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Abstract: In the present paper, we investigate a fractional model in Caputo sense to explore the
dynamics of the Zika virus. The basic results of the fractional Zika model are presented. The local and
global stability analysis of the proposed model is obtained when the basic reproduction reproduction
number is less or greater than 1. To show the global stability of the fractional Zika model, we use the
Lyapunov function theory in fractional environment. Further, we simulate the fractional Zika model to
present the graphical results for different values of fractional order and model parameters.
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1. Introduction

Zika infection is a kind of vector-borne disease caused and spread by the bite infected Aedes
mosquitos. The Zika infection was first discovered in Uganda in 1947. In 2007, the first case of Zika
virus was reported occurred in the Island of Yap (Federated States of Micronesia). After that, it spread
very quickly in Asia, Africa and USA [1]. The Aides mosquitoes is the main source from which the
Zika virus is spread and is also responsible for dengue infection. The transmission of virus of Zika
infection to humans occurred by the bites of infected female mosquitoes from the Aedes genus. This
infection can also be transmitted having unprotected sexual relations, if one partner is suffering from
Zika virus. People who have infected with Zika will have mild symptom due to which they feel mild
illness and get severe ailment. Zika infected people main symptoms are skin rashes, headache, mild
fever, conjunctivitis, and muscle pains. Usually the symptoms last for 2–7 days but sometimes the
infected individuals due to Zika virus de not developed symptoms. This infection can also affect a
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pregnant women to her developing fetus [2, 3]. If this happened then most probably the newly born
babies have abnormal brain and small head development along with muscle weakness which effects
nervous system.

Epidemic models are used as powerful tool to predict the dynamics and control of various
communicable diseases. These models usually consist of nonlinear differential equations describing
the dynamics of the concern disease. A number of transmission models and effective possible
controlling strategies have been developed in literature to explore the effective strategies for
controlling of Zika infection in different regions around the globe. Kucharsk et al. [4] proposed a
mathematical model and provided a detail analysis of French Polynesia Zika outbreak appeared in
2013-14. Kucharsk et al. used the total Zika infected cases between October 2013 till April 2014
which are reported in six main places of French Polynesia for model parameters estimation. Bonyah
and Okosun [5] used optimal control theory to derived three different controlling strategies to reduce
the spreed of this infection. The impact of bednets, used of insecticides spry and possible treatment
was studied in detail in [6]. However, these models are based integer-order classical differential
systems. The classical integer-order derivatives have some limitations as they are local in nature and
do not posses the memory effects which are appear in most of biological systems. Secondly, classical
derivative are unable to provides information about the rate of changes between two points not
necessarily same. To overcome such limitations of local derivatives, various concepts on new
derivatives with non-integer or fractional order were developed in recent years and can e found
in [7, 9, 10]. The classical Caputo fractional operator [7] has been used to model many complex
phenomena in different fields. For example in [11], a numerical scheme was proposed for of the
diffusive fractional HBV model in Caputo sense. A numerical scheme for Caputo fractional
reaction-diffusion equation and its stability analysis can be found in [12]. Also a detail stability
analysis and simulations of Caputo sub-diffusion equation has been developed in [13]. The real world
application of non-local and non-singular fractional operator [9] can be found in [14]. A comparative
analysis Sturm-Liouville fractional problems has been carried out in [15]. Other applications of
singular and non-singular fractional order operators in modeling various phenomena can be found
in [16–20]. There is no rich literate on the modeling of Zika virus in fractional order. Only few
models with fractional order has been presented in literature for Zika infection [21, 22]. Keeping the
above discussion in view and applicability of fractional order derivatives, in the preset investigation, a
mathematical transmission model is considered in the Caputo sense in order to explore the dynamics
of the Zika virus. We simulate the proposed Zika model for different values of relevant parameters
and for several values of arbitrary fractional order α.
The structure of the paper is follows is as: groundwork of the fractional derivative is given in
Section 2. The basic model formulation is given in Section 3. Sections 4 is devoted to explore the
basic properties of the model. Sections 5 and 6 are concern to obtain the stability results of the model
equilibria. Graphical analysis are given in Section 7. The whole work is summarized with a brief
conclusion in Section 8.

2. Preliminaries

The basic definitions regarding the fractional derivative in Caputo sense are as follows [7, 8]:

Definition 2.1. The Caputo fractional derivative of order α ∈ (n−1, n) with n ∈ N for a function h ∈ Cn
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is stated as follow:

CDα
t (h(t)) =

1
Γ(n − α)

∫ t

0

h(n)ξ

(t − ξ)α−n+1 dξ.

Clearly CDα
t (h(t)) approaches to h

′

(t) as α→ 1.

Definition 2.2. The corresponding fractional integral having order α > 0 of the function h : R+ → R is
described by the following expression

Iαt (h(t)) =
1

Γ(α)

∫ t

0
(t − ξ)α−1h(ξ)dξ,

where Γ represent the Gamma function.

Definition 2.3. The constant point x∗ is said to be an equilibrium point of the following Caputo
fractional dynamic system:

CDα
t x(t) = h(t, x(t)), α ∈ (0, 1), (2.1)

if and only if it observed that h(t, x∗) = 0.

To present the stability analysis of nonlinear fractional systems in the Caputo sense via Lyapunov
method we first recall the following necessary results from [23, 24].

Theorem 2.4. Suppose x∗ be an equilibrium point for the above system (2.1) and Ω ∈ Rn be a domain
containing x∗. Let L : [0,∞) ×Ω into to R be a continuously differentiable function such that

W1(x) ≤ L(t, x(t)) ≤ W2(x),

and
CDα

t L(t, x(t)) ≤ −W3(x),

∀ α ∈ (0, 1) and x ∈ Ω. Whereas W1(x), W2(x) and W3(x) are continuously positive definite functions
on Ω. Then x∗ is uniformly asymptotically stable equilibrium point for the model (2.1).

Next we recall the following lemma from [24], which we will use in presenting the global stability
via Lyapunov function.

Lemma 2.5. For a continuous and derivable function z(t) ∈ R+ and α ∈ (0, 1), then for any time t ≥ t0

we have
CDα

t

{
z(t) − z∗ − z∗ ln

z(t)
z∗

}
≤

(
1 −

z∗

z(t)

)
CDα

t z(t), z∗ ∈ R+.
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3. Mathematical model and discussion

To formulate the model, we divide the human population into two sub-classes, susceptible
individuals and infected individuals. The total human population is represented by
xh(t) = x1(t) + x2(t), where x1 represent susceptible and x2 represent numbers of infected human
individuals. Similarly, xm is the total number of mosquitos which are further divided into susceptible
mosquitos x3, and infected mosquitos x4, so that xm(t) = x3(t) + x4(t). The compartmental
mathematical model is given by the following system of four ordinary differential equations to
describe the mechanism of the transmission of Zika virus.

CDα
t x1 = Λh − β1γ1x1(t)x4(t) − d1x1(t),

CDα
t x2 = β1γ1x1(t)x4(t) − d1x2(t),

CDα
t x3 = Λm − β2γ2x2(t)x3(t) − d2x3(t),

CDα
t x4 = β2γ2x2(t)x3(t) − d2x4(t),

(3.1)

with the initial conditions

x1(0) = x10 ≥ 0, x2(0) = x20 ≥ 0, x3(0) = x30 ≥ 0, x4(0) = x40 ≥ 0.

In the above proposed model Λh and Λm respectively represent the recruitment rate of human and
mosquito populations. The natural death rate of the human and mosquitos are d1 and d2 respectively.
The contact rate of suspectable human and infected mosquitos is β1, while β2 is the contact rate OF
susceptible mosquitos and infected humans. The parameters γ1 and γ2 shows the transmission
probabilities of humans and mosquitos.

4. Existence and positivity of the solution

In order to present the non-negativity of the system solution, let

R4
+ = {y ∈ R4 | y ≥ 0} and y(t) =

(
x1(t), x2(t), x3(t), x4(t)

)T
.

To proceeds further, first we recall the generalized mean values theorem [25].

Lemma 4.1. Let suppose that h(t) ∈ C[a, b] and CDα
t h(t) ∈ (a, b], then

h(t) = h(a) +
1

Γ(α)
(CDα

t h)(ζ)(t − a)α,

with a ≤ ζ ≤ t, ∀ t ∈ (a, b].

Corollary 4.2. Suppose that h(t) ∈ C[a, b] and CDα
t h(t) ∈ (a, b], where α ∈ (0, 1]. Then if

(i) CDα
t h(t) ≥ 0,∀ t ∈ (a, b), then h(t) is non − decreasing.

(ii) CDα
t h(t) ≤ 0,∀ t ∈ (a, b), then h(t) is non − increasing.

We are now able to give the following result.
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Theorem 4.3. A unique solution y(t) of the model (3.1) exists and will remain in R4
+. Further more, the

solution is positive.

Proof. The exitance of the Caputo fractional Zika model can be shown with the help of theorem 3.1
from [26,27], while the uniqueness of the solution can be easily obtained by making use of the Remark
3.2 in [26] for all positive values of t. In order to explore the solution positivity, it is necessary to show
that on each hyperplane bounding the positive orthant, the vector field points to R4

+. Form the system
(3.1), we deduced that

CDα
t x1 |x1=0= Λh ≥ 0, CDα

t x2 |x2=0= β1γ1x1(t)x4(t) ≥ 0,

CDα
t x3 |x3=0= Λm ≥ 0, CDα

t x4 |x4=0= β2γ2x2(t)x3(t) ≥ 0.

Hence, using the above corollary (4.2), we obtain the desired target i.e. the solution will remain in R4
+

and hence biologically feasible region is constructed as:

Φ =
{
(x1, x2, x3, x4) ∈ R4

+ : x1, x2, x3, x4 ≥ 0
}
.

�

Next we explore the equilibria and basic threshold quantity R0 of the model (3.1) in the following
subsection.

4.1. Model equilibria and basic reproduction number

The equilibria of our proposed system (3.1) are obtained by solving the system below

CDα
t x1 = CDα

t x2 = CDα
t x3 = CDα

t x4 = 0.

Hence we deduced that the proposed model exhibit two type of equilibrium points. The disease free
equilibrium (DFE) calculated as

E0 =
(
x0

1, x
0
2, x

0
3, x

0
4

)
=

(Λh

d1
, 0,

Λm

d2
, 0

)
,

and the endemic equilibrium (EE) is as evaluated as follows E1 =
(
x∗1, x

∗
2, x

∗
3, x

∗
4

)
, where

x∗1 =
Λh

d1 + x∗4β1γ1
, x∗2 =

Λhx∗4β1γ1

d1

(
d1 + x∗4β1γ1

) , x∗3 =
d1Λm(d1 + β1γ1x∗4)

β1γ1x∗4(d1d2 + β2γ2Λh) + d2d2
1

. (4.1)

The EE E1, exist only if R0 > 1. The threshold quantity known as the basic reproduction number for
the fractional Zika model is obtained by using the well known approach discussed in [28]. The basic
reproduction number is biologically very important and determine the global dynamics of the model.
The corresponding matrices F and V are given by

F =

(
0 β1γ1

Λh
d1

β2γ2
Λm
d2

0

)
, V =

(
d1 0
0 d2

)
.
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Further, the inverse of V is

V−1 =

( 1
d1

0
0 1

d2

)
, FV−1 =

 0 β1γ1Λh
d1d2

β2γ2Λm
d1d2

0


The spectral radius ρ(FV−1) is the basic reproduction number of the model and after some
simplification the reproduction number is

R0 =

√
ΛhΛmβ2γ2β1γ1

d2
1d2

2

.

5. Stability analysis of DFE

In this section we proceed to confirm the stability results in both local and global case. The Jacobian
of linearization matrix of model (3.1).

JE0 =


−d1 0 0 −

β1γ1Λh
d1

0 −d1 0 β1γ1Λh
d1

0 −
β2γ2Λm

d2
−d2 0

0 β2γ2Λm
d2

0 −d2

 .
Theorem 5.1. For positive integers r1 and r2 such that gcd(r1, r2) = 1. Let α = ( r1

r2
) and define N = r2,

then the model DFE denoted by E0 is stable locally asymptotically provided that |arg(λ)| > π
2N , where

λ denotes the possible roots of the characteristic equation of the matrix JE0 given below.

det(diag[λp1λp1λp1λp1] − JE0) = 0. (5.1)

Proof. By expansion of Eq. (5.1), we get the below equation in term of λ.

(λr1 + d1)(λr1 + d2)(λ2r1 + a1λ
r1 + a2) = 0, (5.2)

where the coefficients are given below:

a1 = d1 + d2,

a2 = d1d1(1 − R0).

The arguments of the roots of the equation λp1 + d1 = 0 are as follow:

arg(λk) =
π

r1
+ k

2π
r1

>
π

N
>

π

2N
, where k = 0, 1 · · · , (r1 − 1). (5.3)

In similar pattern, it can be shown that argument of the roots of λp1 + d2 = 0 are also greater than π
2M .

Further, if R0 < 1, then the desired condition (|arg(λ)| > π
2N ) is satisfied for all roots of polynomial

(5.2). For R0 > 1, then with the help of Descartes rule of signs, there exits exactly one root of
characteristic equation with |arg(λ)| < π

2N . Thus the DFE is locally asymptotically stable for R0 < 1,
otherwise unstable. �
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For global stability result we prove the following theorem. This subsection provide the global
analysis of the model for the DF and endemic case. We have the following results.

Theorem 5.2. For arbitrary fractional order α in the interval (0,1], and R0 < 1, the DFE of the
proposed model is stable globally asymptotically and unstable otherwise.

Proof. To prove our result we define consider the following Lyapunov function

V(t) = W1

(
x1 − x0

1 − x0
1ln

x1

x0
1

)
+ W2x2 + W3

(
x3 − x0

3 − x0
3ln

x3

x0
3

)
+ W4x4. (5.4)

Where Wi, i = 1, 2 · · · 4, are arbitrary positive constants to be chosen latter. Using lemma (5.1), the
time derivative of (5.4), along the solution of (3.1) is given by

CDα
t V(t) = W1

( x1−x0
1

x1

)
CDα

t x1 + W2
CDα

t x2 + W3

( x3−x0
3

x3

)
CDα

t x3 + W4
CDα

t x4

= W1

( x1−x0
1

x1

)[
Λh − d1x1 − β1γ1x4x1

]
+ W2

[
β1γ1x4x1 − d1x2

]
+W3

( x3−x0
3

x3

)[
Λm − d2x3 − β2γ2x3x2

]
+ W4

[
β2γ2x3x2 − d2x4

]
= (W2 −W1)

[
β1γ1x4x1

]
+ (W4 −W3)

[
β2γ2x3x2

]
+x4(W1β1γ1x0

1 −W4d2) + x2(W3β2γ2x0
3 −W2d1).

Using x0
1 = Λh

d1
and x0

3 = Λm
d2

, we get

CDα
t V = (W2 −W1)

[
β1γ1x4x1

]
+ (W4 −W3)

[
β2γ2x3x2

]
+x4(W1β1γ1

Λh
d1
−W4d2) + x2(W3β1γ1

Λm
d2
−W2d1).

Choosing the constants W1 = W2 = β2γ2
Λm
d2

and W3 = W4 = d1 and after simplification, we get

CDα
t V = x4d1d2

(
R0 − 1

)
.

CDα
t V(t) is negative for R0 < 1. Therefore, by theorem (2.4) [23, 24], the DFE E0, is globally

asymptotically stable in Φ. �

6. Stability of endemic equilibrium

Here, we present the global stability of the system (3.1) at E1. At the steady state the model (3.1) at
E1 we obtained 

Λh = β1γ1x∗4x∗1 + d1x∗1,

d1x∗2 = β1γ1x∗4x∗1,

Λm = β2γ2x∗3x∗2 + d2x∗3,

d2x∗4 = β2γ2x∗3x∗2.

(6.1)
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Theorem 6.1. If R0 > 1, the EE E1 of the system (3.1) is stable globally asymptotically.

Proof. We consider the following Lyapunov function:

L(t) =
(
x1 − x∗1 − x∗1log

x1

x∗1

)
+

(
x2 − x∗2 − x∗2log

x2

x∗2

)
+

(
x3 − x∗3 − x∗3log

x3

x∗3

)
+
(
x4 − x∗4 − x∗4log

x4

x∗4

)
.

Using lemma (5.1), the derivative of L(t) along the solutions of (3.1) is as follows

CDα
t L =

(
1 −

x∗1
x1

)
CDα

t x1 +
(
1 −

x∗2
x2

)
CDα

t x2 +
(
1 −

x∗3
x3

)
CDα

t x3 +
(
1 −

x∗4
x4

)
CDα

t x4.

By direct calculations, we have that:

(1 −
x∗1
x1

) CDα
t x1 = (1 −

x∗1
x1

)
(
Λh − d1x1 − β1γ1x4x1

)
(1 −

x∗2
x2

) CDα
t x2 = (1 −

x∗2
x2

)
(
β1γ1x4x1 − d1x2

)
(1 −

x∗3
x3

) CDα
t x3 = (1 −

x∗3
x3

)
(
Λm − d2x3 − β2γ2x3x2

)
(1 −

x∗4
x4

) CDα
t x2 = (1 −

x∗4
x4

)
(
β2γ2x3x2 − d2x4

)
. (6.2)

(1 −
x∗1
x1

) CDα
t x1 = (1 −

x∗1
x1

)
(
Λh − d1x1 − β1γ1x4x1

)
= (1 −

x∗1
x1

)
(
d2x∗1 + β1γ1x∗4x∗1 − d2x1 − β1γ1x4x1

)
= d2x∗1(1 −

x∗1
x1

)(1 −
x1

x∗1
) + (1 −

x∗1
x1

)
(
β1γ1x∗4x∗1 − β1γ1x4x1

)
= d2x∗1

(
2 −

x∗1
x1
−

x1

x∗1

)
+ β1γ1x∗4x∗1 − β1γ1x4x1

−β1γ1x∗4x∗1
x∗1
x1

+ β1γ1x4x∗1. (6.3)

(1 −
x∗2
x2

) CDα
t x2 = (1 −

x∗2
x2

)
(
β1γ1x4x1 − d1x2

)
= β1γ1x4x1 − d1x2 − β1γ1x4x1

x∗2
x2

+ d1x∗2

= β1γ1x4x1 − β1γ1x∗4x∗1
x2

x∗2
− β1γ1x4x1

x∗2
x2

+ β1γ1x∗4x∗1. (6.4)
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(1 −
x∗3
x3

) CDα
t x3 = (1 −

x∗3
x3

)
(
Λm − d2x3 − β2γ2x3x2

)
= (1 −

x∗3
x3

)
(
d2x∗3 + β2γ2x∗3x∗2 − d2x3 − β2γ2x3x2

)
= d2x∗3(1 −

x∗3
x3

)(1 −
x3

x∗3
) + (1 −

x∗3
x3

)
(
β2γ2x∗3x∗2 − β2γ2x3x2

)
= d2x∗3

(
2 −

x∗3
x3
−

x3

x∗3

)
+ β2γ2x∗3x∗∗2 − β2γ2x3x2

−β2γ2x∗3x∗∗3
x∗3
x3

+ β2γ2x3x∗2. (6.5)

(1 −
x∗4
x4

) CDα
t x4 = (1 −

x∗4
x4

)
(
β2γ2x3x2 − d2x4

)
= β2γ2x3x2 − d2x4 − β2γ2x3x2

x∗4
x4

+ d2x∗4

= β2γ2x3x2 − β2γ2x∗3x∗x2
x4

x∗4
− β2γ2x3x2

x∗4
x4

+ β2γ2x∗3x∗2. (6.6)

It follows from (6.3-6.6)

CDα
t L = d1x∗1

(
2 −

x∗1
x1
−

x1

x∗1

)
+ β1γ1x∗4x∗1

(
2 −

x∗1
x1
−

x2

x∗2
−

x4

x∗4

( x1x∗2
x∗1x2

− 1
))

+d2x∗3
(
2 −

x∗3
x3
−

x3

x∗3

)
+ β2γ2x∗3x∗2

(
2 −

x∗3
x3
−

x4

x∗4
−

x2

x∗2

( x3x∗4
x∗3x4

− 1
))
. (6.7)

Make use of arithmetical-geometrical inequality we have in equation (6.7)

d1x∗1
(
2 −

x∗1
x1
−

x1

x∗1

)
≤ 0,

d2x∗3
(
2 −

x∗3
x3
−

x3

x∗3

)
≤ 0,

β1γ1x∗4x∗1
(
2 −

x∗1
x1
−

xx2
x∗2
−

x3

x∗3

( x1x∗2
x∗1x2

− 1
))
≤ 0,

β2γ2x∗3x∗2
(
2 −

x∗3
x3
−

x4

x∗4
−

x2

x∗2

( x3x∗4
x∗3x4

− 1
))
≤ 0.

Therefore, CDα
t L ≤ 0 and hence by using theorem (2.4) the EE E1 of the proposed model is globally

asymptotically stable whenever R0 > 1. �
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7. Numerical results

The present section is devoted to obtain the numerical results of the proposed Zika fractional order
model (3.1). The Adams-type predictor-corrector method is applied to obtained the approximate
solution of the model. The numerical values used in the simulations are Λh = 1.2, Λm = 0.3,
β1 = 0.0004, β2 = 0.005, d1 = 0.004, d2 = 0.0014, γ1 = 0.02. γ2 = 0.0003. The graphical results using
different five values of fractional order α = 1, 0.95, 0.9, 0.85, 0.8 are presented in the Figures 1–4.
From these figures we can see than the susceptible human and mosquitoes are increasing when we
decreases the fractional order α. While there is a significant decrease in the graphs of infected humans
and mosquitoes with decrease in α. Hence, the fractional order α has an important role in the model.
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Figure 1. The graph shows the behavior of the susceptible humans for α =

1, 0.95, 0.90, 0.85, 0.8.
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Figure 2. The graph shows the behavior of the infected humans for α =

1, 0.95, 0.90, 0.85, 0.8..
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Figure 3. The graph shows the behavior of the susceptible mosquitos for α =

1, 0.95, 0.90, 0.85, 0.8.
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Figure 4. The graph shows the behavior of the infected mosquitos for α =

1, 0.95, 0.90, 0.85, 0.8.

8. Conclusion

Zika is a rapidly spreading epidemic and is one of serious health issue, specially for pregnant
women. A number of deterministic models have been presented in last few year, for the possible
control and eradication of this infection from the community. But, almost all of these models are
based on classical or local derivative. In order to better explore the complex behavior of Zika
infection, in this paper, a fractional order transmission model in Caputo sense is developed. The detail
analysis such as positivity and existence of the solution, basic reproduction numberer and model
equilibria of the proposed model are presented. The stability results for both local and global cases
are derived in detail in fractional environment. From the numerical results we conclude that the
fractional order derivative provides more information about the proposed model which are unable by
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classical integer-order epidemic models. Also these results ensure that by including the memory
effects in the model seems very appropriate for such an investigation. In future, we will explore the
proposed model using non-local and non-singular fractional derivatives presented in [9, 10].
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