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1. Introduction

Conformable derivatives are nonlocal fractional derivatives. They can be called fractional since we
can derive up to arbitrary order. However, since in the community of fractional calculus nonlocal
fractional derivatives only are used to be called fractional, we prefer to replace conformable fractional
by conformable (as a type of local fractional). Conformable derivatives and other types of local
fractional derivatives or modified conformable derivatives in [7] can gain their importance by the
ability of using them to generate more generalized nonlocal fractional derivatives with singular
kernels (see [4,23,27]). Fractional calculus is the study of derivatives and integrals of non-integer
order and is the generalized form of classical derivatives and integrals. It is as dated as classical
calculus, but it acquires more importance in recent two decades, this is due to its applications in
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various fields such as physics, biology, fluid dynamics, control theory, image processing, signal
processing, and computer networking. See [5, 11-18,25,26,31,32,34,58,63-66]. In recent years, the
research has been proceeded to generalize the existing inequalities through innovative ideas and
approaches of fractional calculus. One of the most popular approaches among researchers is the use
of fractional integral operators. Due to their potentials to be expended for the existence of nontrivial
and positive solutions of several classes of fractional differential equations, the integral inequalities
involving fractional integrals are considerably important.

A large bulk of existing literature consists of generalizations of numerous inequalities via fractional
integral operators and their applications [9, 37,42, 59, 62]. Mubeen and Igbal [38] contributed the
ongoing research by presenting the improved version of generalized Griiss type integral inequalities
for k-Riemann-Liouville fractional integrals. Agarwal et al. [8] obtained certain Hermite-Hadamard
type inequalities for generalized k-fractional integrals. Set et al. [52] presented an integral identity and
generalized Hermite-Hadamard type inequalities for Riemann-Liouville fractional integral. Mubeen et
al. [39] established integral inequalities of Ostrowski type for k-fractional Riemann-Liouville integrals.
Sarikaya and Budak [50] utilized local fractional integrals to derive a generalized inequality. Khan
et al. [35] produced some important generalized inequalities for a finite class of positive decreasing
functions for fractional conformable integrals. Jleli et al. [28] determined a Hartman-Winter type
inequality involving fractional derivative with respect to another function. In the papers [6,24, 56,57,
61] and closely related references therein, there are more information on this topic.

The main object of this paper is to develop a new notion “generalized k-fractional conformable
integral” which is the generalized form of fractional operators reported in [27]. Hereafter, we also
generalize some integral inequalities given in [35] for a finite class of positive and decreasing
functions to ones involving our newly introduced k-fractional conformable integrals. For details of
those inequalities, their applications, and their stability, we refer readers to [2,3,33,36,54,55].

2. Notations

The notion of left and right fractional conformable derivatives for a differentiable function f,
introduced by Abdeljawad [1], can be expressed as

T fO=0-af(® and Ty f=0-0""f 0.

Correspondingly, left and right fractional conformable integrals for O < a < 1 can be represented by

Hf (1) = f( f() _dx and Hf(1) = f(b (x))ladx

Let I'(z) for R(z) > 0 denote the classical gamma function [43,45]. The left and right fractional
conformable integral (LFCI and RFCI) operators of order 8 € C for R(B8) > 0 can be defined [27]

respectively by
(x a)' =(t-a)P"'  f@
Baya
7.{ f()_r(ﬁ)f a ] (t_a)l—a/
d
B D B (O e L0
oSO = ) f [ o ] (b -
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Diaz and Pariguan [19] generalized the classical Pochhammer symbol (1),, the classical gamma
function I'(z), and the classical beta function B(u, v) respectively as

1, = 0; Ik (k!
(Vs = " Fe(o) = Tim 07T
AA+k)---(A+(n—-1k), neN, n—o0 (X nk

and

1 1
Bi(u,v) = . f (1 = v d
0

See also [40,41,44,46,47]. It is not difficult to see that the k-gamma function I'y(x) and the k-beta
function By(u, v) satisfy

I(x) = f wle R du, T = imTu), Ty = kx/k-lr(%), Ty(x + k) = 2T (x),
0 —

and
u v

v _ L)
k™ k

1
Bi(u,v) = §B( ), B (u,v) = Teutv)

3. Generalized k-fractional conformable integrals

In this section, we introduce the generalized left and right k-fractional conformable integrals which
generalize the Riemann-Liouville fractional integrals [49, p. 44], Hadamard fractional integrals [10],
Katugampola fractional integrals [29], and generalized fractional integrals [51].

Definition 3.1. Let f be a continuous function on a finite real interval [a,b]. Then the generalized
left and right k-fractional conformable integrals (k-FCI) of order 8 € C for R(B) > 0 are respectively
defined as

Baga ppon L f (x-a)*—(-a)P*" [
Hef (x)_krk(ﬁ) [ @ ] (t—a)'-

Baya oo ] fh (b-x)"=(B-0PE [
0= g .| [ oo

1o )

and

where k > 0 and a € R\{0}.

Some features of those concepts defined in Definition 3.1, such as the semi-group property, the
derivative of functions, the Laplace transforms of functions using this derivative and the solution of
IVP, can be found in [1].

Theorem 3.1. Let f € Li[a,b], @ € R\{0}, and k > 0. Then both f?{;ﬂf(x) and f‘H,‘f_f(x) exist for all
x € [a, b] and R(B) > 0.

Proof. Let A’ = [a,b] X [a,b] and P’ : A’ — R such that
P'(x,t)=[(x-a) = (t—a) Pt - )"
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It is clear that P’ = P, + P’, where

[(x—a) —(t—a) P t-—a)!, a<t<x<b;

0, a<x<t

P (x,1) = {
and

[(f—a) — (x—a) P (x—a)!, a<t<x<b;
0, a<x<t<bh.

Since P’ 1s measurable on A’, we can write

P (x,t) = {

b X X
f P'(x,t)dr = f P(x,t)dt = f [(x—a)—(t—a) P t-a) " dr = %k(x — a)*Ik,

Therefore, we obtain

b b b b a’k b
f[f P’(x,t)lf(x)ldt]dx:f |f(x)|[f P’(x,t)dt]dx: Ff (x — @) f(x)|d x
k b k
< %(b — a)"* f If0)ldx = %(b — )" F Ol fap) < 0.

So, by Tonelli’s theorem for iterated integrals [21, p. 147], the function Q' : A’ — R such that Q’(x, 1) =
P’(x,)f(x) is integrable over A’. Hence, by Fubini’s theorem, it follows that fa b P(x,nf(x)dx is
integrable over [a, b] as a function of ¢ € [a, b]. This implies that fﬂ;ﬂ f(x) exists.

The existence of the right k-fractional conformable integral f?‘(f_ f(x) can be proved in a similar
manner. The proof of Theorem 3.1 is complete. O

4. Inequalities for generalized k-fractional conformable integrals

Fractional integral inequalities have been analyzed for many useful purposes. One of the most
useful applications of such inequalities is the existence of nontrivial solutions of fractional differential
equations. Many applications find in the literature for the existence of nontrivial solution eigenvalue
problems by inequalities, see [42, 62]. Generalizing pre-existing inequalities by applying fractional
integral operators is becoming a popular trend in the research field, see, for example, [22,46,48].

In this section, we present some k-analogues of inequalities in [53, 59, 60] for generalized
k-fractional conformable integrals.

Theorem 4.1. Let h(x) be a continuous increasing function and {g;,1 < i < n} be a sequence of
continuous positive decreasing functions on the interval [a,b). Leta < x < b,n >0, & >y, > 0 for
1 < p < n. Then the left k-FCI operator €H5+ satisfies the inequality

RH(TT7, 81'85(x)) N RHE (H(x) TTL, 87'85(x)
CHE(TTR 8)(0)  {HE() TTL, 8] ()
Proof. Under given conditions, we have

[H1(p) = K(D)][g5 7" (1) — &5 " (p)] = 0.

4.1)
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Let us define a function

1
kI« (B)

Accordingly, the function fj o (x,p,7) is positive for all 7 € (a,b]. Integrating on both sides of the
above equation (4.2) with respect to 7 from a to x shows

xﬁoa _ 1 fx (x - a)a - (T - a)a k-1
0< L‘ 1 dar (X, 0,7)dT = B . [ - ]

T, _ _ d
<[ ] &/ @we) - wonlgy (@) - g5 (o)) ——
i=1

(x—a)? —(t—a) ]’8/"_1 [T, 8/'(0)
(t—a)—™

P (x,p,7) = [W1(0) - K'(D)][g5 " (1) - &5 " ()] (4.2)

[0

. 4.3)
-t [ | 5o
i#p

—h'?(p)gi‘y”(p)[ﬁﬂ;a(]—[ g,.”'(x>)] - [fw:; (h"<x> [] g?(x))].
i=1

i#p

+g " (p)[éjwzi (h'?(x) [ Ter (x))]
i=1

Multiplying on both sides of the relation (4.3) by
1 [(x —a)* —(p— a)"r/"“ [ 8/ (o)
kT'k(B) @ (p-a)y—’
and integrating on both sides with respect to p from a to x give

0< [ffﬂii(ﬁ g "gi(x))] [fﬂfﬁ (h"(x) [ | g?i(x))]
i=1

i#p

P, (h”(x) 1_[ g?"gf,(x))”f%‘,ﬂ(]—[ g,-”(X))]-
i=1

i#p

(4.4)

4.5)

Dividing on both sides of (4.5) by

g ivco | Teroo e[ Teron)
i=1 i=1

leads to (4.1). The proof of Theorem 4.1 is complete. O

Corollary 4.1. Let {g;,1 < i < n} be a sequence of continuous positive decreasing functions on the
interval [a,b]. Leta < x < b,n>0,& >y, >0for1 < p < n. Then the left k-FCI operator ’iﬂ;ﬁ
satisfies the inequality
V(T 878p) _ He (- " T, 878y ()
PHL(TL /') fH (- ) [T 8)'()
Proof. This can be derived from taking 4(x) = x — a in Theorem 4.1. The proof of Corollary 4.1 is
complete. O

(4.6)
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Corollary 4.2. Let {g;,1 < i < n} be a sequence of continuous positive decreasing functions on the
interval [a,b]. Leta < x < b,n>0,& >y, > 0for1 < p < n. Then the left k-FCI operator f‘Héﬂ

satisfies the inequality
ZW;i((x —ay| | gr<x>)][§w;a(ﬂ g?"gfxx))]
i=1

i#p
+ 271’23(]_[ g?igi(X))][fﬂﬁ((x —ay|[ ] g?"(X))]
v = 4.7)
= §W§+((x —a'[ ] g,-”gf,(x))][fﬂﬁ(l—[ g?"gf,(x))]
i#p i#p

_l_

ZW;;(H giyi(x))] [f?f;ﬂ ((x —a)' 1_[ gl (x))].
i=1 i=1

Proof. Multiplying on both sides of the relation

xﬁma _ 1 fx x—a)*—-(tr—a) Blk—1
Osfa 30 (x,p,7)dT = .5, [ ~ ]

- - _ d
x| &/ @l - ay' - (x = gy (@) - & " ()]
i=1

(t—a)l
=(p- a)”[‘,f?fgi(]_[ g,”gf,(x))

i#p

~(p—a)g, " (p) fw;;(]_[ g?‘(x>)] - [fw;;(u —a'| | g,.”(x))]
- i=1

i#p

gy " (p)[’;ﬂ;ﬁ ((x —ay'[ ] g,-”(x))]
i=1

by

I [G=a)—(p— a)C*r/k-1 [T &)
kI'(0) L @ p-a)'
and integrating on both sides with respect to p from a to x arrive at

ZW:;((x —ay| | g?"(x))][fﬂz,i(ﬂ g,?"gfxx))]
i=1

i#p

,iw;a(]_[ g?‘gi(@)”ﬁﬂg(u —a'| ] ng(x))]
i=1

i£p

274;&(@ ~a'| | g,-”gf;(X))HfWﬁ(]—[ g?"gf,(x))]

i#p i#p

—[ﬁ?{;ﬂ(ﬂ g,-”gi(x))”fwg((x —ay ]_[ g;/i(x))].
i=1

i#p

(4.8)

0<

+

4.9)

Dividing on both sides of (4.9) by

[mi((x —a'| | g?fg;‘xx))][fw; (ﬂ g,.”gim)

i#p i#p

e ([ Tersgoo) e - o [ Teren))
i=1

i#p
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leads to (4.7). The proof of Corollary 4.2 is complete. O

Corollary 4.3. Let h(x) be a continuous increasing function and {g;,1 < i < n} be a sequence of
continuous positive decreasing functions on the interval [a,b]. Leta < x < b,n >0, & >y, > 0 for
1 < p < n. Then the left k-FCI operator f?—(gﬁ satisfies the inequality

OHC, (h"(x) [] g?(x))][fwﬁ(]_[ ngggm)]
i=1

i£p

,‘374;&(]_[ g?"gf,(x))] [fﬂgi (h”(X) [ g?”(x))]
i=1

i#p

HC (h”(x) ]—[ g?"gi(X))HfW;ﬁ(ﬂ g?"gi(x))]

i#p i#p
O, (l—[ g[.”(x))][fﬂ o (h”(x) 1—[ g;/"(x))].
i=1 i=1

Proof. Multiplying on both sides of the relation (4.3) by (4.8) and integrating on both sides with respect
to p from a to x derive

+

(4.10)
>

+

0<

He- (h”(X) [] g?’(X))] [fW;’+(ﬂ 8 "gf,(x))]
i=1

i#p

,iﬂ“(ﬂ g?"gi(X))] [fﬂﬁi (h”(X) [ gl-”(X))]
i=1

i#p

LH;. (h”(x) [ g}y"gi(x))][’,fﬂﬁ(ﬂ g?"gf,(X))]

i#p i#p

- [Z%‘ﬁ (n g?"gf,(X))] [f”H;i (h”(x) [ gi”(x))].
i=1

i#p

+

(4.11)

Dividing on both sides of (4.11) by

[Zﬂii (h”(x) [ g?"gf,(x))][fﬂﬁ(]—[ g?"gf,(x))

i#p i#p

e ([ g |oote (oo ] o)
i=1

i#p
reveals (4.10). The proof of Corollary 4.3 is complete. O

Theorem 4.2. Let {g;,1 < i < n} be a sequence of continuous positive decreasing functions on the
interval [a,b]. Leta < x < b,n>0,& >y, >0forl < p < n. Then the right k-FCI operator f?-(g’,
satisfies the inequality

Hy (T 878 () GH (b= 0" T 87'8()

ﬂ > Lol (4.12)
Hy (T &' ) H (G =2 1T &' ()
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Proof. Under given conditions, we have

[(b—p)" — (b - )M[gh (1)~ g5 " ()] = 0.
Let us define a function

B~a

- (X, 0, T)
_ 1 (b — x)w _ (b _ T)a Blk—1 H?:] gl}'i(T) - -
= ka(,B)[ @ ] (b _ T)l_a’ [(b —P)” — (b - T)U][gp (T) - g (p)] (413)

Consequently, the function ng, (x,p,7) is positive for all T € (a, b]. Integrating on both sides of the

above equation (4.13) with respect to 7 from x to b gives

b 1 b (b _ x)a _ (b _ T)w Blk—1
< ,Bwai dr = f [ ]
0 — \fXV k\Sb (x’p’ T) T krk(ﬂ) . a

o _ _ d
x| |8 @l —py ~ & =0"g; (@) - 8, (o)) (b .
i=1

G-
= (b~ p)"[fﬂ,;’(ﬂ gl-”gi(x))

i£p

~(b-p)'g; " (p) [fwf(]—[ g?(x)ﬂ - [ﬁjﬂ;((b -0 | g?f(x))].
i=1

i#p

(4.14)

+g " (p)[ffw; ((b -0"[ ] g?‘(x))]
i=1

Multiplying the relation (4.14) by

C O (B BT Y
1 [(b x)* = (b p)] [T 8 (0 (4.15)

kL'(B) (b-p)
and integrating on both sides with respect to p from x to b produce

0< [fﬂé’(]_[ g?"gi(x))”fﬂf((b -0 [ ] g’ﬁ(x))]
i=1

i#p

‘[fwi’-((” -0 [ ] "gi<X>)Hf%§’-(]—[ g "(x))].
i=1

i#p

a

(4.16)

Dividing on both sides of (4.16) by

fﬂg(w -0"[ ] g?(x))[fﬂg(ﬂ g?f(x))]
i=1 i=1

yields (4.12). The proof of Theorem 4.2 is complete. O

Corollary 4.4. Let {g;,1 < i < n} be a sequence of continuous positive decreasing functions on the
interval [a,b]. Leta < x < b,n>0,&>7vy, > 0forl < p < n. Then the right k-FCI operator ’iﬂl‘f_
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satisfies the inequality

Z?ﬁ’((b 0[] g?"(x))][iws(]_[ g?"g»f,(x))]
i=1

i#p
+ 2%’-(]7 g?’giu))] [ﬁiw,;’.((b -0"[ ] g,?f(x))]
e = 4.17)
> i (-0 [ o) [ T o)
i#p i#p

+

zwg_(]—[ gii(x))][fﬂ,f_((b il i(x))].
i=1 i=1

Proof. Multiplying the relation (4.14) by

0 (B k=L oY
1 [(b X = (b-p) r [T-187(0) (4.18)

k' (6) @ b-p)

and integrating on both sides with respect to p from x to b procure

Zﬂ,;i(w 0[] g;‘(x))][fﬂﬁ-(ﬂ gl "giOC))]
i=1

i#p

ot [ fo o [T
i=1

i£p

iﬂﬁ-((x ~a'| | g,-y"gf;(X))HfWZ‘-(ﬂ g?"gf,(x))]

i#p i#p

o[ - o0 )]
i=1

i#p

0<

+

(4.19)

Dividing on both sides of (4.19) by

[Z%‘f((b -0 | g,-”gi(x))][fﬂﬁ(]—[ g?"gf,(x))

i#p i#p

e ([ Tereson) i (- o0 o)
i=1

i#p
demonstrates (4.17). The proof of Corollary 4.4 is complete. O

continuous positive decreasing functions on the interval [a,b]. Leta < x < b,n >0, & >y, > 0 for
1 < p < n. Then the right k-FCI operator f‘H;j_ satisfies the inequality

Theorem 4.3. Let h(x) be a continuous increasing function and {g;,1 < i < n} be a sequence of

Hy (T 8785 () GH (W) T 87'85()
PHE(TTL, &) AHE() [T, 81'(0)

(4.20)
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Proof. Under given conditions, we have

[W(p) — K'(D)][g5 " (x) — &5 " ()] > 0.
Let us define a function

1 [(b-x2— (-0 P gl (1)
kT(B) 1% (b—-1)l-@

BT (x,p,7) = [W(p) — K'(D][g, " (T) — &5 "(p)]. (4.21)

Thus, the function fj w(x,p,7) is positive for all T € (a,b]. Integrating on both sides of the above
equation (4.21) with respect to 7 from x to b results in

b 1 b (b _ x)w _ (b _ T)w Blk—1
o< [t wpmar= g | a

x[ [ @no) = ey " (@) = g5 ()] ———
i=1

dr
(b—-1)l-@

. . 4.22)
-ty [ [ )| + 7ot (e [ T
i%p i=1
i | ([ ]| - ot (oo [ oo
i=1

i#p

Multiplying the relation (4.22) by (4.15) and integrating on both sides with respect to p from x to b
yield

0< f?{;{(n gl?fgf,(x))”fﬁ,;’_(hn(x) | gi”(x))]
A - (4.23)
~[iH;: (h'?(x) [ g,-"'giu))][fﬂ;(]—[ g,-”(x))].

i#p i=1

Dividing on both sides of (4.23) by
PH; (h'l(x) |'] g?(x))[iw,;i (H g?"(x))]

i=1 i=1

leads to (4.20). The proof of Theorem 4.3 is complete. O

Corollary 4.5. Let h(x) be a continuous increasing function and {g;,1 < i < n} be a sequence of
continuous positive decreasing functions on the interval [a,b]. Leta < x < b,n >0, & >y, > 0 for
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1 < p < n. Then the right k-FCI operator f?—(g’, satisfies the inequality

O (h"(x) ﬂ g?”(x))][fﬂg’(n g,-”gf,(x))]
i=1

i£p

;‘3743-(]_[ g?‘gf,(x))] [f%‘,’- (h”(X) [ g?”(x))]
i=1

o = 4.24)

H- (h”(x) [ g?"gi(X))HfWZ(ﬂ g?"gi(x))]

i#p i#p
Hy (H g?"(x))][fﬂg (h"(x> [ g?"(x))].
i=1 i=1

Proof. Multiplying the relation (4.22) by (4.18) and integrating on both sides with respect to p from x

to b give
zq_[[;{ (h"(x) n giy"(x))] [f?‘[;:(l_[ g?igf,(x))]
i=1

i#p

i?f;"(]_[ g?‘gi(x))] [fﬂ,f‘ (h"<x) [ g,”(x))]
i=1

i#p

o Hy (h”(X) ]—[ 8; "gi(x))][fﬂﬁ-(ﬁ g?"gf,(x))]

i#p i#p

-[zwg (ﬂ gl.”gf,(x))] [fwg (hﬂ(x) [ g?"(x))].
i=1

i#p

+

=

+

0<

+

Dividing on both sides of (4.25) by

[ZW;* (h”(X) l_[ g?"gf,(X))][fWE(ﬂ gi’"gi(X))

i#p i#p

+ [i%ﬁ’(]—[ g?"gf,(x))][‘;ﬂz (h"<x> [ g?'(x))]
i=1

i#p

concludes (4.24). The proof of Corollary 4.5 is complete. O
5. Conclusions

In this paper, we have presented the left and right k-fractional conformable integrals and generalized
some important integral inequalities to ones for our newly introduced k-FCI operators related to a finite
sequence of positive and decreasing functions. Our work produces k-analogues of many pre-existing
results in the literature. Further, many special cases for other integral operators can be derived from our
generalizations. The results obtained can be employed to confirm the existence of nontrivial solutions
of fractional differential equations of different classes. The k-FCI operators in this paper are different
from those introduced by Katugampola [30] as their kernels depend on the boundary points a and b and
need a different convolution theory under conformable Laplace. Our k-fractional conformable integrals
in this paper generalize well-known fractional integral operators such as Caputo integral operators [49,
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p. 44], Riemann-Liouville integral operators [49, p. 44], Hadamard integral operators [10], and their
k-analogues.

Finally we state that possible future works can be in proving new inequalities in the frame of new
generalized integrals. The integrals correspond to certain fractional derivatives with nonsingular
kernels, for example. See the papers [4,23].

Remark 5.1. This paper is a slightly revised version of the preprint [20].
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