Citation: Feng Qi, Siddra Habib, Shahid Mubeen, Muhammad Nawaz Naeem. Generalized k-fractional conformable integrals and related inequalities[J]. AIMS Mathematics, 2019, 4(3): 343-358. doi: 10.3934/math.2019.3.343
[1] | T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57-66. doi: 10.1016/j.cam.2014.10.016 |
[2] | T. Abdeljawad, R. P. Agarwal, J. Alzabut, et al. Lyapunov-type inequalities for mixed non-linear forced differential equations within conformable derivatives, J. Inequal. Appl., 2018 (2018), Paper No. 143: 1-17. |
[3] | T. Abdeljawad, J. Alzabut, On Riemann-Liouville fractional q-difference equations and their application to retarded logistic type model, Math. Method. Appl. Sci., 41 (2018), 8953-8962. doi: 10.1002/mma.4743 |
[4] | T. Abdeljawad, F. Jarad and J. Alzabut, Fractional proportional differences with memory, Eur. Phys. J. Spec. Top., 226 (2017), 3333-3354. doi: 10.1140/epjst/e2018-00053-5 |
[5] | J. Alzabut, S. Tyagi and S. Abbas, Discrete fractional-order BAM neural networks with leakage delay: Existence and stability results, Asian J. Control, 22 (2020), Paper No. 1: 1-13. Available from:https://doi.org/10.1002/asjc.1918. |
[6] | M. Al-Refai and T. Abdeljawad, Fundamental results of conformable Sturm-Liouville eigenvalue problems, Complexity, 2017 (2017), Article ID 3720471: 1-7. |
[7] | D. R. Anderson and D. J. Ulness, Newly defined conformable derivatives, Adv. Dyn. Syst. Appl., 10 (2015), 109-137. |
[8] | P. Agarwal, M. Jleli and M. Tomar, Certain Hermite-Hadamard type inequalities via generalized k-fractional integrals, J. Inequal. Appl., 2017 (2017), Paper No. 55: 1-10. |
[9] | R. P. Agarwal and A. Özbekler, Lyapunov type inequalities for mixed nonlinear Riemann-Liouville fractional differential equations with a forcing term, J. Comput. Appl. Math., 314 (2017), 69-78. doi: 10.1016/j.cam.2016.10.009 |
[10] | A. A. Kilbas, Hadamard-type fractional calculus, J. Korean Math. Soc., 38 (2001), 1191-1204. |
[11] | D. Băleanu, R. P. Agarwal, H. Khan, et al. On the existence of solution for fractional differential equations of order 3<δ1≤4, Adv. Differ. Equ., 2015 (2015), Paper No. 362: 1-9. |
[12] | D. Băleanu, R. P. Agarwal, H. Mohammadi, et al. Some existence results for a nonlinear fractional differential equation on partially ordered Banach spaces, Bound. Value Probl., 2013 (2013), Paper No. 112: 1-8. |
[13] | D. Băleanu, H. Khan, H. Jafari, et al. On existence results for solutions of a coupled system of hybrid boundary value problems with hybrid conditions, Adv. Differ. Equ., 2015 (2015), Paper No. 318: 1-14. |
[14] | D. Băleanu and O. G. Mustafa, On the global existence of solutions to a class of fractional differential equations, Comput. Math. Appl., 59 (2010), 1835-1841. doi: 10.1016/j.camwa.2009.08.028 |
[15] | D. Băleanu, O. G. Mustafa, and R. P. Agarwal, An existence result for a superlinear fractional differential equation, Appl. Math. Lett., 23 (2010), 1129-1132. doi: 10.1016/j.aml.2010.04.049 |
[16] | D. Băleanu, O. G. Mustafa, and R. P. Agarwal, On the solution set for a class of sequential fractional differential equations, J. Phys. A: Math. Theor., 43 (2010), Article ID 385209: 1-7. |
[17] | A. Bolandtalat, E. Babolian, and H. Jafari, Numerical solutions of multi-order fractional differential equations by Boubaker polynomials, Open Phys., 14 (2016), 226-230. |
[18] | A. Debbouche and V. Antonov, Finite-dimensional diffusion models of heat transfer in fractal mediums involving local fractional derivatives, Nonlinear Stud., 24 (2017), 527-535. |
[19] | R. Díaz and E. Pariguan, On hypergeometric functions and Pochhammer k-symbol, Divulg. Mat., 15 (2007), 179-192. |
[20] | S. Habib, S. Mubeen, M. N. Naeem, et al. Generalized k-fractional conformable integrals and related inequalities, HAL archives, (2018), hal-01788916. |
[21] | P. R. Halmos, Measure Theory, New York: D. Van Nostrand Company, Inc., 1950. |
[22] | C. J. Huang, G. Rahman, K. S. Nisar, et al. Some inequalities of the Hermite-Hadamard type for k-fractional conformable integrals, Aust. J. Math. Anal. Appl., 16 (2019), Article ID 7: 1-9. \\Available from: http://ajmaa.org/cgi-bin/paper.pl?string=v16n1/V16I1P7.tex. |
[23] | F. Jarad, T. Abdeljawad and J. Alzabut, Generalized fractional derivatives generated by a class of local proportional derivatives, Eur. Phys. J. Spec. Top., 226 (2017), 3457-3471. doi: 10.1140/epjst/e2018-00021-7 |
[24] | F. Jarad, Y. Adjabi, D. Baleanu, et al. On defining the distributions $\delta^r$ and $(\delta')^r$ by conformable derivatives, Adv. Differ. Equ., 2018 (2018), Paper No. 407: 1-20. |
[25] | H. Jafari, H. K Jassim, S. P. Moshokoa, et al. Reduced differential transform method for partial differential equations within local fractional derivative operators, Adv. Mech. Eng., 8 (2016), 1-6. |
[26] | H. Jafari, H. K. Jassim, F. Tchier, et al. On the approximate solutions of local fractional differential equations with local fractional operators, Entropy, 18 (2016), Paper No. 150: 1-12. |
[27] | F. Jarad, E. Uğurlu, T. Abdeljawad, et al. On a new class of fractional operators, Adv. Differ. Equ., 2017 (2017), Paper No. 247: 1-16. |
[28] | M. Jleli, M. Kirane and B. Samet, Hartman-Wintner-type inequality for a fractional boundary value problem via a fractional derivative with respect to another function, Discrete Dyn. Nat. Soc., 2017 (2017), Article ID 5123240: 1-8. |
[29] | U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860-865. |
[30] | U. N. Katugampola, New fractional integral unifying six existing fractional integrals, arXiv preprint, (2016). |
[31] | H. Khan, H. Jafari, D. Băleanu, et al. On iterative solutions and error estimations of a coupled system of fractional order differential-integral equations with initial and boundary conditions, Differ. Equ. Dyn. Syst., (2019), in press. Available from: https://doi.org/10.1007/s12591-017-0365-7. |
[32] | H. Khan, Y. J. Li, W. Chen, et al. Existence theorems and Hyers-Ulam stability for a coupled system of fractional differential equations with p-Laplacian operator, Bound. Value Probl., 2017, Paper No. 157: 1-16. |
[33] | A. Khan, Y. J. Li, K. Shah, et al. On coupled p-Laplacian fractional differential equations with nonlinear boundary conditions, Complexity, 2017 (2017), Article ID 8197610: 1-9. |
[34] | H. Khan, Y. J. Li, H. G. Sun, et al. Existence of solution and Hyers-Ulam stability for a coupled system of fractional differential equations with p-Laplacian operator, J. Nonlinear Sci. Appl., 10 (2017), 5219-5229. doi: 10.22436/jnsa.010.10.08 |
[35] | H. Khan, H. G. Sun, W. Chen, et al. Inequalities for new class of fractional integral operators, J. Nonlinear Sci. Appl., 10 (2017), 6166-6176. doi: 10.22436/jnsa.010.12.04 |
[36] | Y. J. Li, K. Shah and R. A. Khan, Iterative technique for coupled integral boundary value problem of non-integer order differential equations, Adv. Differ. Equ., 2017 (2017), Paper No. 251: 1-14. |
[37] | W. J. Liu, Q. A. Ngô, and V. N. Huy, Several interesting integral inequalities, J. Math. Inequal., 3 (2009), 201-212. |
[38] | S. Mubeen and S. Iqbal, Grüss type integral inequalities for generalized Riemann-Liouville k-fractional integrals, J. Inequal. Appl., 2016 (2016), Paper No. 109: 1-13. |
[39] | S. Mubeen, S. Iqbal and Z. Iqbal, On Ostrowski type inequalities for generalized k-fractional integrals, J. Inequal. Spec. Funct., 8 (2017), 107-118. |
[40] | K. S. Nisar and F. Qi, On solutions of fractional kinetic equations involving the generalized k-Bessel function, Note Mat., 37 (2017), 11-20. Available from: https://doi.org/10.1285/i15900932v37n2p11. |
[41] | K. S. Nisar, F. Qi, G. Rahman, et al. Some inequalities involving the extended gamma function and the Kummer confluent hypergeometric k-function, J. Inequal. Appl., 2018 (2018), Paper No. 135: 1-12. |
[42] | D. O'Regan and B. Samet, Lyapunov-type inequalities for a class of fractional differential equations, J. Inequal. Appl., 2015 (2015), Paper No. 247: 1-10. |
[43] | F. Qi and R. P. Agarwal, On complete monotonicity for several classes of functions related to ratios of gamma functions, J. Inequal. Appl., 2019 (2019), 1-42. doi: 10.1186/s13660-019-1955-4 |
[44] | F. Qi, A. Akkurt and H. Yildirim, Catalan numbers, k-gamma and k-beta functions, and parametric integrals, J. Comput. Anal. Appl., 25 (2018), 1036-1042. |
[45] | F. Qi and B. N. Guo, Integral representations and complete monotonicity of remainders of the Binet and Stirling formulas for the gamma function, RACSAM Rev. R. Acad. A., 111 (2017), 425-434. |
[46] | F. Qi, G. Rahman, S. M. Hussain, et al. Some inequalities of Čebyšev type for conformable k-fractional integral operators, Symmetry, 10 (2018), Article ID 614: 1-8. |
[47] | F. Qi, G. Rahman and K. S. Nisar, Convexity and inequalities related to extended beta and confluent hypergeometric functions, HAL archives (2018). Available form: https://hal.archives-ouvertes.fr/hal-01703900. |
[48] | G. Rahman, K. S. Nisar and F. Qi, Some new inequalities of the Grüss type for conformable fractional integrals, AIMS Math., 3 (2018), 575-583. doi: 10.3934/Math.2018.4.575 |
[49] | S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Yverdon, 1993. |
[50] | M. Z. Sarikaya and H. Budak, Generalized Ostrowski type inequalities for local fractional integrals, Proc. Amer. Math. Soc., 145 (2017), 1527-1538. |
[51] | M. Z. Sarikaya, Z. Dahmani, M. E. Kiris, et al. (k,s)-Riemann-Liouville fractional integral and applications, Hacet. J. Math. Stat., 45 (2016), 77-89. |
[52] | E. Set, M. A. Noor, M. U. Awan, et al. Generalized Hermite-Hadamard type inequalities involving fractional integral operators, J. Inequal. Appl., 2017 (2017), Article ID 169: 1-10. |
[53] | E. Set, M. Tomar and M. Z. Sarikaya, On generalized Grüss type inequalities for k-fractional integrals, Appl. Math. Comput., 269 (2015), 29-34. |
[54] | K. Shah, H. Khalil and R. A. Khan, Upper and lower solutions to a coupled system of nonlinear fractional differential equations, Progr. Frac. Differ. Appl., 2 (2016), 31-39. doi: 10.18576/pfda/020104 |
[55] | K. Shah and R. A. Khan, Study of solution to a toppled system of fractional differential equations with integral boundary conditions, Int. J. Appl. Comput. Math., 3 (2017), 2369-2388. doi: 10.1007/s40819-016-0243-y |
[56] | D. P. Shi, B. Y. Xi and F. Qi, Hermite-Hadamard type inequalities for (m,h1,h2)-convex functions via Riemann-Liouville fractional integrals, Turkish J. Anal. Number Theory, 2 (2014), 23-28. |
[57] | D. P. Shi, B. Y. Xi and F. Qi, Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals of (α,m)-convex functions, Fract. Differ. Calculus, 4 (2014), 31-43. Available from: https://doi.org/10.7153/fdc-04-02. |
[58] | H. G. Sun, Y. Zhang, W. Chen, et al. Use of a variable-index fractional-derivative model to capture transient dispersion in heterogeneous media, J. Contam. Hydrol., 157 (2014), 47-58. doi: 10.1016/j.jconhyd.2013.11.002 |
[59] | Y. Z. Tian, M. Fan and Y. G. Sun, Certain nonlinear integral inequalities and their applications, Discrete Dyn. Nat. Soc., 2017 (2017), Article ID 8290906: 1-8. |
[60] | M. Tunç, On new inequalities for h-convex functions via Riemann-Liouville fractional integration, Filomat, 27 (2013), 559-565. doi: 10.2298/FIL1304559T |
[61] | S. H. Wang and F. Qi, Hermite-Hadamard type inequalities for s-convex functions via Riemann-Liouville fractional integrals, J. Comput. Anal. Appl., 22 (2017), 1124-1134. |
[62] | X. Yang and K. Lo, Lyapunov-type inequality for a class of even-order differential equations, Appl. Math. Comput., 215 (2010), 3884-3890. |
[63] | X. J. Yang, J. A. T. Machado and J. J. Nieto, A new family of the local fractional PDEs, Fund. Inform., 151 (2017), 63-75. doi: 10.3233/FI-2017-1479 |
[64] | X. J. Yang, Fractional derivatives of constant and variable orders applied to anomalous relaxation models in heat-transfer problems, Therm. Sci., 21 (2017), 1161-1171. doi: 10.2298/TSCI161216326Y |
[65] | X. J. Yang, J. A. T. Machao and D. Băleanu, Anomalous diffusion models with general fractional derivatives within the kernels of the extended Mittag-Leffler type functions, Rom. Rep. Phys., 69 (2017), Article ID 115: 1-19. |
[66] | X. J. Yang, H. M. Srivastava and J. A. T. Machado, A new fractional derivative without singular kernel: Application to the modelling of the steady heat flow, Therm. Sci., 20 (2016), 753-756. doi: 10.2298/TSCI151224222Y |