Citation: Muhammad Altaf Khan, Saif Ullah, Muhammad Farhan. The dynamics of Zika virus with Caputo fractional derivative[J]. AIMS Mathematics, 2019, 4(1): 134-146. doi: 10.3934/Math.2019.1.134
[1] | Zika virus, World Health Organization. Available from: http://www.who.int/mediacentre/factsheets/zika/en/. |
[2] | G. Calvet, R. S. Aguiar, A. S. O. Melo, et al. Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: a case study, Lancet infect dis., 16 (2016), 653-660. doi: 10.1016/S1473-3099(16)00095-5 |
[3] | T. A. Perkins, A. S. Siraj, C. W. Ruktanonchai, et al. Model-based projections of Zika virus infections in childbearing women in the Americas, Nat. Microbiol., 1 (2016), 16126. |
[4] | A. J. Kucharski, S. Funk, R. M. M. Eggo, et al. Transmission dynamics of Zika virus in island populations: a modelling analysis of the 2013-14 French Polynesia outbreak, PLoS Neglect. Trop. D., 10 (2016), 38588. |
[5] | E. Bonyah and K. O. Okosun, Mathematical modeling of Zika virus, Asian Pacific Journal of Tropical Disease, 6 (2016), 637-679. |
[6] | E. Bonyah, M. A. Khan, K. O. Okosun, et al. A theoretical model for Zika virus transmission, Plos one, 12 (2017), 1-26. |
[7] | I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Vol. 198, Elsevier, 1998. |
[8] | S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional integrals and derivatives: theory and applications, 1993. |
[9] | A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20 (2016), 763-769. doi: 10.2298/TSCI160111018A |
[10] | M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 1-13. |
[11] | K. M. Owolabi, Numerical solution of diffusive HBV model in a fractional medium, SpringerPlus, 5 (2016), 1643. |
[12] | K. M. Owolabi, Mathematical modelling and analysis of two-component system with Caputo fractional derivative order, Chaos Soliton. Fract., 103 (2017), 544-554. doi: 10.1016/j.chaos.2017.07.013 |
[13] | K. M. Owolabi, A. Atangana, Robustness of fractional difference schemes via the Caputo subdiffusion-reaction equations, Chaos Soliton. Fract., 111 (2018), 119-127. doi: 10.1016/j.chaos.2018.04.019 |
[14] | E. Bas, R. Ozarslan, Real world applications of fractional models by Atangana-Baleanu fractional derivative, Chaos Soliton. Fract., 116 (2018), 121-125. doi: 10.1016/j.chaos.2018.09.019 |
[15] | E. Bas, R. Ozarslan, D. Baleanu, Comparative simulations for solutions of fractional Sturm-Liouville problems with non-singular operators, Adv. Differ. Equ-NY, 2018 (2018), 350. |
[16] | E. Bas, The Inverse Nodal problem for the fractional diffusion equation, Acta Sci-Technol, 37 (2015), 251-257. doi: 10.4025/actascitechnol.v37i2.17273 |
[17] | E. Bas, F. Metin, Fractional singular Sturm-Liouville operator for Coulomb potential, Adv. Differ. Equ-NY, 2013 (2013), 300. |
[18] | S. Ullah, M. A. Khan and M. F. Farooq, A new fractional model for the dynamics of Hepatitis B virus using Caputo-Fabrizio derivative, European Physical Journal Plus, 133 (2018), 237. |
[19] | M. A. Khan, S. Ullah and M. F. Farooq, A new fractional model for tuberculosis with relapse via AtanganaBaleanu derivative, Chaos Soliton. Fract., 116 (2018), 227-238. |
[20] | M. A. Khan, S. Ullah and M. F. Farooq, A fractional model for the dynamics of TB virus, Chaos Soliton. Fract., 116 (2018), 63-71. doi: 10.1016/j.chaos.2018.09.001 |
[21] | B. S. T. Alkahtani, A. Atangana, I. Koca, Novel analysis of the fractional Zika model using the Adams type predictor-corrector rule for non-singular and non-local fractional operators, The Journal of Nonlinear Sciences and Applications, 10 (2017), 3191-3200. doi: 10.22436/jnsa.010.06.32 |
[22] | H. Elsaka and E. Ahmed, A fractional order network model for ZIKA, BioRxiv, 2016. |
[23] | D. Hadi, D. Baleanu and J. Sadati, Stability analysis of Caputo fractional-order nonlinear systems revisited, Nonlinear Dynam., 67 (2012), 2433-2439. |
[24] | V. D. L. Cruz, Volterra-type Lyapunov functions for fractional-order epidemic systems, Commun. Nonlinear Sci., 24 (2015), 75-85. doi: 10.1016/j.cnsns.2014.12.013 |
[25] | Z. M. Odibat and N. T. Shawagfeh, Generalized Taylors formula, Appl. Math. Comput., 186 (2007), 286-293. |
[26] | W. Lin, Global existence theory and chaos control of fractional differential equations, J. Math. Anal. Appl., 332 (2007), 709-726. |
[27] | H. A. Antosiewicz, J. K. Hale, Studies in Ordinary Differential Equations, In: Englewood Cliffs (N. J.) by Mathematical Association of America, 1977. |
[28] | P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Bellman Prize in Mathematical Biosciences, 180 (2002), 29-48. doi: 10.1016/S0025-5564(02)00108-6 |