α−(t−a)αα]β/k−1f(t)(t−a)1−αdt |
and
βkHαb−f(x)=1kΓk(β)∫bx[(b−x)α−(b−t)αα]β/k−1f(t)(b−t)1−αdt, |
where k>0 and α∈R∖{0}.
Some features of those concepts defined in Definition 1, such as the semi-group property, the derivative of functions, the Laplace transforms of functions using this derivative and the solution of IVP, can be found in [1].
Theorem 3.1. Let f∈L1[a,b], α∈R∖{0}, and k>0. Then both βkHαa+f(x) and βkHαb−f(x) exist for all x∈[a,b] and ℜ(β)>0.
Proof. Let Δ′=[a,b]×[a,b] and P′:Δ′→R such that
P′(x,t)=[(x−a)α−(t−a)α]β/k−1(t−a)α−1. |
It is clear that P′=P′++P′−, where
P′+(x,t)={[(x−a)α−(t−a)α]β/k−1(t−a)α−1,a≤t≤x≤b;0,a≤x≤t≤b |
and
P′−(x,t)={[(t−a)α−(x−a)α]β/k−1(x−a)α−1,a≤t≤x≤b;0,a≤x≤t≤b. |
Since P′ is measurable on Δ′, we can write
∫baP′(x,t)dt=∫xaP′(x,t)dt=∫xa[(x−a)α−(t−a)α]β/k−1(t−a)α−1dt=αkβ(x−a)αβ/k. |
Therefore, we obtain
∫ba[∫baP′(x,t)|f(x)|dt]dx=∫ba|f(x)|[∫baP′(x,t)dt]dx=αkβ∫ba(x−a)αβ/k|f(x)|dx≤αkβ(b−a)αβ/k∫ba|f(x)|dx=αkβ(b−a)αβ/k‖f(x)‖L1[a,b]<∞. |
So, by Tonelli's theorem for iterated integrals [21,p. 147], the function Q′:Δ′→R such that Q′(x,t)=P′(x,t)f(x) is integrable over Δ′. Hence, by Fubini's theorem, it follows that ∫baP′(x,t)f(x)dx is integrable over [a,b] as a function of t∈[a,b]. This implies that βkHαa+f(x) exists.
The existence of the right k-fractional conformable integral βkHαb−f(x) can be proved in a similar manner. The proof of Theorem 3.1 is complete.
Fractional integral inequalities have been analyzed for many useful purposes. One of the most useful applications of such inequalities is the existence of nontrivial solutions of fractional differential equations. Many applications find in the literature for the existence of nontrivial solution eigenvalue problems by inequalities, see [42,62]. Generalizing pre-existing inequalities by applying fractional integral operators is becoming a popular trend in the research field, see, for example, [22,46,48].
In this section, we present some k-analogues of inequalities in [53,59,60] for generalized k-fractional conformable integrals.
Theorem 4.1. Let h(x) be a continuous increasing function and {gi,1≤i≤n} be a sequence of continuous positive decreasing functions on the interval [a,b]. Let a<x≤b, η>0, ξ≥γp>0 for 1≤p≤n. Then the left k-FCI operator βkHαa+ satisfies the inequality
βkHαa+(∏ni≠pgγiigξp(x))βkHαa+(n∏i=1gγii(x))≥βkHαa+(hη(x)∏ni≠pgγiigξp(x))βkHαa+(hη(x)n∏i=1gγii(x)). | (4.1) |
Proof. Under given conditions, we have
[hη(ρ)−hη(τ)][gξ−γpp(τ)−gξ−γpp(ρ)]≥0. |
Let us define a function
βkJαa+(x,ρ,τ)=1kΓk(β)[(x−a)α−(τ−a)αα]β/k−1∏ni=1gγii(τ)(τ−a)1−α[hη(ρ)−hη(τ)][gξ−γpp(τ)−gξ−γpp(ρ)]. | (4.2) |
Accordingly, the function βkJαa+(x,ρ,τ) is positive for all τ∈(a,b]. Integrating on both sides of the above equation (4.2) with respect to τ from a to x shows
0≤∫xaβkJαa+(x,ρ,τ)dτ=1kΓk(β)∫xa[(x−a)α−(τ−a)αα]β/k−1×n∏i=1gγii(τ)[hη(ρ)−hη(τ)][gξ−γpp(τ)−gξ−γpp(ρ)]dτ(τ−a)1−α=hη(ρ)[βkHαa+(n∏i≠pgγiigξp(x))]+gξ−γpp(ρ)[βkHαa+(hη(x)n∏i=1gγii(x))]−hη(ρ)gξ−γpp(ρ)[βkHαa+(n∏i=1gγii(x))]−[βkHαa+(hη(x)n∏i≠pgγii(x))]. | (4.3) |
Multiplying on both sides of the relation (4.3) by
1kΓk(β)[(x−a)α−(ρ−a)αα]β/k−1∏ni=1gγii(ρ)(ρ−a)1−α. | (4.4) |
and integrating on both sides with respect to ρ from a to x give
0≤[βkHαa+(n∏i≠pgγiigξp(x))][βkHαa+(hη(x)n∏i=1gγii(x))]−[βkHαa+(hη(x)n∏i≠pgγiigξp(x))][βkHαa+(n∏i=1gγii(x))]. | (4.5) |
Dividing on both sides of (4.5) by
βkHαa+(hη(x)n∏i=1gγii(x))[βkHαa+(n∏i=1gγii(x))] |
leads to (4.1). The proof of Theorem 4.1 is complete.
Corollary 4.1. Let {gi,1≤i≤n} be a sequence of continuous positive decreasing functions on the interval [a,b]. Let a<x≤b, η>0, ξ≥γp>0 for 1≤p≤n. Then the left k-FCI operator βkHαa+ satisfies the inequality
βkHαa+(∏ni≠pgγiigξp(x))βkHαa+(∏ni=1gγii(x))≥βkHαa+((x−a)η∏ni≠pgγiigξp(x))βkHαa+((x−a)η∏ni=1gγii(x)). | (4.6) |
Proof. This can be derived from taking h(x)=x−a in Theorem 4.1. The proof of Corollary 1 is complete.
Corollary 4.2. Let {gi,1≤i≤n} be a sequence of continuous positive decreasing functions on the interval [a,b]. Let a<x≤b, η>0, ξ≥γp>0 for 1≤p≤n. Then the left k-FCI operator βkHαa+ satisfies the inequality
[θkHαa+((x−a)ηn∏i=1gγii(x))][βkHαa+(n∏i≠pgγiigξp(x))]+[θkHαa+(n∏i≠pgγiigξp(x))][βkHαa+((x−a)ηn∏i=1gγii(x))]≥[θkHαa+((x−a)ηn∏i≠pgγiigξp(x))][βkHαa+(n∏i≠pgγiigξp(x))]+[θkHαa+(n∏i=1gγii(x))][βkHαa+((x−a)ηn∏i=1gγii(x))]. | (4.7) |
Proof. Multiplying on both sides of the relation
0≤∫xaβkJαa+(x,ρ,τ)dτ=1kΓk(β)∫xa[(x−a)α−(τ−a)αα]β/k−1×n∏i=1gγii(τ)[(ρ−a)η−(τ−a)η][gξ−γpp(τ)−gξ−γpp(ρ)]dτ(τ−a)1−α=(ρ−a)η[βkHαa+(n∏i≠pgγiigξp(x))]+gξ−γpp(ρ)[βkHαa+((x−a)ηn∏i=1gγii(x))]−(ρ−a)ηgξ−γpp(ρ)[βkHαa+(n∏i=1gγii(x))]−[βkHαa+((x−a)ηn∏i≠pgγii(x))] |
by
1kΓk(θ)[(x−a)α−(ρ−a)αα]θ/k−1∏ni=1gγii(ρ)(ρ−a)1−α | (4.8) |
and integrating on both sides with respect to ρ from a to x arrive at
0≤[θkHαa+((x−a)ηn∏i=1gγii(x))][βkHαa+(n∏i≠pgγiigξp(x))]+[θkHαa+(n∏i≠pgγiigξp(x))][βkHαa+((x−a)ηn∏i=1gγii(x))]−[θkHαa+((x−a)ηn∏i≠pgγiigξp(x))][βkHαa+(n∏i≠pgγiigξp(x))]−[θkHαa+(n∏i≠pgγiigξp(x))][βkHαa+((x−a)ηn∏i=1gγii(x))]. | (4.9) |
Dividing on both sides of (4.9) by
[θkHαa+((x−a)ηn∏i≠pgγiigξp(x))][βkHαa+(n∏i≠pgγiigξp(x))]+[θkHαa+(n∏i≠pgγiigξp(x))][βkHαa+((x−a)ηn∏i=1gγii(x))] |
leads to (4.7). The proof of Corollary 2 is complete.
Corollary 4.3. Let h(x) be a continuous increasing function and {gi,1≤i≤n} be a sequence of continuous positive decreasing functions on the interval [a,b]. Let a<x≤b, η>0, ξ≥γp>0 for 1≤p≤n. Then the left k-FCI operator βkHαa+ satisfies the inequality
[θkHαa+(hη(x)n∏i=1gγii(x))][βkHαa+(n∏i≠pgγiigξp(x))]+[θkHαa+(n∏i≠pgγiigξp(x))][βkHαa+(hη(x)n∏i=1gγii(x))]≥[θkHαa+(hη(x)n∏i≠pgγiigξp(x))][βkHαa+(n∏i≠pgγiigξp(x))]+[θkHαa+(n∏i=1gγii(x))][βkHαa+(hη(x)n∏i=1gγii(x))]. | (4.10) |
Proof. Multiplying on both sides of the relation (4.3) by (4.8) and integrating on both sides with respect to ρ from a to x derive
0≤[θkHαa+(hη(x)n∏i=1gγii(x))][βkHαa+(n∏i≠pgγiigξp(x))]+[θkHαa+(n∏i≠pgγiigξp(x))][βkHαa+(hη(x)n∏i=1gγii(x))]−[θkHαa+(hη(x)n∏i≠pgγiigξp(x))][βkHαa+(n∏i≠pgγiigξp(x))]−[θkHαa+(n∏i≠pgγiigξp(x))][βkHαa+(hη(x)n∏i=1gγii(x))]. | (4.11) |
Dividing on both sides of (4.11) by
[θkHαa+(hη(x)n∏i≠pgγiigξp(x))][βkHαa+(n∏i≠pgγiigξp(x))]+[θkHαa+(n∏i≠pgγiigξp(x))][βkHαa+(hη(x)n∏i=1gγii(x))] |
reveals (4.10). The proof of Corollary 3 is complete.
Theorem 4.2. Let {gi,1≤i≤n} be a sequence of continuous positive decreasing functions on the interval [a,b]. Let a<x≤b, η>0, ξ≥γp>0 for 1≤p≤n. Then the right k-FCI operator βkHαb− satisfies the inequality
βkHαb−(∏ni≠pgγiigξp(x))βkHαb−(∏ni=1gγii(x))≥βkHαb−((b−x)η∏ni≠pgγiigξp(x))βkHαb−((b−x)η(∏ni=1gγii(x)). | (4.12) |
Proof. Under given conditions, we have
[(b−ρ)η−(b−τ)η][gξ−γpp(τ)−gξ−γpp(ρ)]≥0. |
Let us define a function
βkJαb−(x,ρ,τ)=1kΓk(β)[(b−x)α−(b−τ)αα]β/k−1∏ni=1gγii(τ)(b−τ)1−α[(b−ρ)η−(b−τ)η][gξ−γpp(τ)−gξ−γpp(ρ)]. | (4.13) |
Consequently, the function βkJαb−(x,ρ,τ) is positive for all τ∈(a,b]. Integrating on both sides of the above equation (4.13) with respect to τ from x to b gives
0≤∫bxβkJαb−(x,ρ,τ)dτ=1kΓk(β)∫bx[(b−x)α−(b−τ)αα]β/k−1×n∏i=1gγii(τ)[(b−ρ)η−(b−τ)η][gξ−γpp(τ)−gξ−γpp(ρ)]dτ(b−τ)1−α=(b−ρ)η[βkHαb−(n∏i≠pgγiigξp(x))]+gξ−γpp(ρ)[βkHαb−((b−x)ηn∏i=1gγii(x))]−(b−ρ)ηgξ−γpp(ρ)[βkHαb−(n∏i=1gγii(x))]−[βkHαb−((b−x)ηn∏i≠pgγii(x))]. | (4.14) |
Multiplying the relation (4.14) by
1kΓk(β)[(b−x)α−(b−ρ)αα]β/k−1∏ni=1gγii(ρ)(b−ρ)1−α | (4.15) |
and integrating on both sides with respect to ρ from x to b produce
0≤[βkHαb−(n∏i≠pgγiigξp(x))][βkHαb−((b−x)ηn∏i=1gγii(x))]−[βkHαb−((b−x)ηn∏i≠pgγiigξp(x))][βkHαb−(n∏i=1gγii(x))]. | (4.16) |
Dividing on both sides of (4.16) by
βkHαb−((b−x)ηn∏i=1gγii(x))[βkHαb−(n∏i=1gγii(x))] |
yields (4.12). The proof of Theorem 4.2 is complete.
Corollary 4.4. Let {gi,1≤i≤n} be a sequence of continuous positive decreasing functions on the interval [a,b]. Let a<x≤b, η>0, ξ≥γp>0 for 1≤p≤n. Then the right k-FCI operator βkHαb− satisfies the inequality
[θkHαb−((b−x)ηn∏i=1gγii(x))][βkHαb−(n∏i≠pgγiigξp(x))]+[θkHαb−(n∏i≠pgγiigξp(x))][βkHαb−((b−x)ηn∏i=1gγii(x))]≥[θkHαb−((b−x)ηn∏i≠pgγiigξp(x))][βkHαb−(n∏i≠pgγiigξp(x))]+[θkHαb−(n∏i=1gγii(x))][βkHαb−((b−x)ηn∏i=1gγii(x))]. | (4.17) |
Proof. Multiplying the relation (4.14) by
1kΓk(θ)[(b−x)α−(b−ρ)αα]θ/k−1∏ni=1gγii(ρ)(b−ρ)1−α | (4.18) |
and integrating on both sides with respect to ρ from x to b procure
0≤[θkHαb−((b−x)ηn∏i=1gγii(x))][βkHαb−(n∏i≠pgγiigξp(x))]+[θkHαb−(n∏i≠pgγiigξp(x))][βkHαb−((b−x)ηn∏i=1gγii(x))]−[θkHαb−((x−a)ηn∏i≠pgγiigξp(x))][βkHαb−(n∏i≠pgγiigξp(x))]−[θkHαb−(n∏i≠pgγiigξp(x))][βkHαb−((b−x)ηn∏i=1gγii(x))]. | (4.19) |
Dividing on both sides of (4.19) by
[θkHαb−((b−x)ηn∏i≠pgγiigξp(x))][βkHαb−(n∏i≠pgγiigξp(x))]+[θkHαb−(n∏i≠pgγiigξp(x))][βkHαb−((b−x)ηn∏i=1gγii(x))] |
demonstrates (4.17). The proof of Corollary 4 is complete.
Theorem 4.3. Let h(x) be a continuous increasing function and {gi,1≤i≤n} be a sequence of continuous positive decreasing functions on the interval [a,b]. Let a<x≤b, η>0, ξ≥γp>0 for 1≤p≤n. Then the right k-FCI operator βkHαb− satisfies the inequality
βkHαb−(∏ni≠pgγiigξp(x))βkHαb−(∏ni=1gγii(x))≥βkHαb−(hη(x)∏ni≠pgγiigξp(x))βkHαb−(hη(x)∏ni=1gγii(x)). | (4.20) |
Proof. Under given conditions, we have
[hη(ρ)−hη(τ)][gξ−γpp(τ)−gξ−γpp(ρ)]≥0. |
Let us define a function
βkJαb−(x,ρ,τ)=1kΓk(β)[(b−x)α−(b−τ)αα]β/k−1∏ni=1gγii(τ)(b−τ)1−α[hη(ρ)−hη(τ)][gξ−γpp(τ)−gξ−γpp(ρ)]. | (4.21) |
Thus, the function βkJαb−(x,ρ,τ) is positive for all τ∈(a,b]. Integrating on both sides of the above equation (4.21) with respect to τ from x to b results in
0≤∫bxβkJαb−(x,ρ,τ)dτ=1kΓk(β)∫bx[(b−x)α−(b−τ)αα]β/k−1×n∏i=1gγii(τ)[hη(ρ)−hη(τ)][gξ−γpp(τ)−gξ−γpp(ρ)]dτ(b−τ)1−α=hη(ρ)[βkHαb−(n∏i≠pgγiigξp(x))]+gξ−γpp(ρ)[βkHαb−(hη(x)n∏i=1gγii(x))]−hη(ρ)gξ−γpp(ρ)[βkHαb−(n∏i=1gγii(x))]−[βkHαb−(hη(x)n∏i≠pgγii(x))]. | (4.22) |
Multiplying the relation (4.22) by (4.15) and integrating on both sides with respect to ρ from x to b yield
0≤[βkHαb−(n∏i≠pgγiigξp(x))][βkHαb−(hη(x)n∏i=1gγii(x))]−[βkHαb−(hη(x)n∏i≠pgγiigξp(x))][βkHαb−(n∏i=1gγii(x))]. | (4.23) |
Dividing on both sides of (4.23) by
βkHαb−(hη(x)n∏i=1gγii(x))[βkHαb−(n∏i=1gγii(x))] |
leads to (4.20). The proof of Theorem 4.3 is complete.
Corollary 4.5. Let h(x) be a continuous increasing function and {gi,1≤i≤n} be a sequence of continuous positive decreasing functions on the interval [a,b]. Let a<x≤b, η>0, ξ≥γp>0 for 1≤p≤n. Then the right k-FCI operator βkHαb− satisfies the inequality
[θkHαb−(hη(x)n∏i=1gγii(x))][βkHαb−(n∏i≠pgγiigξp(x))]+[θkHαb−(n∏i≠pgγiigξp(x))][βkHαb−(hη(x)n∏i=1gγii(x))]≥[θkHαb−(hη(x)n∏i≠pgγiigξp(x))][βkHαb−(n∏i≠pgγiigξp(x))]+[θkHαb−(n∏i=1gγii(x))][βkHαb−(hη(x)n∏i=1gγii(x))]. | (4.24) |
Proof. Multiplying the relation (4.22) by (4.18) and integrating on both sides with respect to ρ from x to b give
0≤[θkHαb−(hη(x)n∏i=1gγii(x))][βkHαb−(n∏i≠pgγiigξp(x))]+[θkHαb−(n∏i≠pgγiigξp(x))][βkHαb−(hη(x)n∏i=1gγii(x))]−[θkHαb−(hη(x)n∏i≠pgγiigξp(x))][βkHαb−(n∏i≠pgγiigξp(x))]−[θkHαb−(n∏i≠pgγiigξp(x))][βkHαb−(hη(x)n∏i=1gγii(x))]. | (4.25) |
Dividing on both sides of (4.25) by
[θkHαb−(hη(x)n∏i≠pgγiigξp(x))][βkHαb−(n∏i≠pgγiigξp(x))]+[θkHαb−(n∏i≠pgγiigξp(x))][βkHαb−(hη(x)n∏i=1gγii(x))] |
concludes (4.24). The proof of Corollary 5 is complete.
In this paper, we have presented the left and right k-fractional conformable integrals and generalized some important integral inequalities to ones for our newly introduced k-FCI operators related to a finite sequence of positive and decreasing functions. Our work produces k-analogues of many pre-existing results in the literature. Further, many special cases for other integral operators can be derived from our generalizations. The results obtained can be employed to confirm the existence of nontrivial solutions of fractional differential equations of different classes. The k-FCI operators in this paper are different from those introduced by Katugampola [30] as their kernels depend on the boundary points a and b and need a different convolution theory under conformable Laplace. Our k-fractional conformable integrals in this paper generalize well-known fractional integral operators such as Caputo integral operators [49,p. 44], Riemann-Liouville integral operators [49 p. 44], Hadamard integral operators [10], and their k-analogues.
Finally we state that possible future works can be in proving new inequalities in the frame of new generalized integrals. The integrals correspond to certain fractional derivatives with nonsingular kernels, for example. See the papers [4,23].
Remark 5.1. This paper is a slightly revised version of the preprint [20].
The authors would like to thank anonymous referees for their careful corrections to and valuable comments on the original version of this paper.
The authors declare no conflict of interest.
[1] |
T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57-66. doi: 10.1016/j.cam.2014.10.016
![]() |
[2] | T. Abdeljawad, R. P. Agarwal, J. Alzabut, et al. Lyapunov-type inequalities for mixed non-linear forced differential equations within conformable derivatives, J. Inequal. Appl., 2018 (2018), Paper No. 143: 1-17. |
[3] |
T. Abdeljawad, J. Alzabut, On Riemann-Liouville fractional q-difference equations and their application to retarded logistic type model, Math. Method. Appl. Sci., 41 (2018), 8953-8962. doi: 10.1002/mma.4743
![]() |
[4] |
T. Abdeljawad, F. Jarad and J. Alzabut, Fractional proportional differences with memory, Eur. Phys. J. Spec. Top., 226 (2017), 3333-3354. doi: 10.1140/epjst/e2018-00053-5
![]() |
[5] | J. Alzabut, S. Tyagi and S. Abbas, Discrete fractional-order BAM neural networks with leakage delay: Existence and stability results, Asian J. Control, 22 (2020), Paper No. 1: 1-13. Available from:https://doi.org/10.1002/asjc.1918. |
[6] | M. Al-Refai and T. Abdeljawad, Fundamental results of conformable Sturm-Liouville eigenvalue problems, Complexity, 2017 (2017), Article ID 3720471: 1-7. |
[7] | D. R. Anderson and D. J. Ulness, Newly defined conformable derivatives, Adv. Dyn. Syst. Appl., 10 (2015), 109-137. |
[8] | P. Agarwal, M. Jleli and M. Tomar, Certain Hermite-Hadamard type inequalities via generalized k-fractional integrals, J. Inequal. Appl., 2017 (2017), Paper No. 55: 1-10. |
[9] |
R. P. Agarwal and A. Özbekler, Lyapunov type inequalities for mixed nonlinear Riemann-Liouville fractional differential equations with a forcing term, J. Comput. Appl. Math., 314 (2017), 69-78. doi: 10.1016/j.cam.2016.10.009
![]() |
[10] | A. A. Kilbas, Hadamard-type fractional calculus, J. Korean Math. Soc., 38 (2001), 1191-1204. |
[11] | D. Băleanu, R. P. Agarwal, H. Khan, et al. On the existence of solution for fractional differential equations of order 3<δ1≤4, Adv. Differ. Equ., 2015 (2015), Paper No. 362: 1-9. |
[12] | D. Băleanu, R. P. Agarwal, H. Mohammadi, et al. Some existence results for a nonlinear fractional differential equation on partially ordered Banach spaces, Bound. Value Probl., 2013 (2013), Paper No. 112: 1-8. |
[13] | D. Băleanu, H. Khan, H. Jafari, et al. On existence results for solutions of a coupled system of hybrid boundary value problems with hybrid conditions, Adv. Differ. Equ., 2015 (2015), Paper No. 318: 1-14. |
[14] |
D. Băleanu and O. G. Mustafa, On the global existence of solutions to a class of fractional differential equations, Comput. Math. Appl., 59 (2010), 1835-1841. doi: 10.1016/j.camwa.2009.08.028
![]() |
[15] |
D. Băleanu, O. G. Mustafa, and R. P. Agarwal, An existence result for a superlinear fractional differential equation, Appl. Math. Lett., 23 (2010), 1129-1132. doi: 10.1016/j.aml.2010.04.049
![]() |
[16] | D. Băleanu, O. G. Mustafa, and R. P. Agarwal, On the solution set for a class of sequential fractional differential equations, J. Phys. A: Math. Theor., 43 (2010), Article ID 385209: 1-7. |
[17] | A. Bolandtalat, E. Babolian, and H. Jafari, Numerical solutions of multi-order fractional differential equations by Boubaker polynomials, Open Phys., 14 (2016), 226-230. |
[18] | A. Debbouche and V. Antonov, Finite-dimensional diffusion models of heat transfer in fractal mediums involving local fractional derivatives, Nonlinear Stud., 24 (2017), 527-535. |
[19] | R. Díaz and E. Pariguan, On hypergeometric functions and Pochhammer k-symbol, Divulg. Mat., 15 (2007), 179-192. |
[20] | S. Habib, S. Mubeen, M. N. Naeem, et al. Generalized k-fractional conformable integrals and related inequalities, HAL archives, (2018), hal-01788916. |
[21] | P. R. Halmos, Measure Theory, New York: D. Van Nostrand Company, Inc., 1950. |
[22] | C. J. Huang, G. Rahman, K. S. Nisar, et al. Some inequalities of the Hermite-Hadamard type for k-fractional conformable integrals, Aust. J. Math. Anal. Appl., 16 (2019), Article ID 7: 1-9. \\Available from: http://ajmaa.org/cgi-bin/paper.pl?string=v16n1/V16I1P7.tex. |
[23] |
F. Jarad, T. Abdeljawad and J. Alzabut, Generalized fractional derivatives generated by a class of local proportional derivatives, Eur. Phys. J. Spec. Top., 226 (2017), 3457-3471. doi: 10.1140/epjst/e2018-00021-7
![]() |
[24] | F. Jarad, Y. Adjabi, D. Baleanu, et al. On defining the distributions δr and (δ′)r by conformable derivatives, Adv. Differ. Equ., 2018 (2018), Paper No. 407: 1-20. |
[25] | H. Jafari, H. K Jassim, S. P. Moshokoa, et al. Reduced differential transform method for partial differential equations within local fractional derivative operators, Adv. Mech. Eng., 8 (2016), 1-6. |
[26] | H. Jafari, H. K. Jassim, F. Tchier, et al. On the approximate solutions of local fractional differential equations with local fractional operators, Entropy, 18 (2016), Paper No. 150: 1-12. |
[27] | F. Jarad, E. Uğurlu, T. Abdeljawad, et al. On a new class of fractional operators, Adv. Differ. Equ., 2017 (2017), Paper No. 247: 1-16. |
[28] | M. Jleli, M. Kirane and B. Samet, Hartman-Wintner-type inequality for a fractional boundary value problem via a fractional derivative with respect to another function, Discrete Dyn. Nat. Soc., 2017 (2017), Article ID 5123240: 1-8. |
[29] | U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860-865. |
[30] | U. N. Katugampola, New fractional integral unifying six existing fractional integrals, arXiv preprint, (2016). |
[31] | H. Khan, H. Jafari, D. Băleanu, et al. On iterative solutions and error estimations of a coupled system of fractional order differential-integral equations with initial and boundary conditions, Differ. Equ. Dyn. Syst., (2019), in press. Available from: https://doi.org/10.1007/s12591-017-0365-7. |
[32] | H. Khan, Y. J. Li, W. Chen, et al. Existence theorems and Hyers-Ulam stability for a coupled system of fractional differential equations with p-Laplacian operator, Bound. Value Probl., 2017, Paper No. 157: 1-16. |
[33] | A. Khan, Y. J. Li, K. Shah, et al. On coupled p-Laplacian fractional differential equations with nonlinear boundary conditions, Complexity, 2017 (2017), Article ID 8197610: 1-9. |
[34] |
H. Khan, Y. J. Li, H. G. Sun, et al. Existence of solution and Hyers-Ulam stability for a coupled system of fractional differential equations with p-Laplacian operator, J. Nonlinear Sci. Appl., 10 (2017), 5219-5229. doi: 10.22436/jnsa.010.10.08
![]() |
[35] |
H. Khan, H. G. Sun, W. Chen, et al. Inequalities for new class of fractional integral operators, J. Nonlinear Sci. Appl., 10 (2017), 6166-6176. doi: 10.22436/jnsa.010.12.04
![]() |
[36] | Y. J. Li, K. Shah and R. A. Khan, Iterative technique for coupled integral boundary value problem of non-integer order differential equations, Adv. Differ. Equ., 2017 (2017), Paper No. 251: 1-14. |
[37] | W. J. Liu, Q. A. Ngô, and V. N. Huy, Several interesting integral inequalities, J. Math. Inequal., 3 (2009), 201-212. |
[38] | S. Mubeen and S. Iqbal, Grüss type integral inequalities for generalized Riemann-Liouville k-fractional integrals, J. Inequal. Appl., 2016 (2016), Paper No. 109: 1-13. |
[39] | S. Mubeen, S. Iqbal and Z. Iqbal, On Ostrowski type inequalities for generalized k-fractional integrals, J. Inequal. Spec. Funct., 8 (2017), 107-118. |
[40] | K. S. Nisar and F. Qi, On solutions of fractional kinetic equations involving the generalized k-Bessel function, Note Mat., 37 (2017), 11-20. Available from: https://doi.org/10.1285/i15900932v37n2p11. |
[41] | K. S. Nisar, F. Qi, G. Rahman, et al. Some inequalities involving the extended gamma function and the Kummer confluent hypergeometric k-function, J. Inequal. Appl., 2018 (2018), Paper No. 135: 1-12. |
[42] | D. O'Regan and B. Samet, Lyapunov-type inequalities for a class of fractional differential equations, J. Inequal. Appl., 2015 (2015), Paper No. 247: 1-10. |
[43] |
F. Qi and R. P. Agarwal, On complete monotonicity for several classes of functions related to ratios of gamma functions, J. Inequal. Appl., 2019 (2019), 1-42. doi: 10.1186/s13660-019-1955-4
![]() |
[44] | F. Qi, A. Akkurt and H. Yildirim, Catalan numbers, k-gamma and k-beta functions, and parametric integrals, J. Comput. Anal. Appl., 25 (2018), 1036-1042. |
[45] | F. Qi and B. N. Guo, Integral representations and complete monotonicity of remainders of the Binet and Stirling formulas for the gamma function, RACSAM Rev. R. Acad. A., 111 (2017), 425-434. |
[46] | F. Qi, G. Rahman, S. M. Hussain, et al. Some inequalities of Čebyšev type for conformable k-fractional integral operators, Symmetry, 10 (2018), Article ID 614: 1-8. |
[47] | F. Qi, G. Rahman and K. S. Nisar, Convexity and inequalities related to extended beta and confluent hypergeometric functions, HAL archives (2018). Available form: https://hal.archives-ouvertes.fr/hal-01703900. |
[48] |
G. Rahman, K. S. Nisar and F. Qi, Some new inequalities of the Grüss type for conformable fractional integrals, AIMS Math., 3 (2018), 575-583. doi: 10.3934/Math.2018.4.575
![]() |
[49] | S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Yverdon, 1993. |
[50] | M. Z. Sarikaya and H. Budak, Generalized Ostrowski type inequalities for local fractional integrals, Proc. Amer. Math. Soc., 145 (2017), 1527-1538. |
[51] | M. Z. Sarikaya, Z. Dahmani, M. E. Kiris, et al. (k,s)-Riemann-Liouville fractional integral and applications, Hacet. J. Math. Stat., 45 (2016), 77-89. |
[52] | E. Set, M. A. Noor, M. U. Awan, et al. Generalized Hermite-Hadamard type inequalities involving fractional integral operators, J. Inequal. Appl., 2017 (2017), Article ID 169: 1-10. |
[53] | E. Set, M. Tomar and M. Z. Sarikaya, On generalized Grüss type inequalities for k-fractional integrals, Appl. Math. Comput., 269 (2015), 29-34. |
[54] |
K. Shah, H. Khalil and R. A. Khan, Upper and lower solutions to a coupled system of nonlinear fractional differential equations, Progr. Frac. Differ. Appl., 2 (2016), 31-39. doi: 10.18576/pfda/020104
![]() |
[55] |
K. Shah and R. A. Khan, Study of solution to a toppled system of fractional differential equations with integral boundary conditions, Int. J. Appl. Comput. Math., 3 (2017), 2369-2388. doi: 10.1007/s40819-016-0243-y
![]() |
[56] | D. P. Shi, B. Y. Xi and F. Qi, Hermite-Hadamard type inequalities for (m,h1,h2)-convex functions via Riemann-Liouville fractional integrals, Turkish J. Anal. Number Theory, 2 (2014), 23-28. |
[57] | D. P. Shi, B. Y. Xi and F. Qi, Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals of (α,m)-convex functions, Fract. Differ. Calculus, 4 (2014), 31-43. Available from: https://doi.org/10.7153/fdc-04-02. |
[58] |
H. G. Sun, Y. Zhang, W. Chen, et al. Use of a variable-index fractional-derivative model to capture transient dispersion in heterogeneous media, J. Contam. Hydrol., 157 (2014), 47-58. doi: 10.1016/j.jconhyd.2013.11.002
![]() |
[59] | Y. Z. Tian, M. Fan and Y. G. Sun, Certain nonlinear integral inequalities and their applications, Discrete Dyn. Nat. Soc., 2017 (2017), Article ID 8290906: 1-8. |
[60] |
M. Tunç, On new inequalities for h-convex functions via Riemann-Liouville fractional integration, Filomat, 27 (2013), 559-565. doi: 10.2298/FIL1304559T
![]() |
[61] | S. H. Wang and F. Qi, Hermite-Hadamard type inequalities for s-convex functions via Riemann-Liouville fractional integrals, J. Comput. Anal. Appl., 22 (2017), 1124-1134. |
[62] | X. Yang and K. Lo, Lyapunov-type inequality for a class of even-order differential equations, Appl. Math. Comput., 215 (2010), 3884-3890. |
[63] |
X. J. Yang, J. A. T. Machado and J. J. Nieto, A new family of the local fractional PDEs, Fund. Inform., 151 (2017), 63-75. doi: 10.3233/FI-2017-1479
![]() |
[64] |
X. J. Yang, Fractional derivatives of constant and variable orders applied to anomalous relaxation models in heat-transfer problems, Therm. Sci., 21 (2017), 1161-1171. doi: 10.2298/TSCI161216326Y
![]() |
[65] | X. J. Yang, J. A. T. Machao and D. Băleanu, Anomalous diffusion models with general fractional derivatives within the kernels of the extended Mittag-Leffler type functions, Rom. Rep. Phys., 69 (2017), Article ID 115: 1-19. |
[66] |
X. J. Yang, H. M. Srivastava and J. A. T. Machado, A new fractional derivative without singular kernel: Application to the modelling of the steady heat flow, Therm. Sci., 20 (2016), 753-756. doi: 10.2298/TSCI151224222Y
![]() |
1. | Feng Qi, Pshtiwan Othman Mohammed, Jen-Chih Yao, Yong-Hong Yao, Generalized fractional integral inequalities of Hermite–Hadamard type for ${(\alpha,m)}$-convex functions, 2019, 2019, 1029-242X, 10.1186/s13660-019-2079-6 | |
2. | Gauhar Rahman, Shahid Mubeen, Kottakkaran Sooppy Nisar, On generalized $\mathtt{k}$-fractional derivative operator, 2020, 5, 2473-6988, 1936, 10.3934/math.2020129 | |
3. | Saad Ihsan Butt, Muhammad Umar, Saima Rashid, Ahmet Ocak Akdemir, Yu-Ming Chu, New Hermite–Jensen–Mercer-type inequalities via k-fractional integrals, 2020, 2020, 1687-1847, 10.1186/s13662-020-03093-y | |
4. | Xiaoling Li, Shahid Qaisar, Jamshed Nasir, Saad Ihsan Butt, Farooq Ahmad, Mehwish Bari, Shan E Farooq, Some results on integral inequalities via Riemann–Liouville fractional integrals, 2019, 2019, 1029-242X, 10.1186/s13660-019-2160-1 | |
5. | Kottakkaran Sooppy Nisar, Asifa Tassaddiq, Gauhar Rahman, Aftab Khan, Some inequalities via fractional conformable integral operators, 2019, 2019, 1029-242X, 10.1186/s13660-019-2170-z | |
6. | Gauhar Rahman, Kottakkaran Sooppy Nisar, Abdul Ghaffar, Feng Qi, Some inequalities of the Grüss type for conformable $${\varvec{k}}$$-fractional integral operators, 2020, 114, 1578-7303, 10.1007/s13398-019-00731-3 | |
7. | Juan E. Nápoles Valdés, José M. Rodríguez, José M. Sigarreta, New Hermite–Hadamard Type Inequalities Involving Non-Conformable Integral Operators, 2019, 11, 2073-8994, 1108, 10.3390/sym11091108 | |
8. | Saima Naheed, Shahid Mubeen, Gauhar Rahman, M. R. Alharthi, Kottakkaran Sooppy Nisar, Some new inequalities for the generalized Fox-Wright functions, 2021, 6, 2473-6988, 5452, 10.3934/math.2021322 | |
9. | Shahid MUBEEN, Syed SHAH, Kottakkaran NİSAR, Thabet ABDELJAWAD, Some Generalized Special Functions and their Properties, 2021, 2587-2648, 10.31197/atnaa.768532 | |
10. | Juan Gabriel Galeano Delgado, Juan Eduardo Nápoles Valdés, Edgardo Pérez Reyes, New Hermite-Hadamard inequalities in the framework of generalized fractional integrals, 2021, 48, 12236934, 319, 10.52846/ami.v48i1.1454 | |
11. | Muhammad Tariq, Soubhagya Kumar Sahoo, Hijaz Ahmad, Thanin Sitthiwirattham, Jarunee Soontharanon, Several Integral Inequalities of Hermite–Hadamard Type Related to k-Fractional Conformable Integral Operators, 2021, 13, 2073-8994, 1880, 10.3390/sym13101880 | |
12. | Zhiqiang Zhang, Ghulam Farid, Sajid Mehmood, Chahn-Yong Jung, Tao Yan, Generalized k-Fractional Chebyshev-Type Inequalities via Mittag-Leffler Functions, 2022, 11, 2075-1680, 82, 10.3390/axioms11020082 | |
13. | Yan Dou, Muhammad Shoaib Saleem, Nimra Anwar, Haiping Gao, Xiaolong Qin, Some New Inequalities for p-Convex Functions via a K-Fractional Conformable Integral, 2022, 2022, 2314-4785, 1, 10.1155/2022/5406897 | |
14. | Muhammad Uzair Awan, Muhammad Aslam Noor, Sadia Talib, Khalida Inayat Noor, Themistocles M. Rassias, 2021, Chapter 3, 978-3-030-60621-3, 35, 10.1007/978-3-030-60622-0_3 | |
15. | Fangfang Ma, Fractional version of the Jensen-Mercer and Hermite-Jensen-Mercer type inequalities for strongly h-convex function, 2021, 7, 2473-6988, 784, 10.3934/math.2022047 | |
16. | Martha Paola Cruz, Ricardo Abreu-Blaya, Paul Bosch, José M. Rodríguez, José M. Sigarreta, Xiaolong Qin, On Ostrowski Type Inequalities for Generalized Integral Operators, 2022, 2022, 2314-4785, 1, 10.1155/2022/2247246 | |
17. | Mohamed Bezziou, Zoubir Dehmani, New integral operators for conformable fractional calculus with applications, 2022, 25, 0972-0502, 927, 10.1080/09720502.2021.1880138 | |
18. | Saad Ihsan Butt, Yamin Sayyari, Praveen Agarwal, Juan J. Nieto, Muhammad Umar, On some inequalities for uniformly convex mapping with estimations to normal distributions, 2023, 2023, 1029-242X, 10.1186/s13660-023-02997-z | |
19. | Juan Gabriel Galeano Delgado, Juan Eduardo Nápoles Valdés, Edgardo Enrique Pérez Reyes, On a General Formulation of the Riemann–Liouville Fractional Operator and Related Inequalities, 2023, 11, 2227-7390, 3565, 10.3390/math11163565 | |
20. | Juan Gabriel Galeano Delgado, Juan E. Napoles Valdes, Edgardo Perez Reyes, New integral inequalities involving generalized Riemann-Liouville fractional operators, 2023, 68, 02521938, 481, 10.24193/subbmath.2023.3.02 | |
21. | Juan Gabriel Galeano Delgado, Juan E. Nápoles Valdés, Edgardo Pérez Reyes, Some inequalities of the Hermite-Hadamard type for two kinds of convex functions, 2024, 57, 2357-4100, 43, 10.15446/recolma.v57nSupl.112447 |