A short proof of the logarithmic Bramson correction in Fisher-KPP equations

  • Received: 01 May 2012 Revised: 01 November 2012
  • Primary: 35K57, 35C07; Secondary: 35B40.

  • In this paper, we explain in simple PDE terms a famous result of Bramson about the logarithmic delay of the position of the solutions $u(t,x)$ of Fisher-KPP reaction-diffusion equations in $\mathbb{R}$, with respect to the position of the travelling front with minimal speed. Our proof is based on the comparison of $u$ to the solutions of linearized equations with Dirichlet boundary conditions at the position of the minimal front, with and without the logarithmic delay. Our analysis also yields the large-time convergence of the solutions $u$ along their level sets to the profile of the minimal travelling front.

    Citation: François Hamel, James Nolen, Jean-Michel Roquejoffre, Lenya Ryzhik. A short proof of the logarithmic Bramson correction in Fisher-KPP equations[J]. Networks and Heterogeneous Media, 2013, 8(1): 275-289. doi: 10.3934/nhm.2013.8.275

    Related Papers:

  • In this paper, we explain in simple PDE terms a famous result of Bramson about the logarithmic delay of the position of the solutions $u(t,x)$ of Fisher-KPP reaction-diffusion equations in $\mathbb{R}$, with respect to the position of the travelling front with minimal speed. Our proof is based on the comparison of $u$ to the solutions of linearized equations with Dirichlet boundary conditions at the position of the minimal front, with and without the logarithmic delay. Our analysis also yields the large-time convergence of the solutions $u$ along their level sets to the profile of the minimal travelling front.


    加载中
    [1] D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusions arising in population genetics, Adv. Math., 30 (1978), 33-76. doi: 10.1016/0001-8708(78)90130-5
    [2] H. Berestycki and F. Hamel, Generalized travelling waves for reaction-diffusion equations, in "Perspectives in Nonlinear Partial Differential Equations, in Honor of H. Brezis", Amer. Math. Soc., Contemp. Math., (2007), 101-123. doi: 10.1090/conm/446/08627
    [3] M. D. Bramson, Maximal displacement of branching Brownian motion, Comm. Pure Appl. Math., 31 (1978), 531-581. doi: 10.1002/cpa.3160310502
    [4] M. D. Bramson, "Convergence of Solutions of the Kolmogorov Equation to Travelling Waves," Mem. Amer. Math. Soc., 1983.
    [5] E. Brunet and B. Derrida, Shift in the velocity of a front due to a cutoff, Phys. Rev. E, 56 (1997), 2597-2604. doi: 10.1103/PhysRevE.56.2597
    [6] C. Cuesta and J. King, Front propagation in a heterogeneous Fisher equation: The homogeneous case is non-generic, Quart. J. Mech. Appl. Math., 63 (2010), 521-571. doi: 10.1093/qjmam/hbq017
    [7] J.-P. Eckmann and T. Gallay, Front solutions for the Ginzburg-Landau equation, Comm. Math. Phys., 152 (1993), 221-248. doi: 10.1007/BF02098298
    [8] U. Ebert and W. van Saarloos, Front propagation into unstable states: Universal algebraic convergence towards uniformly translating pulled fronts, Phys. D, 146 (2000), 1-99. doi: 10.1016/S0167-2789(00)00068-3
    [9] U. Ebert, W. van Saarloos and B. Peletier, Universal algebraic convergence in time of pulled fronts: The common mechanism for difference-differential and partial differential equations, European J. Appl. Math., 13 (2002), 53-66. doi: 10.1017/S0956792501004673
    [10] P. C. Fife, "Mathematical Aspects of Reacting and Diffusing Systems," Lecture Notes in Biomathematics, Springer Verlag, 1979.
    [11] R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugenics, 7 (1937), 353-369. doi: 10.1111/j.1469-1809.1937.tb02153.x
    [12] preprint.
    [13] K.-S. Lau, On the nonlinear diffusion equation of Kolmogorov, Petrovskii and Piskunov, J. Diff. Eqs., 59 (1985), 44-70. doi: 10.1016/0022-0396(85)90137-8
    [14] A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bull. Univ. État Moscou, Sér. Inter. A, 1 (1937), 1-26.
    [15] J. D. Murray, "Mathematical Biology," Springer-Verlag, 2003. doi: 10.1007/b98869
    [16] F. Rothe, Convergence to travelling fronts in semilinear parabolic equations, Proc. Royal Soc. Edinburgh A, 80 (1978), 213-234. doi: 10.1017/S0308210500010258
    [17] D. H. Sattinger, Weighted norms for the stability of traveling waves, J. Diff. Eqs., 25 (1977), 130-144. doi: 10.1016/0022-0396(77)90185-1
    [18] K. Uchiyama, The behavior of solutions of some nonlinear diffusion equations for large time, J. Math. Kyoto Univ., 18 (1978), 453-508.
    [19] J. Xin, "An Introduction to Fronts in Random Media," Surveys and Tutorials in the Applied Mathematical Sciences, Springer, New York, 2009. doi: 10.1007/978-0-387-87683-2
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4995) PDF downloads(160) Cited by(86)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog