Spreading speed revisited: Analysis of a free boundary model

  • Received: 01 January 2012 Revised: 01 July 2012
  • 35K20, 35R35, 35J60, 92B05.

  • We investigate, from a more ecological point of view, a free boundary model considered in [11] and [8] that describes the spreading of a new or invasive species, with the free boundary representing the spreading front. We derive the free boundary condition by considering a "population loss" at the spreading front, and correct some mistakes regarding the range of spreading speed in [11]. Then we use numerical simulation to gain further insights to the model, which may help to determine its usefulness in concrete ecological situations.

    Citation: Gary Bunting, Yihong Du, Krzysztof Krakowski. Spreading speed revisited: Analysis of a free boundarymodel[J]. Networks and Heterogeneous Media, 2012, 7(4): 583-603. doi: 10.3934/nhm.2012.7.583

    Related Papers:

    [1] Gary Bunting, Yihong Du, Krzysztof Krakowski . Spreading speed revisited: Analysis of a free boundary model. Networks and Heterogeneous Media, 2012, 7(4): 583-603. doi: 10.3934/nhm.2012.7.583
    [2] Meng Zhao, Jiancheng Liu, Yindi Zhang . Influence of environmental pollution and bacterial hyper-infectivity on dynamics of a waterborne pathogen model with free boundaries. Networks and Heterogeneous Media, 2024, 19(3): 940-969. doi: 10.3934/nhm.2024042
    [3] Don A. Jones, Hal L. Smith, Horst R. Thieme . Spread of viral infection of immobilized bacteria. Networks and Heterogeneous Media, 2013, 8(1): 327-342. doi: 10.3934/nhm.2013.8.327
    [4] Kota Kumazaki, Toyohiko Aiki, Adrian Muntean . Local existence of a solution to a free boundary problem describing migration into rubber with a breaking effect. Networks and Heterogeneous Media, 2023, 18(1): 80-108. doi: 10.3934/nhm.2023004
    [5] Henri Berestycki, Guillemette Chapuisat . Traveling fronts guided by the environment for reaction-diffusion equations. Networks and Heterogeneous Media, 2013, 8(1): 79-114. doi: 10.3934/nhm.2013.8.79
    [6] Matthieu Alfaro, Thomas Giletti . Varying the direction of propagation in reaction-diffusion equations in periodic media. Networks and Heterogeneous Media, 2016, 11(3): 369-393. doi: 10.3934/nhm.2016001
    [7] Sun-Ho Choi, Hyowon Seo . Rumor spreading dynamics with an online reservoir and its asymptotic stability. Networks and Heterogeneous Media, 2021, 16(4): 535-552. doi: 10.3934/nhm.2021016
    [8] Avner Friedman . PDE problems arising in mathematical biology. Networks and Heterogeneous Media, 2012, 7(4): 691-703. doi: 10.3934/nhm.2012.7.691
    [9] Marie Henry . Singular limit of an activator-inhibitor type model. Networks and Heterogeneous Media, 2012, 7(4): 781-803. doi: 10.3934/nhm.2012.7.781
    [10] François Hamel, James Nolen, Jean-Michel Roquejoffre, Lenya Ryzhik . A short proof of the logarithmic Bramson correction in Fisher-KPP equations. Networks and Heterogeneous Media, 2013, 8(1): 275-289. doi: 10.3934/nhm.2013.8.275
  • We investigate, from a more ecological point of view, a free boundary model considered in [11] and [8] that describes the spreading of a new or invasive species, with the free boundary representing the spreading front. We derive the free boundary condition by considering a "population loss" at the spreading front, and correct some mistakes regarding the range of spreading speed in [11]. Then we use numerical simulation to gain further insights to the model, which may help to determine its usefulness in concrete ecological situations.


    [1] D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, in "Partial Differential Equations and Related Topics" Lecture Notes in Math., 446, Springer, Berlin, (1975), 5-49.
    [2] D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusions arising in population genetics, Adv. Math., 30 (1978), 33-76. doi: 10.1016/0001-8708(78)90130-5
    [3] H. Berestycki, F. Hamel and H. Matano, Bistable traveling waves around an obstacle, Comm. Pure Appl. Math., 62 (2009), 729-788. doi: 10.1002/cpa.20275
    [4] H. Berestycki, F. Hamel and G. Nadin, Asymptotic spreading in heterogeneous diffusive excitable media, J. Funct. Anal., 255 (2008), 2146-2189. doi: 10.1016/j.jfa.2008.06.030
    [5] H. Berestycki, F. Hamel and N. Nadirashvili, The speed of propagation for KPP type problems. I. Periodic framework, J. Eur. Math. Soc., 7 (2005), 173-213. doi: 10.4171/JEMS/26
    [6] X. F. Chen and A. Friedman, A free boundary problem arising in a model of wound healing, SIAM J. Math. Anal., 32 (2000), 778-800. doi: 10.1137/S0036141099351693
    [7] Y. Du, "Order Structure and Topological Methods in Nonlinear Partial Differential Equations," 1, Maximum Principles and Applications, World Scientific, Singapore, 2006. doi: 10.1142/9789812774446
    [8] Y. Du and Z. M. Guo, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, II, J. Diff. Eqns., 250 (2011), 4336-4366. doi: 10.1016/j.jde.2011.02.011
    [9] Y. Du and Z. M. Guo, The Stefan problem for the Fisher-KPP equation, J. Diff. Eqns., 253 (2012), 996-1035. doi: 10.1016/j.jde.2012.04.014
    [10] Y. Du, Z. M. Guo and R. Peng, A diffusive logistic model with a free boundary in time-periodic environment, preprint, 2011.
    [11] Y. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 1305-1333. doi: 10.1137/090771089
    [12] Y. Du and B. Lou, Spreading and vanishing in nonlinear diffusion problems with free boundaries, preprint, 2011.
    [13] Y. Du and H. Matano, Convergence and sharp thresholds for propagation in nonlinear diffusion problems, J. European Math. Soc., 12 (2010), 279-312. doi: 10.4171/JEMS/198
    [14] X. Fauvergue, J-C. Malausa, L. Giuge and F. Courchamp, Invading parasitoids suffer no Allee effect: A manipulative field experiment, Ecology, 88 (2008), 2392-2403.
    [15] I. Filin, R. D. Holt and M. Barfield, The relation of density regulation to habitat specialization, evolution of a speciesrange, and the dynamics of biological invasions, Am. Nat., 172 (2008), 233-247.
    [16] R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugenics, 7 (1937), 335-369.
    [17] K. P. Hadeler and F. Rothe, Travelling fronts in nonlinear diffusion equations, J. Math. Biol., 2 (1975), 251-263.
    [18] D. Hilhorst, M. Iida, M. Mimura and H. Ninomiya, A competition-diffusion system approximation to the classical two-phase Stefan problem, Japan J. Indust. Appl. Math., 18 (2001), 161-180. doi: 10.1007/BF03168569
    [19] A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Ètude de l'équation de la diffusion avec croissance de la quantitéde matière et son application à un problème biologique, Bull. Univ. Moscou Sér. Internat. A1 (1937), 1-26; English transl. in: "Dynamics of Curved Fronts" (ed. P. Pelcé), Academic Press, (1988), 105-130.
    [20] A. M. Kramer, B. Dennis, A. M. Liebhold and J. M. Drake, The evidence for Allee effects, Popul. Ecol., 51 (2009), 341-354.
    [21] M. A. Lewis and P. Kareiva, Allee dynamics and the spreading of invasive organisms, Theor. Population Bio., 43 (1993), 141-158.
    [22] X. Liang and X-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., 60 (2007), 1-40. doi: 10.1002/cpa.20154
    [23] Z. G. Lin, A free boundary problem for a predator-prey model, Nonlinearity, 20 (2007), 1883-1892. doi: 10.1088/0951-7715/20/8/004
    [24] J. L. Lockwood, M. F. Hoopes and M. P. Marchetti, "Invasion Ecology," Blackwell Publishing, 2007.
    [25] M. Mimura, Y. Yamada and S. Yotsutani, A free boundary problem in ecology, Japan J. Appl. Math., 2 (1985), 151-186. doi: 10.1007/BF03167042
    [26] Discrete Cont. Dyn. Syst. A., to appear.
    [27] L. I. Rubinstein, "The Stefan Problem," Amer. Math. Soc., Providence, RI, 1971.
    [28] N. Shigesada and K. Kawasaki, "Biological Invasions: Theory and Practice," Oxford Series in Ecology and Evolution, Oxford Univ. Press., Oxford, 1997.
    [29] J. G. Skellam, Random dispersal in theoretical populations, Biometrika, 38 (1951), 196-218.
    [30] H. F. Weinberger, On spreading speeds and traveling waves for growth and migration models in a periodic habitat, J. Math. Biol., 45 (2002), 511-548. doi: 10.1007/s00285-002-0169-3
    [31] H. F. Weinberger, M. A. Lewis and B. Li, Anomalous spreading speeds of cooperative recursion systems, J. Math. Biol., 55 (2007), 207-222. doi: 10.1007/s00285-007-0078-6
    [32] J. X. Xin, Front propagation in heterogeneous media, SIAM Rev., 42 (2000), 161-230. doi: 10.1137/S0036144599364296
  • This article has been cited by:

    1. Haihua Lu, Yujuan Chen, Jingqiu Yu, Analysis on a coupled parabolic system with free boundary, 2018, 468, 0022247X, 436, 10.1016/j.jmaa.2018.08.018
    2. Jingfu Zhao, Mingxin Wang, A free boundary problem of a predator–prey model with higher dimension and heterogeneous environment, 2014, 16, 14681218, 250, 10.1016/j.nonrwa.2013.10.003
    3. Yuki Kaneko, Hiroshi Matsuzawa, Yoshio Yamada, A free boundary problem of nonlinear diffusion equation with positive bistable nonlinearity in high space dimensions I : Classification of asymptotic behavior, 2022, 42, 1078-0947, 2719, 10.3934/dcds.2021209
    4. Peng Zhou, Dongmei Xiao, The diffusive logistic model with a free boundary in heterogeneous environment, 2014, 256, 00220396, 1927, 10.1016/j.jde.2013.12.008
    5. Chenglin Li, A nonlocal reaction–diffusion prey–predator model with free boundary, 2020, 79, 08981221, 378, 10.1016/j.camwa.2019.07.004
    6. Ling Zhou, Shan Zhang, Zuhan Liu, A free boundary problem of a predator–prey model with advection in heterogeneous environment, 2016, 289, 00963003, 22, 10.1016/j.amc.2016.05.008
    7. Jingjing Cai, Bendong Lou, Maolin Zhou, Asymptotic Behavior of Solutions of a Reaction Diffusion Equation with Free Boundary Conditions, 2014, 26, 1040-7294, 1007, 10.1007/s10884-014-9404-z
    8. Haomin Huang, Mingxin Wang, A nonlocal SIS epidemic problem with double free boundaries, 2019, 70, 0044-2275, 10.1007/s00033-019-1156-5
    9. Jane Allwright, Exact solutions and critical behaviour for a linear growth-diffusion equation on a time-dependent domain, 2022, 65, 0013-0915, 53, 10.1017/S0013091521000754
    10. Yaling Zhao, Zuhan Liu, Ling Zhou, Dynamics for a Nonlocal Reaction-Diffusion Population Model with a Free Boundary, 2019, 159, 0167-8019, 139, 10.1007/s10440-018-0188-8
    11. Karl P. Hadeler, Stefan problem, traveling fronts, and epidemic spread, 2015, 21, 1531-3492, 417, 10.3934/dcdsb.2016.21.417
    12. Qiaoling Chen, Fengquan Li, Feng Wang, A reaction–diffusion–advection competition model with two free boundaries in heterogeneous time-periodic environment, 2017, 0272-4960, hxw059, 10.1093/imamat/hxw059
    13. Mingxin Wang, Weijie Sheng, Yang Zhang, Spreading and vanishing in a diffusive prey–predator model with variable intrinsic growth rate and free boundary, 2016, 441, 0022247X, 309, 10.1016/j.jmaa.2016.04.007
    14. Ningkui Sun, Chengxia Lei, Long-Time Behavior of a Reaction–Diffusion Model with Strong Allee Effect and Free Boundary: Effect of Protection Zone, 2023, 35, 1040-7294, 737, 10.1007/s10884-021-10027-z
    15. Kamruzzaman Khan, Shuang Liu, Timothy M. Schaerf, Yihong Du, Invasive behaviour under competition via a free boundary model: a numerical approach, 2021, 83, 0303-6812, 10.1007/s00285-021-01641-y
    16. Xing Liang, Yihong Du, Pulsating semi-waves in periodic media and spreading speed determined by a free boundary model, 2015, 32, 0294-1449, 279, 10.1016/j.anihpc.2013.11.004
    17. M.-A. Piqueras, R. Company, L. Jódar, A front-fixing numerical method for a free boundary nonlinear diffusion logistic population model, 2017, 309, 03770427, 473, 10.1016/j.cam.2016.02.029
    18. Xinzhi Ren, Lili Liu, Xianning Liu, A weak competition system with advection and free boundaries, 2018, 463, 0022247X, 1006, 10.1016/j.jmaa.2018.03.055
    19. Wenzhen Gan, Peng Zhou, A revisit to the diffusive logistic model with free boundary condition, 2016, 21, 1531-3492, 837, 10.3934/dcdsb.2016.21.837
    20. Yihong Du, Lei Wei, Ling Zhou, Spreading in a Shifting Environment Modeled by the Diffusive Logistic Equation with a Free Boundary, 2018, 30, 1040-7294, 1389, 10.1007/s10884-017-9614-2
    21. Weiyi Zhang, Zuhan Liu, Ling Zhou, A free boundary problem for an attraction–repulsion chemotaxis system, 2018, 2018, 1687-2770, 10.1186/s13661-018-1105-9
    22. Qianying Zhang, Mingxin Wang, Dynamics for the diffusive mutualist model with advection and different free boundaries, 2019, 474, 0022247X, 1512, 10.1016/j.jmaa.2019.02.037
    23. Dawei Zhang, Binxiang Dai, Spreading and vanishing in a diffusive intraguild predation model with intraspecific competition and free boundary, 2019, 42, 0170-4214, 6917, 10.1002/mma.5797
    24. Shiwen Niu, Hongmei Cheng, Rong Yuan, A free boundary problem of some modified Leslie-Gower predator-prey model with nonlocal diffusion term, 2022, 27, 1531-3492, 2189, 10.3934/dcdsb.2021129
    25. Lei Li, Wan-Tong Li, Mingxin Wang, Dynamics for nonlocal diffusion problems with a free boundary, 2022, 330, 00220396, 110, 10.1016/j.jde.2022.05.011
    26. Siyu Liu, Haomin Huang, Mingxin Wang, Asymptotic spreading of a diffusive competition model with different free boundaries, 2019, 266, 00220396, 4769, 10.1016/j.jde.2018.10.009
    27. Dawei Zhang, Binxiang Dai, A free boundary problem for the diffusive intraguild predation model with intraspecific competition, 2019, 474, 0022247X, 381, 10.1016/j.jmaa.2019.01.050
    28. Ningkui Sun, Jian Fang, Propagation dynamics of Fisher–KPP equation with time delay and free boundaries, 2019, 58, 0944-2669, 10.1007/s00526-019-1599-8
    29. Harunori Monobe, Chang-Hong Wu, On a free boundary problem for a reaction–diffusion–advection logistic model in heterogeneous environment, 2016, 261, 00220396, 6144, 10.1016/j.jde.2016.08.033
    30. Shuang Liu, Yihong Du, Xinfeng Liu, Numerical studies of a class of reaction–diffusion equations with Stefan conditions, 2020, 97, 0020-7160, 959, 10.1080/00207160.2019.1599868
    31. Yihong Du, Yuanyang Hu, Xing Liang, A Climate Shift Model with Free Boundary: Enhanced Invasion, 2023, 35, 1040-7294, 771, 10.1007/s10884-021-10031-3
    32. Dawei Zhang, Yun Huang, Chufen Wu, Jianshe Yu, Dynamics of a Predator-Stage Structured Model with Cannibalism, Degenerate Diffusion and Free Boundaries, 2023, 33, 1050-6926, 10.1007/s12220-022-01138-0
    33. Yihong Du, Jian Fang, Ningkui Sun, A delay induced nonlocal free boundary problem, 2022, 0025-5831, 10.1007/s00208-022-02451-3
    34. Lei Li, Siyu Liu, Mingxin Wang, A viral propagation model with a nonlinear infection rate and free boundaries, 2021, 64, 1674-7283, 1971, 10.1007/s11425-020-1680-0
    35. Wonhyung Choi, Inkyung Ahn, Changwook Yoon, The diffusive farmers and hunter-gatherers model with a free boundary in a heterogeneous environment, 2021, 503, 0022247X, 125317, 10.1016/j.jmaa.2021.125317
    36. Meng Zhao, Wan-Tong Li, Jia-Feng Cao, A prey-predator model with a free boundary and sign-changing coefficient in time-periodic environment, 2017, 22, 1553-524X, 3295, 10.3934/dcdsb.2017138
    37. Jie Wang, Liang Zhang, Invasion by an inferior or superior competitor: A diffusive competition model with a free boundary in a heterogeneous environment, 2015, 423, 0022247X, 377, 10.1016/j.jmaa.2014.09.055
    38. Jianping Wang, Mingxin Wang, The diffusive Beddington-DeAngelis predator-prey model with nonlinear prey-taxis and free boundary, 2018, 41, 01704214, 6741, 10.1002/mma.5189
    39. Xiaowei Liu, Bendong Lou, On a reaction–diffusion equation with Robin and free boundary conditions, 2015, 259, 00220396, 423, 10.1016/j.jde.2015.02.012
    40. Zhengce Zhang, Xiangli Zhang, Asymptotic behavior of solutions for a free boundary problem with a nonlinear gradient absorption, 2019, 58, 0944-2669, 10.1007/s00526-018-1480-1
    41. Xuege Zhu, Shunqin Zhang, Xiaowei Liu, On a Lotka–Volterra weak competition system with Robin and free boundary conditions, 2023, 69, 14681218, 103756, 10.1016/j.nonrwa.2022.103756
    42. Dawei Zhang, Binxiang Dai, The diffusive intraguild predation model with intraspecific competition and double free boundaries, 2021, 100, 0003-6811, 3322, 10.1080/00036811.2020.1716971
    43. Meng Zhao, Wantong Li, Jiafeng Cao, Dynamics for an Sir Epidemic Model with Nonlocal Diffusion and Free Boundaries, 2021, 41, 0252-9602, 1081, 10.1007/s10473-021-0404-x
    44. Jia-Feng Cao, Yihong Du, Fang Li, Wan-Tong Li, The dynamics of a Fisher-KPP nonlocal diffusion model with free boundaries, 2019, 277, 00221236, 2772, 10.1016/j.jfa.2019.02.013
    45. Chang-Hong Wu, Spreading speed and traveling waves for a two-species weak competition system with free boundary, 2013, 18, 1553-524X, 2441, 10.3934/dcdsb.2013.18.2441
    46. Jianping Wang, Mingxin Wang, Free boundary problems with nonlocal and local diffusions I: Global solution, 2020, 490, 0022247X, 123974, 10.1016/j.jmaa.2020.123974
    47. Jianxiu Liang, Lili Liu, Zhen Jin, A reaction-diffusion-advection logistic model with a free boundary in heterogeneous environment, 2016, 2016, 1687-2770, 10.1186/s13661-016-0641-4
    48. Ningkui Sun, Blow-up and asymptotic behavior of solutions for reaction–diffusion equations with free boundaries, 2015, 428, 0022247X, 838, 10.1016/j.jmaa.2015.03.058
    49. Yunfeng Liu, Zhiming Guo, Mohammad El Smaily, Lin Wang, A Wolbachia infection model with free boundary, 2020, 14, 1751-3758, 515, 10.1080/17513758.2020.1784474
    50. Hirofumi Izuhara, Harunori Monobe, Chang-Hong Wu, The formation of spreading front: the singular limit of three-component reaction–diffusion models, 2021, 82, 0303-6812, 10.1007/s00285-021-01591-5
    51. Chenglin Li, Global existence of classical solutions to a cross-diffusion predator–prey system with a free boundary, 2018, 57, 1598-5865, 105, 10.1007/s12190-017-1097-0
    52. Yihong Du, Chang-Hong Wu, Spreading with two speeds and mass segregation in a diffusive competition system with free boundaries, 2018, 57, 0944-2669, 10.1007/s00526-018-1339-5
    53. Yaobin Tang, Binxiang Dai, Zhenzhen Li, Dynamics of a Lotka–Volterra weak competition model with time delays and free boundaries, 2022, 73, 0044-2275, 10.1007/s00033-022-01788-8
    54. Yang Xia, Hongmei Cheng, Rong Yuan, A FREE BOUNDARY PROBLEM OF SOME MODIFIED LESLIE-GOWER PREDATOR-PREY MODEL WITH SHIFTING ENVIRONMENTS, 2022, 12, 2156-907X, 2396, 10.11948/20210505
    55. Maryam Basiri, Frithjof Lutscher, Abbas Moameni, The Existence of Solutions for a Free Boundary Problem Modeling the Spread of Ecosystem Engineers, 2021, 31, 0938-8974, 10.1007/s00332-021-09725-1
    56. Heting Zhang, Lei Li, Mingxin Wang, Free boundary problems for the local-nonlocal diffusive model with different moving parameters, 2023, 28, 1531-3492, 474, 10.3934/dcdsb.2022085
    57. Ling Zhou, Shan Zhang, Zuhan Liu, Pattern Formations for a Strong Interacting Free Boundary Problem, 2017, 148, 0167-8019, 121, 10.1007/s10440-016-0081-2
    58. Lei Wei, Guanghui Zhang, Maolin Zhou, Long time behavior for solutions of the diffusive logistic equation with advection and free boundary, 2016, 55, 0944-2669, 10.1007/s00526-016-1039-y
    59. Qi-Jian Tan, Chao-Yi Pan, A class of invasion models in ecology with a free boundary and with cross-diffusion and self-diffusion, 2021, 503, 0022247X, 125318, 10.1016/j.jmaa.2021.125318
    60. Yihong Du, Mingxin Wang, Maolin Zhou, Semi-wave and spreading speed for the diffusive competition model with a free boundary, 2017, 107, 00217824, 253, 10.1016/j.matpur.2016.06.005
    61. Zhiguo Wang, Qian Qin, Jianhua Wu, Spreading Speed and Profile for the Lotka–Volterra Competition Model with Two Free Boundaries, 2022, 1040-7294, 10.1007/s10884-022-10222-6
    62. Frithjof Lutscher, Justus Fink, Yingjie Zhu, Pushing the Boundaries: Models for the Spatial Spread of Ecosystem Engineers, 2020, 82, 0092-8240, 10.1007/s11538-020-00818-8
    63. Yihong Du, Chang-Hong Wu, Classification of the spreading behaviors of a two-species diffusion-competition system with free boundaries, 2022, 61, 0944-2669, 10.1007/s00526-021-02170-8
    64. Chang-Hong Wu, The minimal habitat size for spreading in a weak competition system with two free boundaries, 2015, 259, 00220396, 873, 10.1016/j.jde.2015.02.021
    65. Mingxin Wang, Yang Zhang, Two kinds of free boundary problems for the diffusive prey–predator model, 2015, 24, 14681218, 73, 10.1016/j.nonrwa.2015.01.004
    66. Jingjing Li, Ningkui Sun, The effect of protection zone on asymptotic dynamics of a reaction–diffusion model with a free boundary or unbounded boundary, 2022, 68, 14681218, 103697, 10.1016/j.nonrwa.2022.103697
    67. Ningkui Sun, Asymptotic behavior of solutions of a degenerate Fisher–KPP equation with free boundaries, 2015, 24, 14681218, 98, 10.1016/j.nonrwa.2015.01.007
    68. Hong Gu, Bendong Lou, Maolin Zhou, Long time behavior of solutions of Fisher-KPP equation with advection and free boundaries, 2015, 269, 00221236, 1714, 10.1016/j.jfa.2015.07.002
    69. M. J. Baines, Katerina Christou, A Numerical Method for Multispecies Populations in a Moving Domain Using Combined Masses, 2022, 10, 2227-7390, 1124, 10.3390/math10071124
    70. Yihong Du, Propagation, diffusion and free boundaries, 2020, 1, 2662-2963, 10.1007/s42985-020-00035-x
    71. Yihong Du, Fang Li, Maolin Zhou, Semi-wave and spreading speed of the nonlocal Fisher-KPP equation with free boundaries, 2021, 154, 00217824, 30, 10.1016/j.matpur.2021.08.008
    72. Wonhyung Choi, Inkyung Ahn, Non-uniform dispersal of logistic population models with free boundaries in a spatially heterogeneous environment, 2019, 479, 0022247X, 283, 10.1016/j.jmaa.2019.06.027
    73. Dawei Zhang, Beiping Duan, Binxiang Dai, Dynamics of a three species ratio-dependent food chain model with diffusion and double free boundaries, 2020, 15, 0973-5348, 62, 10.1051/mmnp/2020034
    74. Yihong Du, Hiroshi Matano, Kelei Wang, Regularity and Asymptotic Behavior of Nonlinear Stefan Problems, 2014, 212, 0003-9527, 957, 10.1007/s00205-013-0710-0
    75. Mingxin Wang, Yonggang Zhao, A semilinear parabolic system with a free boundary, 2015, 66, 0044-2275, 3309, 10.1007/s00033-015-0582-2
    76. Jia-Feng Cao, Wan-Tong Li, Jie Wang, Fei-Ying Yang, A free boundary problem of a diffusive SIRS model with nonlinear incidence, 2017, 68, 0044-2275, 10.1007/s00033-017-0786-8
    77. Yuanyang Hu, Xinan Hao, Yihong Du, Spreading under shifting climate by a free boundary model: Invasion of deteriorated environment, 2021, 23, 0219-1997, 10.1142/S0219199720500777
    78. Mingxin Wang, Yang Zhang, Note on a two-species competition-diffusion model with two free boundaries, 2017, 159, 0362546X, 458, 10.1016/j.na.2017.01.005
    79. Qiaoling Chen, Fengquan Li, Feng Wang, A diffusive logistic problem with a free boundary in time-periodic environment: Favorable habitat or unfavorable habitat, 2015, 21, 1531-3492, 13, 10.3934/dcdsb.2016.21.13
    80. Chang-Hong Wu, Biased movement and the ideal free distribution in some free boundary problems, 2018, 265, 00220396, 4251, 10.1016/j.jde.2018.06.002
    81. Mingxin Wang, Spreading and vanishing in the diffusive prey–predator model with a free boundary, 2015, 23, 10075704, 311, 10.1016/j.cnsns.2014.11.016
    82. Ningkui Sun, Bendong Lou, Maolin Zhou, Fisher–KPP equation with free boundaries and time-periodic advections, 2017, 56, 0944-2669, 10.1007/s00526-017-1165-1
    83. King-Yeung Lam, Yuan Lou, Frithjof Lutscher, The Emergence of Range Limits in Advective Environments, 2016, 76, 0036-1399, 641, 10.1137/15M1027887
    84. Weiwei Ding, Yihong Du, Zongming Guo, The Stefan problem for the Fisher–KPP equation with unbounded initial range, 2021, 60, 0944-2669, 10.1007/s00526-020-01877-4
    85. Kamruzzaman Khan, Timothy M. Schaerf, Yihong Du, Effects of environmental heterogeneity on species spreading via numerical analysis of some free boundary models, 2022, 0, 1531-3492, 0, 10.3934/dcdsb.2022077
    86. Lingyu Liu, Chunyan Yang, A free boundary problem for a ratio-dependent predator–prey system, 2023, 74, 0044-2275, 10.1007/s00033-023-01957-3
    87. Xiaowei Liu, Jin Zhang, Asymptotic behavior of solutions of a reaction–diffusion equation with inhomogeneous Robin boundary condition and free boundary condition, 2016, 28, 14681218, 126, 10.1016/j.nonrwa.2015.07.019
    88. Weiyi Zhang, Zuhan Liu, Ling Zhou, A free boundary problem of a predator–prey model with a nonlocal reaction term, 2021, 72, 0044-2275, 10.1007/s00033-021-01509-7
    89. Yaling Zhao, Zuhan Liu, Ling Zhou, Dynamics for a nonlocal competition system with a free boundary, 2019, 98, 0003-6811, 2559, 10.1080/00036811.2018.1466282
    90. Canrong Tian, Shigui Ruan, On an advection–reaction–diffusion competition system with double free boundaries modeling invasion and competition of Aedes Albopictus and Aedes Aegypti mosquitoes, 2018, 265, 00220396, 4016, 10.1016/j.jde.2018.05.027
    91. Qinglan Liu, Guohong Zhang, Xiaoli Wang, Threshold dynamics of a cooperation–diffusion–advection model in open advective environments, 2023, 16, 1793-5245, 10.1142/S1793524522501005
    92. Ningkui Sun, Xuemei Han, Asymptotic behavior of solutions of a reaction–diffusion model with a protection zone and a free boundary, 2020, 107, 08939659, 106470, 10.1016/j.aml.2020.106470
    93. Yihong Du, Hiroshi Matsuzawa, Maolin Zhou, Sharp Estimate of the Spreading Speed Determined by Nonlinear Free Boundary Problems, 2014, 46, 0036-1410, 375, 10.1137/130908063
    94. Mingxin Wang, On some free boundary problems of the prey–predator model, 2014, 256, 00220396, 3365, 10.1016/j.jde.2014.02.013
    95. Mingxin Wang, Jingfu Zhao, A Free Boundary Problem for the Predator–Prey Model with Double Free Boundaries, 2017, 29, 1040-7294, 957, 10.1007/s10884-015-9503-5
    96. Jie Wang, The selection for dispersal: a diffusive competition model with a free boundary, 2015, 66, 0044-2275, 2143, 10.1007/s00033-015-0519-9
    97. Lingyu Liu, Alexander Wires, A free boundary problem with a Stefan condition for a ratio-dependent predator-prey model, 2021, 6, 2473-6988, 12279, 10.3934/math.2021711
    98. Ling Zhou, Shan Zhang, Zuhan Liu, A Reaction-Diffusion-Advection Equation with a Free Boundary and Sign-Changing Coefficient, 2016, 143, 0167-8019, 189, 10.1007/s10440-015-0035-0
    99. Pierre Recho, Jonas Ranft, Philippe Marcq, One-dimensional collective migration of a proliferating cell monolayer, 2016, 12, 1744-683X, 2381, 10.1039/C5SM02857D
    100. Maud El-Hachem, Scott W. McCue, Wang Jin, Yihong Du, Matthew J. Simpson, Revisiting the Fisher–Kolmogorov–Petrovsky–Piskunov equation to interpret the spreading–extinction dichotomy, 2019, 475, 1364-5021, 20190378, 10.1098/rspa.2019.0378
    101. Qi-Jian Tan, Global existence of classical solutions for a class of diffusive ecological models with two free boundaries and cross-diffusion, 2021, 60, 14681218, 103302, 10.1016/j.nonrwa.2021.103302
    102. Yihong Du, 2013, 16, 9781107019614, 231, 10.1017/CBO9781139095075.023
    103. Jia-Feng Cao, Wan-Tong Li, Meng Zhao, A nonlocal diffusion model with free boundaries in spatial heterogeneous environment, 2017, 449, 0022247X, 1015, 10.1016/j.jmaa.2016.12.044
    104. Yuanyang Hu, Xinan Hao, Xianfa Song, Yihong Du, A free boundary problem for spreading under shifting climate, 2020, 269, 00220396, 5931, 10.1016/j.jde.2020.04.024
    105. Hong Gu, Bendong Lou, Spreading in advective environment modeled by a reaction diffusion equation with free boundaries, 2016, 260, 00220396, 3991, 10.1016/j.jde.2015.11.002
    106. Haomin Huang, Siyu Liu, Mingxin Wang, A Free Boundary Problem of the Diffusive Competition Model with Different Habitats, 2022, 34, 1040-7294, 2531, 10.1007/s10884-021-10102-5
    107. Haihua Lu, Shu Xie, Yujuan Chen, Analysis of Solutions to a Free Boundary Problem with a Nonlinear Gradient Absorption, 2022, 14, 2073-8994, 1619, 10.3390/sym14081619
    108. Yonggang Zhao, Mingxin Wang, Free boundary problems for the diffusive competition system in higher dimension with sign-changing coefficients, 2016, 81, 0272-4960, 255, 10.1093/imamat/hxv035
    109. Mingxin Wang, Yang Zhang, The time-periodic diffusive competition models with a free boundary and sign-changing growth rates, 2016, 67, 0044-2275, 10.1007/s00033-016-0729-9
    110. Weiwei Ding, Yihong Du, Xing Liang, Spreading in space–time periodic media governed by a monostable equation with free boundaries, Part 1: Continuous initial functions, 2017, 262, 00220396, 4988, 10.1016/j.jde.2017.01.016
    111. Yuki Kaneko, Hiroshi Matsuzawa, Yoshio Yamada, Asymptotic Profiles of Solutions and Propagating Terrace for a Free Boundary Problem of Nonlinear Diffusion Equation with Positive Bistable Nonlinearity, 2020, 52, 0036-1410, 65, 10.1137/18M1209970
    112. Yusuke Kawai, Yoshio Yamada, Multiple spreading phenomena for a free boundary problem of a reaction–diffusion equation with a certain class of bistable nonlinearity, 2016, 261, 00220396, 538, 10.1016/j.jde.2016.03.017
    113. Huicong Li, Xuefeng Wang, Using effective boundary conditions to model fast diffusion on a road in a large field, 2017, 30, 0951-7715, 3853, 10.1088/1361-6544/aa82ee
    114. Chengxia Lei, Hua Nie, Wei Dong, Yihong Du, Spreading of two competing species governed by a free boundary model in a shifting environment, 2018, 462, 0022247X, 1254, 10.1016/j.jmaa.2018.02.042
    115. MATTHEW J. SIMPSON, CRITICAL LENGTH FOR THE SPREADING–VANISHING DICHOTOMY IN HIGHER DIMENSIONS, 2020, 62, 1446-1811, 3, 10.1017/S1446181120000103
    116. Yihong Du, Zongming Guo, Rui Peng, A diffusive logistic model with a free boundary in time-periodic environment, 2013, 265, 00221236, 2089, 10.1016/j.jfa.2013.07.016
    117. Yihong Du, Hiroshi Matsuzawa, Maolin Zhou, Spreading speed and profile for nonlinear Stefan problems in high space dimensions, 2015, 103, 00217824, 741, 10.1016/j.matpur.2014.07.008
    118. Hirofumi Izuhara, Harunori Monobe, Chang-Hong Wu, Spatial segregation of multiple species: A singular limit approach, 2022, 0, 1531-3492, 0, 10.3934/dcdsb.2022215
    119. Maud El-Hachem, Scott W. McCue, Matthew J. Simpson, A sharp-front moving boundary model for malignant invasion, 2020, 412, 01672789, 132639, 10.1016/j.physd.2020.132639
    120. Yujuan Chen, Mingxin Wang, A nonlocal SIR epidemic problem with double free boundaries, 2022, 133, 08939659, 108259, 10.1016/j.aml.2022.108259
    121. Yihong Du, Zhigui Lin, Erratum: Spreading-Vanishing Dichotomy in the Diffusive Logistic Model with a Free Boundary, 2013, 45, 0036-1410, 1995, 10.1137/110822608
    122. Yihong Du, Zhigui Lin, The diffusive competition model with a free boundary: Invasion of a superior or inferior competitor, 2014, 19, 1553-524X, 3105, 10.3934/dcdsb.2014.19.3105
    123. Weiwei Ding, Yihong Du, Xing Liang, Spreading in space–time periodic media governed by a monostable equation with free boundaries, Part 2: Spreading speed, 2019, 36, 0294-1449, 1539, 10.1016/j.anihpc.2019.01.005
    124. Chang-Hong Wu, Different spreading speeds in a weak competition model with two free boundaries, 2019, 267, 00220396, 4841, 10.1016/j.jde.2019.05.017
    125. Qiaoling Chen, Fengquan Li, Feng Wang, The diffusive competition problem with a free boundary in heterogeneous time-periodic environment, 2016, 433, 0022247X, 1594, 10.1016/j.jmaa.2015.08.062
    126. Weiwei Ding, Rui Peng, Lei Wei, The diffusive logistic model with a free boundary in a heterogeneous time-periodic environment, 2017, 263, 00220396, 2736, 10.1016/j.jde.2017.04.013
    127. Ningkui Sun, A time-periodic reaction–diffusion–advection equation with a free boundary and sign-changing coefficients, 2020, 51, 14681218, 102952, 10.1016/j.nonrwa.2019.06.002
    128. Yonggang Zhao, Mingxin Wang, Asymptotic behavior of solutions to a nonlinear Stefan problem with different moving parameters, 2016, 31, 14681218, 166, 10.1016/j.nonrwa.2016.02.001
    129. Chenglin Li, A free boundary problem for a ratio-dependent diffusion predator-prey system, 2016, 2016, 1687-2770, 10.1186/s13661-016-0701-9
    130. Mingxin Wang, A diffusive logistic equation with a free boundary and sign-changing coefficient in time-periodic environment, 2016, 270, 00221236, 483, 10.1016/j.jfa.2015.10.014
    131. Wan-Tong Li, Meng Zhao, Jie Wang, Spreading fronts in a partially degenerate integro-differential reaction–diffusion system, 2017, 68, 0044-2275, 10.1007/s00033-017-0858-9
    132. Chenglin Li, A diffusive Holling–Tanner prey–predator model with free boundary, 2018, 11, 1793-5245, 1850066, 10.1142/S1793524518500663
    133. Yihong Du, Wan-Tong Li, Wenjie Ni, Meng Zhao, Finite or Infinite Spreading Speed of an Epidemic Model with Free Boundary and Double Nonlocal Effects, 2022, 1040-7294, 10.1007/s10884-022-10170-1
    134. Wonhyung Choi, Zhigui Lin, Inkyung Ahn, SIS reaction–diffusion model with risk-induced dispersal under free boundary, 2022, 67, 14681218, 103605, 10.1016/j.nonrwa.2022.103605
    135. Bo Duan, Zhengce Zhang, A reaction-diffusion-advection two-species competition system with a free boundary in heterogeneous environment, 2022, 27, 1531-3492, 837, 10.3934/dcdsb.2021067
    136. Bo Duan, Zhengce Zhang, A reaction-diffusion-advection free boundary problem for a two-species competition system, 2019, 476, 0022247X, 595, 10.1016/j.jmaa.2019.03.073
    137. Jong-Shenq Guo, Chang-Hong Wu, Dynamics for a two-species competition–diffusion model with two free boundaries, 2015, 28, 0951-7715, 1, 10.1088/0951-7715/28/1/1
    138. Yihong Du, Propagation and reaction–diffusion models with free boundaries, 2022, 12, 1664-3607, 10.1142/S1664360722300018
    139. Zhenzhen Li, Binxiang Dai, The Dynamics of a Nonlocal Dispersal Logistic Model with Seasonal Succession and Free Boundaries, 2022, 1040-7294, 10.1007/s10884-022-10184-9
    140. Chunxi Feng, Mark A. Lewis, Chuncheng Wang, Hao Wang, A Fisher–KPP Model with a Nonlocal Weighted Free Boundary: Analysis of How Habitat Boundaries Expand, Balance or Shrink, 2022, 84, 0092-8240, 10.1007/s11538-022-00995-8
    141. Lei Li, Wenjie Ni, Mingxin Wang, Dynamical properties of a new SIR epidemic model, 2023, 0, 1937-1632, 0, 10.3934/dcdss.2023076
    142. Yong‐Gang Zhao, Hari Mohan Srivastava, Dynamics for a diffusive prey–predator model with advection and free boundaries, 2024, 47, 0170-4214, 6216, 10.1002/mma.9917
    143. Dawei Zhang, Chufen Wu, The spreading speed of single-species models with resource-dependent dispersal and a free boundary, 2024, 151, 08939659, 109003, 10.1016/j.aml.2024.109003
    144. Yaobin Tang, Binxiang Dai, Semi-waves and spreading speeds of stage-structured diffusive competition model with a free boundary, 2024, 530, 0022247X, 127632, 10.1016/j.jmaa.2023.127632
    145. Lingyu Liu, Xiaobo Li, Pengcheng Li, Dynamics for a Ratio-Dependent Prey–Predator Model with Different Free Boundaries, 2024, 12, 2227-7390, 1897, 10.3390/math12121897
    146. Thanh-Hieu Nguyen, Dynamics for advective-cooperative system with free boundaries in a nondegenerate epidemiological model, 2024, 0924-090X, 10.1007/s11071-024-10346-y
    147. Yihong Du, Wenjie Ni, Exact rate of accelerated propagation in the Fisher-KPP equation with nonlocal diffusion and free boundaries, 2024, 389, 0025-5831, 2931, 10.1007/s00208-023-02706-7
    148. Shuang Liu, Xinfeng Liu, Exponential Time Differencing Method for a Reaction- Diffusion System with Free Boundary, 2024, 6, 2096-6385, 354, 10.1007/s42967-023-00261-1
    149. J.O. Takhirov, M.I. Boborakhimova, On the mathematical model of the concentration of pollutants and their impact on the population of the river, 2024, 21, 25900374, 100414, 10.1016/j.rinam.2023.100414
    150. Jane Allwright, Reaction–diffusion on a time-dependent interval: Refining the notion of ‘critical length’, 2023, 25, 0219-1997, 10.1142/S021919972250050X
    151. Meng Zhao, The longtime behavior of the model with nonlocal diffusion and free boundaries in online social networks, 2020, 28, 2688-1594, 1143, 10.3934/era.2020063
    152. Lianzhang Bao, Wenxian Shen, Vanishing-Spreading Dichotomy in a Two-Species Chemotaxis Competition System with a Free Boundary, 2023, 35, 1040-7294, 2905, 10.1007/s10884-023-10321-y
    153. Xin Long, Yihong Du, Wenjie Ni, Taishan Yi, Dynamics of the nonlocal KPP equation: Effects of a new free boundary condition, 2024, 413, 00220396, 557, 10.1016/j.jde.2024.08.058
    154. R D Benguria, M C Depassier, Upper and lower bounds for the speed of fronts of the reaction diffusion equation with Stefan boundary conditions, 2023, 36, 0951-7715, 4425, 10.1088/1361-6544/ace0ef
    155. Dawei Zhang, Yun Huang, Chufen Wu, Jianshe Yu, A free boundary problem with resource‐dependent motility in a weak heterogeneous environment, 2024, 152, 0022-2526, 1456, 10.1111/sapm.12684
    156. Meng Zhao, Jiancheng Liu, Yindi Zhang, Influence of environmental pollution and bacterial hyper-infectivity on dynamics of a waterborne pathogen model with free boundaries, 2024, 19, 1556-1801, 940, 10.3934/nhm.2024042
    157. Qiaoling Chen, Fengquan Li, Sanyi Tang, Feng Wang, Free boundary problem for a nonlocal time-periodic diffusive competition model, 2023, 20, 1551-0018, 16471, 10.3934/mbe.2023735
    158. Linfei Shi, Tianzhou Xu, Jinjin Mao, Dynamics of a mutualistic model with advection and a free boundary in heterogeneous environment, 2023, 69, 1598-5865, 3261, 10.1007/s12190-023-01881-9
    159. Mingxin Wang, Yang Zhang, Dynamics for a diffusive prey–predator model with different free boundaries, 2018, 264, 00220396, 3527, 10.1016/j.jde.2017.11.027
    160. Zhiguo Wang, Hua Nie, Yihong Du, Sharp asymptotic profile of the solution to a West Nile virus model with free boundary, 2024, 35, 0956-7925, 462, 10.1017/S0956792523000281
    161. Mingxin Wang, Dynamics of a nonlinear infection viral propagation model with one fixed boundary and one free boundary, 2025, 140, 10075704, 108348, 10.1016/j.cnsns.2024.108348
    162. Lei Li, Weijie Sheng, Mingxin Wang, Systems with nonlocal vs. local diffusions and free boundaries, 2020, 483, 0022247X, 123646, 10.1016/j.jmaa.2019.123646
    163. Qian Qin, Hua Nie, Zhiguo Wang, Multiple spreading phenomena for a multistable reaction-diffusion equation with a free boundary, 2025, 543, 0022247X, 128886, 10.1016/j.jmaa.2024.128886
    164. Meng Zhao, Dynamics of a reaction–diffusion waterborne pathogen model with free boundaries, 2024, 77, 14681218, 104043, 10.1016/j.nonrwa.2023.104043
    165. Xueqi Fan, Ningkui Sun, Di Zhang, Propagation dynamics of a free boundary problem in advective environments, 2024, 153, 08939659, 109082, 10.1016/j.aml.2024.109082
    166. Ningkui Sun, , Dynamical behavior of solutions of a reaction–diffusion–advection model with a free boundary, 2024, 75, 0044-2275, 10.1007/s00033-023-02183-7
    167. T.T.H. Bui, P. van Heijster, R. Marangell, Stability of asymptotic waves in the Fisher–Stefan equation, 2024, 470, 01672789, 134383, 10.1016/j.physd.2024.134383
    168. Qi-Jian Tan, Juan Su, Chao-Yi Pan, A class of free boundary problems describing the local-nonlocal cross-diffusion models with two species in ecology, 2024, 0022247X, 129125, 10.1016/j.jmaa.2024.129125
    169. Maryam Basiri, Frithjof Lutscher, Abbas Moameni, Traveling waves in a free boundary problem for the spread of ecosystem engineers, 2025, 22, 1551-0018, 152, 10.3934/mbe.2025008
    170. Yanglei Li, Ningkui Sun, A free boundary problem with advection and seasonal succession, 2025, 423, 00220396, 512, 10.1016/j.jde.2025.01.028
    171. Yanglei Li, Ningkui Sun, A free boundary problem with impulsive harvesting in small advection environment, 2025, 164, 08939659, 109482, 10.1016/j.aml.2025.109482
    172. Zhiguo Wang, Hua Nie, Sanyi Tang, Dynamics of an epidemic model arising in a spatial segregation control strategy, 2025, 90, 0303-6812, 10.1007/s00285-025-02195-z
    173. Dawei Zhang, Yun Huang, Chufen Wu, Propagations of a free boundary model with resource-related diffusion and non-constant advection, 2025, 0924-090X, 10.1007/s11071-025-11064-9
  • Reader Comments
  • © 2012 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(7987) PDF downloads(300) Cited by(170)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog