The existence and uniqueness of unstable eigenvalues for stripe patterns in the Gierer-Meinhardt system

  • Received: 01 March 2012 Revised: 01 January 2013
  • 35K57, 35K50.

  • The Gierer-Meinhardt system is a mathematical model describing the process of hydra regeneration. This system has a stationary solution with a stripe pattern on a rectangular domain, but numerical results suggest that such stripe pattern is unstable. In [8], Kolokolnikov et al. proved the existence of a positive eigenvalue, which is called an unstable eigenvalue, for a stationary solution with a stripe pattern by the NLEP method, which implies the instability of the stripe pattern. In addition, the uniqueness of the unstable eigenvalue was shown under some technical assumptions in [8]. In this paper, we prove the existence and uniqueness of an unstable eigenvalue by using the SLEP method without any extra conditions. We also prove the existence of a single-spike solution in one-dimension.

    Citation: Kota Ikeda. The existence and uniqueness of unstable eigenvalues for stripe patterns in the Gierer-Meinhardt system[J]. Networks and Heterogeneous Media, 2013, 8(1): 291-325. doi: 10.3934/nhm.2013.8.291

    Related Papers:

  • The Gierer-Meinhardt system is a mathematical model describing the process of hydra regeneration. This system has a stationary solution with a stripe pattern on a rectangular domain, but numerical results suggest that such stripe pattern is unstable. In [8], Kolokolnikov et al. proved the existence of a positive eigenvalue, which is called an unstable eigenvalue, for a stationary solution with a stripe pattern by the NLEP method, which implies the instability of the stripe pattern. In addition, the uniqueness of the unstable eigenvalue was shown under some technical assumptions in [8]. In this paper, we prove the existence and uniqueness of an unstable eigenvalue by using the SLEP method without any extra conditions. We also prove the existence of a single-spike solution in one-dimension.


    加载中
    [1] H. Brezis, "Functional Analysis, Sobolev Spaces and Partial Differential Equations," Universitext, Springer, New York, 2011.
    [2] A. Doelman, R. Gardner and T. J. Kaper, Large stable pulse solutions in reaction-diffusion equations, Indiana Univ. Math. J., 50 (2001), 443-507. doi: 10.1512/iumj.2001.50.1873
    [3] A. Doelman and H. van der Ploeg, Homoclinic stripe patterns, SIAM J. Appl. Dyn. Syst., 1 (2002), 65-104 (electronic). doi: 10.1137/S1111111101392831
    [4] S. Ei and J. Wei, Dynamics of metastable localized patterns and its application to the interaction of spike solutions for the Gierer-Meinhardt systems in two spatial dimensions, Japan J. Indust. Appl. Math., 19 (2002), 181-226. doi: 10.1007/BF03167453
    [5] A. Gierer and H. Meinhardt, A theory of biological pattern formation, Kybernetic, 12 (1972), 30-39. doi: 10.1007/BF00289234
    [6] P. Hartman, "Ordinary Differential Equations," Birkhäuser Boston, Mass., second edition, 1982.
    [7] D. Iron, M. J. Ward and J. Wei, The stability of spike solutions to the one-dimensional Gierer-Meinhardt model, Phys. D, 150 (2001), 25-62. doi: 10.1016/S0167-2789(00)00206-2
    [8] T. Kolokolnikov, W. Sun, M. J. Ward and J. Wei, The stability of a stripe for the Gierer-Meinhardt model and the effect of saturation, SIAM J. Appl. Dyn. Syst., 5 (2006), 313-363 (electronic). doi: 10.1137/050635080
    [9] S. Kondo and R. Asai, A reaction-diffusion wave on the marine angelfish Pomacanthus, Nature, 376 (1995), 765-768. doi: 10.1038/376765a0
    [10] S. Kondo, and T. Miura, Reaction-diffusion model as a framework for understanding biological pattern formation, Science, 329 (2010), 1616-1620.
    [11] P. K. Maini, K. J. Painter and H. N. P. Chau, Spatial pattern formation in chemical and biological systems, J. Chem. Soc. Faraday Trans., 93 (1997), 3601-3610. doi: 10.1039/a702602a
    [12] H. Meinhardt, "Models of Biological Pattern Formation," Academic Press, 1982.
    [13] J. D. Murray, "Mathematical Biology," Biomathematics, 19, Springer-Verlag, Berlin, 1989. doi: 10.1007/978-3-662-08539-4
    [14] A. Nakamasu, G. Takahashi, A. Kanbe and S. Kondo, Interactions between zebrafish pigment cells responsible for the generation of Turing patterns, Proceedings of the National Academy of Sciences, 106, (2009), 8429-8434. doi: 10.1073/pnas.0808622106
    [15] Y. Nakamura, C. D. Tsiairis, S. Özbek and T. W. Holstein, Autoregulatory and repressive inputs localize Hydra Wnt3 to the head organizer, Proceedings of the National Academy of Sciences, 108, (2011), 9137-9142. doi: 10.1073/pnas.1018109108
    [16] Y. Nishiura, Coexistence of infinitely many stable solutions to reaction diffusion systems in the singular limit, in "Dynamics Reported (New Series)", 3 (1994), Springer, Berlin, 25-103.
    [17] Y. Nishiura and H. Fujii, Stability of singularly perturbed solutions to systems of reaction-diffusion equations, SIAM J. Math. Anal., 18 (1987), 1726-1770. Translated in J. Soviet Math., 45 (1989), 1205-1218. doi: 10.1137/0518124
    [18] H. Shoji, Y. Iwasa and S. Kondo, Stripes, spots, or reversed spots in two-dimensional Turing systems, J. Theoret. Biol., 224 (2003), 339-350. doi: 10.1016/S0022-5193(03)00170-X
    [19] I. Takagi, Point-condensation for a reaction-diffusion system, J. Differential Equations, 61 (1986), 208-249. doi: 10.1016/0022-0396(86)90119-1
    [20] M. Taniguchi, A uniform convergence theorem for singular limit eigenvalue problems, Adv. Differential Equations, 8 (2003), 29-54.
    [21] M. Taniguchi and Y. Nishiura, Stability and characteristic wavelength of planar interfaces in the large diffusion limit of the inhibitor, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 117-145. doi: 10.1017/S0308210500030638
    [22] M. Taniguchi and Y. Nishiura, Instability of planar interfaces in reaction-diffusion systems, SIAM J. Math. Anal., 25 (1994), 99-134. doi: 10.1137/S0036141092233500
    [23] A. Turing, The chemical basis of morphogenesis, Phil. Trans. R. Soc. Lond. B, 327 (1952), 37-72. doi: 10.1098/rstb.1952.0012
    [24] M. J. Ward and J. Wei, Asymmetric spike patterns for the one-dimensional Gierer-Meinhardt model: equilibria and stability, European J. Appl. Math., 13 (2002), 283-320. doi: 10.1017/S0956792501004442
    [25] J. Wei and M. Winter, Existence and stability analysis of asymmetric patterns for the Gierer-Meinhardt system, J. Math. Pures Appl. (9), 83 (2004), 433-476. doi: 10.1016/j.matpur.2003.09.006
    [26] J. Wei and M. Winter, Spikes for the two-dimensional Gierer-Meinhardt system: The weak coupling case, J. Nonlinear Sci., 11 (2001), 415-458. doi: 10.1007/s00332-001-0380-1
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3500) PDF downloads(96) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog