Citation: François Hamel, James Nolen, Jean-Michel Roquejoffre, Lenya Ryzhik. A short proof of the logarithmic Bramson correction in Fisher-KPP equations[J]. Networks and Heterogeneous Media, 2013, 8(1): 275-289. doi: 10.3934/nhm.2013.8.275
[1] | D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusions arising in population genetics, Adv. Math., 30 (1978), 33-76. doi: 10.1016/0001-8708(78)90130-5 |
[2] | H. Berestycki and F. Hamel, Generalized travelling waves for reaction-diffusion equations, in "Perspectives in Nonlinear Partial Differential Equations, in Honor of H. Brezis", Amer. Math. Soc., Contemp. Math., (2007), 101-123. doi: 10.1090/conm/446/08627 |
[3] | M. D. Bramson, Maximal displacement of branching Brownian motion, Comm. Pure Appl. Math., 31 (1978), 531-581. doi: 10.1002/cpa.3160310502 |
[4] | M. D. Bramson, "Convergence of Solutions of the Kolmogorov Equation to Travelling Waves," Mem. Amer. Math. Soc., 1983. |
[5] | E. Brunet and B. Derrida, Shift in the velocity of a front due to a cutoff, Phys. Rev. E, 56 (1997), 2597-2604. doi: 10.1103/PhysRevE.56.2597 |
[6] | C. Cuesta and J. King, Front propagation in a heterogeneous Fisher equation: The homogeneous case is non-generic, Quart. J. Mech. Appl. Math., 63 (2010), 521-571. doi: 10.1093/qjmam/hbq017 |
[7] | J.-P. Eckmann and T. Gallay, Front solutions for the Ginzburg-Landau equation, Comm. Math. Phys., 152 (1993), 221-248. doi: 10.1007/BF02098298 |
[8] | U. Ebert and W. van Saarloos, Front propagation into unstable states: Universal algebraic convergence towards uniformly translating pulled fronts, Phys. D, 146 (2000), 1-99. doi: 10.1016/S0167-2789(00)00068-3 |
[9] | U. Ebert, W. van Saarloos and B. Peletier, Universal algebraic convergence in time of pulled fronts: The common mechanism for difference-differential and partial differential equations, European J. Appl. Math., 13 (2002), 53-66. doi: 10.1017/S0956792501004673 |
[10] | P. C. Fife, "Mathematical Aspects of Reacting and Diffusing Systems," Lecture Notes in Biomathematics, Springer Verlag, 1979. |
[11] | R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugenics, 7 (1937), 353-369. doi: 10.1111/j.1469-1809.1937.tb02153.x |
[12] | preprint. |
[13] | K.-S. Lau, On the nonlinear diffusion equation of Kolmogorov, Petrovskii and Piskunov, J. Diff. Eqs., 59 (1985), 44-70. doi: 10.1016/0022-0396(85)90137-8 |
[14] | A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bull. Univ. État Moscou, Sér. Inter. A, 1 (1937), 1-26. |
[15] | J. D. Murray, "Mathematical Biology," Springer-Verlag, 2003. doi: 10.1007/b98869 |
[16] | F. Rothe, Convergence to travelling fronts in semilinear parabolic equations, Proc. Royal Soc. Edinburgh A, 80 (1978), 213-234. doi: 10.1017/S0308210500010258 |
[17] | D. H. Sattinger, Weighted norms for the stability of traveling waves, J. Diff. Eqs., 25 (1977), 130-144. doi: 10.1016/0022-0396(77)90185-1 |
[18] | K. Uchiyama, The behavior of solutions of some nonlinear diffusion equations for large time, J. Math. Kyoto Univ., 18 (1978), 453-508. |
[19] | J. Xin, "An Introduction to Fronts in Random Media," Surveys and Tutorials in the Applied Mathematical Sciences, Springer, New York, 2009. doi: 10.1007/978-0-387-87683-2 |