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Abstract. The Gierer-Meinhardt system is a mathematical model describing

the process of hydra regeneration. This system has a stationary solution with
a stripe pattern on a rectangular domain, but numerical results suggest that

such stripe pattern is unstable. In [8], Kolokolnikov et al. proved the existence
of a positive eigenvalue, which is called an unstable eigenvalue, for a station-

ary solution with a stripe pattern by the NLEP method, which implies the

instability of the stripe pattern. In addition, the uniqueness of the unstable
eigenvalue was shown under some technical assumptions in [8]. In this paper,

we prove the existence and uniqueness of an unstable eigenvalue by using the

SLEP method without any extra conditions. We also prove the existence of a
single-spike solution in one-dimension.

1. Introduction. The development of an organism is a complex phenomenon in-
volving elementary processes such as gene regulation, alteration of cell shapes and
cell to cell interaction, cell proliferation, growth and cell movement. One of these
elementary processes is the formation of a spatial pattern of tissue structures. In
embryology and developmental biology, such a spatial pattern is believed to follow
a ground plan and result from a primary pattern of morphogen concentrations or
other physical factors which are distributed in space with gradients (see [5]).

The fundamental question in morphology is how the developmental ground plan
is established and what is the mechanism which produces the spatial pattern nec-
essary for specifying the various organs ([10]). Recently it is reported in [14] that
the interactions between two pigment cells, called melanophores and xanthophores
are observed on spotted and stripe patterns in the skin of zebrafish. Using modern
genetic and molecular techniques, the authors identify putative elements of interac-
tive networks that fulfill the criteria of short-range positive feedback and long-range
negative feedback, and state that the pigment pattern is generated in the skin by
interactions between pigment cells, that is, reaction-diffusion (Turing) mechanism.
Thus reaction-diffusion equations are fundamental models in morphology.

Also, the positive and negative feedback mechanism is observed in the regulatory
system of HyWnt3 which is a putative master Wnt ligand in Hydra axial patterning
and is expressed at the earliest phase of head regeneration. According to [15],
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HyWnt3 regulatory region consists of activator and repressor modules, which is
essential for the maintenance of spatial pattern by Turing mechanism. Although
the identity and expression pattern of the repressor molecule are not known yet,
the reaction-diffusion mechanism plays an important role of pattern formation in
head regeneration of hydra.

These biological evidences based on molecular technique clarify the existence of
the positive and negative feedback loops in biological systems and suggest that pat-
tern formation processes adopt the reaction-diffusion mechanism. In spite of the
current development of modern molecular technique, it is still difficult to predict
what kinds of spatial pattern is generated, which is called pattern selection problem.
As well as the work [14] for the pattern formation in the skin of zebrafish, the obser-
vation in [15] does not point out any nonlinear effect in the reaction process so that
the we cannot answer which spatial pattern emerges from an initial homogeneous
state. Thus theoretical analysis is necessary to study the pattern selection problem.

In 1972, A. Gierer and H. Meinhardt proposed a reaction-diffusion system to
explain hydra regeneration with local concentration of some chemical products (see
[5]). This system is given by

∂A

∂t
= ε2∆A−A+

Ap

Hq
,

τ
∂H

∂t
= d∆H − µH +

Ar

Hs

and extensively applied to biological pattern formation. In this system, A and H
represent the activator concentration and inhibitor concentration, respectively. As
seen in [11], [12] and long literature, this system generates spiky patterns in a wide
range of parameters (see Figure 1). Some mathematicians succeeded in proving the
existence and stability of a stationary solution with spiky pattern, called a spike
solution. For example, see [2], [3], [7], [19], [24], [25], [26].

Figure 1. The graph of the spike solution (a, h) of (1). The solid
line is the graph of a while the dotted line is that of h. In the
numerical simulation, the parameter values were given by ε =
0.223607, d = 1.0, τ = 0.1, µ = 1.0, p = 2.0, q = 1.0, r = 2.0, s
= 0.0.

It is known that other patterns, e.g. stripe patterns, hardly appear in this system
(Figure 2). The author of [13] stated that stripe patterns are unlikely to appear
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in this system. However other reaction diffusion models may have possibilities
to generate stripe patterns, which was pointed out in [9], [18]. In [18], the authors
considered how the choice of the reaction terms which satisfy conditions to derive the
Turing’s instability affects the tendency to generate either striped, spotted (spotted
is equivalent to spiky), or reversed spotted pattern, and they concluded as follows:
It is because the reaction term of the first equation in the Gierer-Meinhardt system
has some constraint at A = 0 that spotted pattern are generated, and if we add more
constraints to the reaction terms, the new system may generate stripe pattern. From
their results, we understand that constraints of reaction terms play an important
role in pattern selection. Since the results in [18] are based on numerical technique,
we would like to show that their results are mathematically correct. As the first
step, we will prove that some stripe solution is unstable in the Gierer-Meinhardt
system in a two-dimensional rectangular region.

Now we formulate our problem. Since a stationary solution with spiky pattern
tends to ∞ and approaches the Dirac’s δ-function as ε → 0, one needs to do some
rescaling ofA,H such asA = ε−q/(qr−(p−1)(s+1))a andH = ε−(p−1)/(qr−(p−1)(s+1))h.
Then the new functions a and h are solutions of

(GM)



∂a

∂t
= ε2∆a− a+

ap

hq
, (x, y) ∈ (−1, 1)× (−L,L), t > 0,

τ
∂h

∂t
= d∆h− µh+

1

ε

ar

hs
, (x, y) ∈ (−1, 1)× (−L,L), t > 0,

∂a

∂x
=
∂h

∂x
= 0, x = ±1, y ∈ (−L,L), t > 0,

∂a

∂y
=
∂h

∂y
= 0, y = ±L, x ∈ (−1, 1), t > 0,

where ε, d, µ and τ are positive parameters, and the exponents p, q, r and s satisfy

p > 1, q > 0, r > 0, s ≥ 0 and
qr

(p− 1)(s+ 1)
> 1.

The conditions for these exponents imply that the Gierer-Meinhardt system exhibits
Turing’s instability, which means that a homogeneous state becomes unstable by the
presence of diffusion (see [23]). At first we consider the following one-dimensional
steady state problem: 

ε2a′′ − a+
ap

hq
= 0, x ∈ (−1, 1),

dh′′ − µh+
1

ε

ar

hs
= 0, x ∈ (−1, 1),

a′ = h′ = 0, x = ±1.

(1)

In [19], [25], it is shown that there exists some stationary solution (a(x), h(x)) with
a single spike pattern at the origin. Thus we call (a, h) a spike solution for (1) (see
Figure 1).

In this paper, we consider the stationary solution (a, h) for (1) with the following

properties. Setting (ã(y), h̃(y)) = (a(εy), h(εy)) for −1/ε < y < 1/ε, we assume

that there exists a constant c > 0 independent of ε > 0 such that (ã, h̃) satisfies

‖ã− ζq/(p−1)w‖H2(−1/ε,1/ε) ≤ c
√
ε (2)

and for each R > 0,

sup
−R<y<R

|h̃(y)− ζ| → 0 (3)
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as ε→ 0. Here w is a unique solution of
w′′ − w + wp = 0, y ∈ (−∞,∞),

w → 0, |y| → ∞,
w(0) = maxw,

which is called ground state solution and is explicitly written by

w(y) =

(
p+ 1

2 cosh2(p− 1)y/2

)1/(p−1)

and ζ is a positive constant given by

ζ =

(
2
√
dµ∫∞

−∞ wrdy
tanh

√
µ

d

)(p−1)/(qr−(p−1)(s+1))

.

These properties imply that (ã, h̃) approaches a spiky pattern (ζq/(p−1)w, ζ) as
ε→ 0. It seems that the existence of a solution satisfying (2) and (3) has not been
shown so far. So we shall prove it in Section 4.2 (see Theorem 4.3). Since (a, h)
is independent of y-variable and the region of (GM) is a rectangle, it is clear that
(a, h) also satisfies (GM). Thus we call (a, h) a stripe solution for (GM) (see Figure
2). In this paper, we study the stability of (a, h) in (GM).
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Figure 2. The breakup of a stripe pattern and convergence to a
spot pattern in a two-dimensional region (−1, 1)×(−1, 1) in (GM).
The initial state with a stripe pattern (left figure) breaks into a
four-spike pattern (right figure, which is a snapshot at t = 1000.0).
In this numerical simulation, the parameter values were given by
ε = 0.223607, d = 1.0, τ = 0.1, µ = 1.0, p = 2.0, q = 1.0, r =
2.0, s = 0.0.

In order to study the stability of the stripe solution it suffices to consider the
following two-dimensional eigenvalue problem associated with the linearized system
of (GM):

λφ = ε2∆φ− φ+ p
ap−1

hq
φ− q ap

hq+1
η, (x, y) ∈ (−1, 1)× (−L,L),

τλη = d∆η − µη +
1

ε

(
r
ar−1

hs
φ− s ar

hs+1
η

)
, (x, y) ∈ (−1, 1)× (−L,L),

∂φ

∂x
=
∂η

∂x
= 0, x = ±1, y ∈ (−L,L),

∂φ

∂y
=
∂η

∂y
= 0, y = ±L, x ∈ (−1, 1),
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since (GM) is a semilinear system. Due to the lack of y-direction with (a, h),
without loss of generality, we can assume that the eigenfunction (φ, η) satisfies
(φ(x, y), η(x, y)) = (φ(x)ψk(y), η(x)ψk(y)), where ψk is defined by ψk(y) = cos kπy/
2L (resp. sin kπy/2L) if k is even (resp. odd). Hence we rewrite the above system
to the following one-dimensional eigenvalue problem:

(P)


λφ = ε2φ′′ − (1 + ε2l2)φ+ p

ap−1

hq
φ− q ap

hq+1
η in (−1, 1),

τλη = dη′′ − (µ+ dl2)η +
1

ε

(
r
ar−1

hs
φ− s ar

hs+1
η

)
in (−1, 1),

φ′(±1) = η′(±1) = 0,

where l = kπ/2L. If (P) has an eigenvalue λ and limε→0Reλ > 0, we call it an
unstable eigenvalue in this paper, where “Re” represents the real part of a complex
value. Although there may be a positive eigenvalue λ̃ of (P) such as limε→0Reλ = 0,
we do not call it an unstable eigenvalue.

Now we describe our result, from which we know that (P) has exactly one real
and unstable eigenvalue. In other words, the stripe solution is unstable.

Theorem 1.1. Let (a, h) be a solution of (1) satisfying (2) and (3). Fix l 6= 0.
Then there exist d0 > 0 and ε0 > 0 such that for each d > d0 and ε < ε0, (P ) has

exactly one real eigenvalue λ satisfying limε→0 λ > 0. More precisely, if λ̂ is an

eigenvalue of (P) in {z ∈ C | Rez ≥ 0 }, one has either λ̂ = λ or limε→0 λ̂ = 0.

Theorem 1.1 implies not only the existence a positive eigenvalue λ but also the
uniqueness of unstable eigenvalues in some sense. The study of (P) is based on a
limiting eigenvalue problem (9), given in Section 2.1. Generally speaking, however,
there is a possibility of an unstable eigenvalue in (P) close to 0 because 0 is a solution
of a limiting eigenvalue problem of (8) as ε → 0. In other words, the eigenvalue

problem (8) may have an eigenvalue λ̂ with Reλ̂ > 0 and limε→0 λ̂ = 0. In the
end, we do not completely know the uniqueness of unstable eigenvalues from our
result. Note that we can show the uniqueness of an eigenvalue in (8) which does
not approach 0 as ε→ 0.

Here we remark two related results on the instability of stripe patterns in the
Gierer-Meinhardt system. One is the work of Doelman and van der Ploeg [3], and
another is that of Kolokolnikov et al. [8]. In both of these works, stationary solu-
tions with the stripe pattern depending on only one spatial variable are considered
for 2-dimensional Gierer-Meinhardt system. Hence, as described as above, eigenva-
lue problems on one dimensional space with a parameter l arise naturally. In [3],
the eigenvalue problem is studied on the whole line by using the theory of Evans
functions, which does not seem to be powerful in the case of bounded interval. On
the other hand, in [8], the eigenvalue problem is considered on a bounded interval
as our formulation. In order to analyze the eigenvalue problem, Kolokolnikov et
al. adopt the NLEP (Non-Local Eigenvalue Problem) method. The results in [8]
implies the existence of an unstable eigenvalue, which is the same as in Theorem
1.1. On the other hand, to obtain the uniqueness of an unstable eigenvalue in the
sense of Theorem 1.1, Kolokolnikov et al. needed some extra conditions in [8]; p, r
satisfy either p = r = 2, or r = p + 1 and 1 < p ≤ 5. In our work, we will use the
SLEP (Singular Limit Eigenvalue Problem) method without assuming any extra
conditions on the exponents.
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The SLEP method, introduced in [17], has been used to consider the stability of
stationary solutions or traveling wave solutions of a reaction-diffusion system with
thin layers (see [16], [20]–[22]). In particular, the author of [21], [22] considered
the stability of planar interfaces on a rectangle. Hence eigenvalue problems on
one-dimensional with a parameter l naturally arise. However, since the stationary
solution (a, h) has a spiky pattern on one-dimension and gεa contains the term 1/ε,
the eigenvalue problem (P) is also quite different from theirs. This paper is the first
case that the SLEP method is used to consider the stability of a stationary solution
with a spiky pattern.

Now we give the summary of this paper. In order to explain how we use the SLEP
method, we first carry out formal calculations in Section 2.1. Then in Section 2.2,
we give some key lemmas, in particular for the stripe solution (a, h). By using the
lemmas, we describe the proof of our theorem in Section 3. In Section 4.1, we shall
prove Lemmas 2.1 and 2.2. In Section 4.2, we shall prove the existence of a spike
solution of (1) satisfying (2), (3).

We use the following useful notations throughout our paper. First we define
several Banach spaces for each open interval I of R and notations associated with
their Banach spaces:

Lp(I) = the usual Lebesgue space of order p(≥ 1),

Hp(I) = the usual Sobolev space of order p in L2(I)–framework,

(H1(I))′ = the dual space of H1(I),

C(I) = the space of continuous functions on I,

‖ · ‖X = the norm in the Banach space X,

(·, ·)L2(I) = the inner product in L2(I),

〈·, ·〉 = the pairing between (H1(−1, 1))′ and H1(−1, 1).

Secondly we introduce a new coordinate y. For each x ∈ (−1, 1), we define y = x/ε.
Note that −1/ε < y < 1/ε. We call this stretched-coordinate. For some function

ψ, we denote the stretched function of ψ by ψ̃(y) = ψ(εy). Furthermore we define

ψ̂(y) =
√
εψ̃(y) if ψ ∈ L2(−1, 1) satisfies ‖ψ‖L2(−1,1) = 1. We note that

‖ψ̂‖2L2(−1/ε,1/ε) = ε

∫ 1/ε

−1/ε
ψ(εy)2dy =

∫ 1

−1
ψ(x)2dx = 1.

Thirdly we prepare some definitions and notations for simplicity. We define
D ≡ qr− (p− 1)(s+ 1) > 0. For each function φ(y) on (−1/ε, 1/ε), we extend it to
the whole line by a natural way, that is, φ ≡ 0 for sufficiently large |y|. Then we do
not distinguish the extended function from the original function, and we write the
extended function as φ.

2. Preliminaries.

2.1. Formal calculations. In this subsection, we carry out formal calculations to
describe the outline of the proof of our theorem. We rewrite (·, ·)L2(−1,1) as (·, ·) for
simplicity throughout this subsection. At first, we rewrite the eigenvalue problem
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(P) to the following form:

λ

(
φ
η

)
=

(
Lε fεh
gεa Mε

)(
φ
η

)
,

where Lε and Mε are differential operators defined by

Lε ≡ ε2
d2

dx2
+ fεa , Mε ≡

d

τ

d2

dx2
+ gεh,

and fεa , fεh, gεa and gεh are given by

fεa = −(1 + ε2l2) + p
ap−1

hq
, fεh = −q ap

hq+1
,

gεa =
r

τε

ar−1

hs
, gεh = −dl

2 + µ

τ
− s

τε

ar

hs+1
.

Since we consider an unstable eigenvalue of (P), it suffices to restrict λ to the set
of C, Λ+ = {λ ∈ C | Reλ ≥ 0 }. As we will see, if λ ∈ Λ+ is an eigenvalue in (P)
and that of Lε, λ must be close to 0.

Lemma 2.1. Let λ ∈ Λ+ be an eigenvalue of (P). Then λ is close to 0 or does not
correspond to any eigenvalue of Lε for sufficiently small ε > 0.

We shall prove this lemma in Section 4.1. From Lemma 2.1 we can solve the first
equation of (P) with respect to φ to obtain

φ = (Lε − λ)−1(−fεhη), (4)

where (Lε−λ)−1 is the invertible operator of Lε−λ. We can decompose (Lε−λ)−1

to three parts by using pairs of eigenvalues and eigenfunctions of Lε, denoted by
{ξεi , ϕεi}∞i=0 satisfying that ξε0 > ξε1 > ξε2 > · · · and ‖ϕεi‖L2(−1,1) = 1 for each i ≥ 0
as follows:

(Lε − λ)−1 =
(·, ϕε0)

ξε0 − λ
ϕε0 +

(·, ϕε1)

ξε1 − λ
ϕε1 +Rε,λ,

where Rε,λ : L2(−1, 1)→ L2(−1, 1) is defined by

Rε,λ ≡
∞∑
i=2

(·, ϕεi )
ξεi − λ

ϕεi .

Substituting (4) into the second equation of (P), we have

(Mε − λ)η = −gεaφ = −gεa(Lε − λ)−1(−fεhη)

= −gεa
{

(−fεhη, ϕε0)

ξε0 − λ
ϕε0 +

(−fεhη, ϕε1)

ξε1 − λ
ϕε1 +Rε,λ(−fεhη)

}
,

or equivalently

(−Mε − gεaRε,λ(−fεh·) + λ)η =
(−fεhη, ϕε0)

ξε0 − λ
gεaϕ

ε
0 +

(−fεhη, ϕε1)

ξε1 − λ
gεaϕ

ε
1. (5)

We see that the invertible operator of (−Mε − gεaRε,λ(−fεh·) + λ) exists, and is
denoted by Kε,λ : (H1(−1, 1))′ → H1(−1, 1) (see Lemma 3.2). Applying Kε,λ to
the both sides of (5), we have

η =
(−fεhη, ϕε0)

ξε0 − λ
Kε,λ(gεaϕ

ε
0) +

(−fεhη, ϕε1)

ξε1 − λ
Kε,λ(gεaϕ

ε
1). (6)

This implies that η must be written as

η = αKε,λ(gεaϕ
ε
0) + βKε,λ(gεaϕ

ε
1), (7)
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where α, β are constants. Substituting (7) into (6), we have

αKε,λ(gεaϕ
ε
0) + βKε,λ(gεaϕ

ε
1) = αA00Kε,λ(gεaϕ

ε
0) + βA01Kε,λ(gεaϕ

ε
0)

+ αA10Kε,λ(gεaϕ
ε
1) + βA11Kε,λ(gεaϕ

ε
1),

where Aij = (Kε,λ(gεaϕ
ε
j), −fεhϕεi )/(ξεi − λ) for i, j = 0, 1. Since Kε,λ(gεaϕ

ε
0) and

Kε,λ(gεaϕ
ε
1) are linearly independent, α, β satisfy(

α
β

)
=

(
A00 A01

A10 A11

)(
α
β

)
.

From (α, β)t 6= 0, it follows that (A00− 1)(A11− 1)−A10A01 = 0. Hence we obtain

((Kε,λ(gεaϕ
ε
0),−fεhϕε0)− ξε0 + λ)((Kε,λ(gεaϕ

ε
1),−fεhϕε1)− ξε1 + λ)

= (Kε,λ(gεaϕ
ε
0),−fεhϕε1)(Kε,λ(gεaϕ

ε
1),−fεhϕε0).

(8)

It is known that ξε0 → ξ∗0 > 0 and ξε1 → 0 as ε → 0, as described in Section 2.3.
Moreover, we shall show in Section 3 that

− 1√
ε
fεhϕ

ε
0 → c1δ, − 1√

ε
fεhϕ

ε
1 → 0,

√
εgεaϕ

ε
0 → c2δ,

√
εgεaϕ

ε
1 → 0

in (H1(−1, 1))′ as ε → 0, where c1, c2 are some positive constants and uniformly
bounded in large d > 0, and δ is the usual Dirac’s δ-function at the origin (see
Lemma 3.1). Furthermore we see that there exists an operatorK∗,λ : (H1(−1, 1))′ →
H1(−1, 1) such that Kε,λ → K∗,λ as ε→ 0 in a certain sense (see Lemmas 3.5, 3.6).
Finally we have in the limit of (8) as ε→ 0

λ(λ− ξ∗0 + c1c2〈δ,K∗,λδ〉) = 0.

Since we are interested in an unstable eigenvalue satisfying limε→0 λ 6= 0, λ must
satisfy

λ = ξ∗0 − c1c2〈δ,K∗,λδ〉. (9)

Since 〈δ,K∗,λδ〉 is small if d is large, as shown in Section 3, the implicit function
theorem shows that there exists an unstable eigenvalue satisfying (8).

The rest of the pater is organized as follows. In Section 2.2, we shall introduce
some known results and show lemmas, which imply that a has some exponentially
decaying property and that h is bounded away from zero on [−1, 1] if d is large. In
Section 2.3, we shall show that the eigenfunction ϕ̂ε0 (resp. ϕ̂ε1) corresponding to ξε0
(resp. ξε1) approaches ϕ̂∗0 (resp. ϕ̂∗1) in H1(R), where ϕ̂∗0, ϕ̂∗1 are eigenfunctions for{

λϕ = ϕ′′ − ϕ+ pwp−1ϕ, y ∈ (−∞,∞),

ϕ→ 0, |y| → ∞,
(10)

corresponding to the unique positive eigenvalue ξ∗0 , 0 and satisfying ‖ϕ̂∗0‖L2(R) = 1
and ‖ϕ̂∗1‖L2(R) = 1, respectively. Also ξ∗0 , ϕ̂∗0 and ϕ̂∗1 can be expressed explicitly as

ξ∗0 = (p + 1)2/4 − 1 > 0, ϕ̂∗0 = w(p+1)/2/‖w(p+1)/2‖L2(R) and ϕ̂∗1 = w′/‖w′‖L2(R),
respectively. These explicit expressions can be obtained by using the hypergeometric
functions (see [2]). In Section 3, we will first determine c1 and c2 explicitly. Their
explicit representations imply that they are uniformly bounded in large d. Secondly
we define the operators Kε,λ and K∗,λ. In order to define them, we shall use some
bilinear forms, Bε,λ and B∗,λ, and apply Lax-Milgram’s theorem to Bε,λ and B∗,λ.
Then we complete the proof of Theorem 1.1 by using the implicit function theorem.
In the last section, we shall prove Lemmas 2.1 and 2.2. In Lemma 2.2, we consider
a Sturm-Liouville type problem and show that a solution for the problem has some
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exponentially decaying property. In Section 4.2, we also prove the existence of a
single-spike solution satisfying (2), (3).

Remark 1. From the explicit expression of w, we see that there exists a constant
c > 0 such that ∣∣∣∣ dkdykw

∣∣∣∣ ≤ ce−|y| (11)

for each y ∈ R and k = 0, 1, 2. Furthermore there exists a positive constant c̃ such
that w ≥ c̃e−|y|.

2.2. Known results and some lemmas. We first consider an ordinary differen-
tial equation of an inhomogeneous Sturm-Liouville type. We expect that if the coef-
ficient functions have exponentially decaying properties, the solution of the problem
also has the same property.

Lemma 2.2. Let U(y), V (y) be continuous functions satisfying

|U(y)| ≤ cue−u|y|, |V (y)| ≤ cve−v|y| (12)

for y ∈ (−1/ε, 1/ε), where u, v, cu and cv are positive constants independent of ε.
Suppose that there exists a positive constant c0 such that the solution, denoted by
φ, of

φ′′ − (α2 + U(y))φ = V (y), y ∈ (−1/ε, 1/ε), (13)

φ′ = 0, y = ±1/ε, (14)

satisfies ‖φ‖H1(−1/ε,1/ε) ≤ c0 for sufficiently small ε, where α = α1 + α2i is a
complex number satisfying α1 ≥ γ for a constant γ > u independent of ε. Assume
that c0 is independent of ε, α. If γ is not equal to v, then φ satisfies∣∣∣∣ dkdyk φ

∣∣∣∣ ≤ c|α|ke−ρ|y| (15)

for any y ∈ (−1/ε, 1/ε), sufficiently small ε and k = 0, 1, 2, where ρ = min{γ, v} and
c is a constant independent of ε, α. In particular, if α1 < v and α1 is independent
of ε, one can take ρ = α1 in (15).

Note that the decaying rate ρ of φ is independent of the decay rate u of U . Since
the proof of Lemma 2.2 needs length argument, we shall describe it in Section 4.1.
Throughout this paper, we often use the above lemma.

Next we shall obtain some properties of the stationary solution of (a, h). First
we show that h(x) does not approach 0 as ε→ 0 at any point on [−1, 1]. If this is
the case, 1/h is uniformly bounded on [−1, 1] as ε→ 0.

Lemma 2.3 ([19]). The following inequality holds:

maxh < e
√
µ/d minh.

The property (3) and Lemma 2.3 imply that if d is sufficiently large and ε is
sufficiently small, h is close to ζ on [−1, 1].

Next we show that ã(y) satisfies a similar inequality to (11). Since ã approaches
ζq/(p−1)w as ε→ 0, we expect that ã has similarities to w.

Lemma 2.4. There exists a constant c > 0 independent of ε such that∣∣∣∣ dkdyk ã
∣∣∣∣ ≤ ce−|y| (16)

for y ∈ (−1/ε, 1/ε) and k = 0, 1, 2.
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Proof. By (2) and the fact that w decays exponentially as |y| → ∞, as mentioned
in Remark 1, we show that ã satisfies

ã(y) ≤ ce−α|y|, for any y ∈ (−1/ε, 1/ε) (17)

for a constant c > 0 and an exponent α ∈ (0, 1) by using the same argument as in
the proof of Lemma 3.11 in [16]. Hence we omit the details of the proof of (17).

Next we show that (16) holds by using (17) and Lemma 2.2. We should note
that φ = ã is a solution of the problemφ′′ − (1− ãp−1

h̃q
)φ = 0, y ∈ (−1/ε, 1/ε),

φ′ = 0, y = ±1/ε,

and satisfies ‖φ‖H1(−1/ε,1/ε) ≤ c. Since there exists a positive constant c such that

ãp−1/h̃q ≤ ce−(p−1)α|y| for y ∈ (−1/ε, 1/ε), Lemma 2.2 implies that ã ≤ ce−|y| for
y ∈ (−1/ε, 1/ε). Using this and the above differential equation for ã, we can easily
verify that (16) holds for k = 1, 2.

Thus it is shown that ã has some exponentially decaying property as w. In fact, ã
has another similarity. By Remark 1, we have w ≥ c̃e−|y| for y ∈ R with a constant
c̃. Then ã also has this property, at least in the region where |y| is sufficiently large.

Lemma 2.5. There exist R0 > 0 and ε0 > 0 such that ã(y) ≥ c̃e−|y| for ε < ε0,
R > R0 and R < |y| < 1/ε, where c̃ is independent of ε,R, d.

Proof. In what follows, we consider only the case of y ∈ (R, 1/ε). The case of
y ∈ (−1/ε,−R) can be proved in the same way.

Using (2) and Remark 1, we have ã(R) ≥ ce−R, where c is independent of ε,R, d
if ε is sufficiently small for large R > 0. Here we set ψ(y) = ã(y)/ã(R). Then ψ
must be a solution of − ψ

′′ + ψ =
1

ã(R)

ãp

h̃q
, y ∈ (R, 1/ε),

ψ(R) = 1, ψ′(1/ε) = 0.

(18)

Since (18) is a Sturm-Liouville type problem, we can express ψ as

ψ(y) = c+φ+(y) + c−φ−(y)

− 1

W

(
φ−(y)

∫ y

R

φ+
1

ã(R)

ãp

h̃q
dζ + φ+(y)

∫ 1/ε

y

φ−
1

ã(R)

ãp

h̃q
dζ

)
,

(19)

where c+, c− are constants, φ+, φ− are positive functions given by

φ+(y) =
e−1/ε+R

1 + e−2/ε+2R
(ey−R + e−(y−R)),

φ−(y) =
1

1 + e−2/ε+2R
(e−(y−R) + e−2/ε+R+y),

respectively, and W is a constant defined by

W = φ′−(R)φ+(R)− φ−(R)φ′+(R).

We should note that φ+, φ− are solutions of

−φ′′ + φ = 0, y ∈ (R, 1/ε),

satisfying
φ′+(R) = 0, φ+(1/ε) = 1, φ−(R) = 1, φ′−(1/ε) = 0,
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respectively. From the boundary condition of ψ and φ− at y = 1/ε, we can easily
show c+ = 0. Furthermore, setting y = R in (19) and using another boundary
conditions of φ− and ψ at y = R, we see that

c− ≥ 1− φ+(R)

|W |

∫ 1/ε

R

φ−
1

ã(R)

ãp

h̃q
dζ ≥ 1− ce−(p−1)R ≥ 1

2

if R is sufficiently large. Hence ψ satisfies

ψ(y) ≥ c−φ− − ce−y−(p−1)R+R ≥ 1

4
e−y+R,

which implies that ã ≥ c̃e−y on (R, 1/ε).

2.3. Properties of {ξεi , φεi}. In this subsection we consider pairs of the eigenvalues
and eigenfunctions of Lε, denoted by {ξεi , ϕεi}∞i=0. In particular, we will study the
properties of {ξε0, ϕε0} and {ξε1, ϕε1}. Without loss of generality, we may assume that
{ϕεi}∞i=0 is an orthonormal system in L2(−1, 1). It is not difficult to see that there
exists a positive constant γ independent of ε such that

ξε0 > γ > ξε1 > −γ > ξε2 > ξε3 > · · · , (20)

which can be shown in the same way as in the proof of Lemma 3.10 in [16]. We
also see that ξε0 → ξ∗0 and ξε1 → 0 as ε→ 0, where ξ∗0 is a unique positive eigenvalue
of the eigenvalue problem (10). We denote the eigenfunctions corresponding to the
eigenvalues ξ∗0 , 0 of (10) by ϕ̂∗0, ϕ̂∗1 satisfying ‖ϕ̂∗0‖L2(R) = 1 and ‖ϕ̂∗1‖L2(R) = 1,
respectively. As mentioned in Section 1, ϕ̂∗0 and ϕ̂∗1 can be represented explicitly.
Those explicit expressions imply that ϕ̂∗0 and ϕ̂∗1 approach 0 exponentially as |y| →
∞. Since the eigenvalue problem (10) is expected to be the limiting problem ofφ′′ − (1 + ε2l2)φ+ p

ãp−1

h̃q
φ = λφ, y ∈ (−1/ε, 1/ε),

φ′ = 0, y = ±1/ε,

(21)

we expect that ϕ̂ε0 and ϕ̂ε1 have some similarities to ϕ̂∗0 and ϕ̂∗1, respectively.

Lemma 2.6. Fix 0 < θ < 1 arbitrarily independent of ε. Then there exist a positive
constant c independent of ε and ε0 > 0 such that∣∣∣∣ dkdyk ϕ̂ε0

∣∣∣∣ ≤ ce−√1+γ|y|,

∣∣∣∣ dkdyk ϕ̂ε1
∣∣∣∣ ≤ ce−θ|y| (22)

for ε < ε0, y ∈ (−1/ε, 1/ε) and k = 0, 1, 2. Furthermore ϕ̂ε0, ϕ̂ε1 converge to ϕ̂∗0, ϕ̂∗1
in C2(R) as ε→ 0, respectively.

Proof. Since ϕ̂ε0 is the solution of the problem (21), we can easily show that ϕ̂ε0
satisfies ‖ϕ̂ε0‖H1(−1/ε,1/ε) ≤ c. In addition, we have pãp−1/h̃q ≤ ce−(p−1)|y| for each
y ∈ (−1/ε, 1/ε). Hence ϕ̂ε0 satisfies (22) by γ < ξε0 and Lemma 2.2. Also it is not
difficult to show that ϕ̂ε1 satisfies (22), by the same argument of ϕε0, because it holds
that 1 + ε2l2 + ξε1 ≥ θ for sufficiently small ε > 0.

Next we show the last part. By ‖ϕ̂ε0‖H1(−1/ε,1/ε) ≤ c for ε > 0, there exist

φ0 ∈ H1(R) and a subsequence {εn} such that εn → 0 and ϕ̂εn0 → φ0 in (H1(R))′

as n→∞. Then φ0 must satisfy the problem (10) for λ = ξ∗0 . Using the differential
equation (10), we have ∣∣∣∣ dkdyk φ0

∣∣∣∣ ≤ ce−√1+ξ∗0 |y|
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for any y ∈ R and k = 0, 1, 2. Hence, by (22), we have ‖ϕ̂εn0 − φ0‖L2(R) → 0 as
n→∞, which implies ‖φ0‖L2(R) = 1. Since the eigenfunction of (10) corresponding

to ξ∗0 is unique, φ0 must be ϕ̂∗0. Hence ϕ̂ε0 converges to ϕ̂∗0 in (H1(R))′ as ε → 0.
Here we do not need to choose a subsequence of ε. Furthermore, taking account of
(10), (21), we can easily verify that ϕ̂ε0 converges to ϕ̂∗0 in C2(R) as ε→ 0. On the
other hand, we can show in the same way as in the proof of ϕ̂ε0 that ϕ̂ε1 converges
to ϕ̂∗1 in C2(R) as ε→ 0. This completes the proof of the lemma.

3. Proof of Theorem 1.1. In this section, we prove Theorem 1.1. In the following,
if we use a constant c, we suppose that it is independent of ε, α.

3.1. Asymptotic behavior of fεhϕ
ε
i/
√
ε and

√
εgεaϕ

ε
i . In order to prove Theorem

1.1, we consider the convergence of each term in (8). As the first step, we study
the asymptotic behaviors of fεhϕ

ε
0/
√
ε, fεhϕ

ε
1/
√
ε,
√
εgεaϕ

ε
0 and

√
εgεaϕ

ε
1 as ε → 0 in

(H1(−1, 1))′.

Lemma 3.1. As ε→ 0, one has

− 1√
ε
fεhϕ

ε
0 → c1δ, − 1√

ε
fεhϕ

ε
1 → 0, (23)

√
εgεaϕ

ε
0 → c2δ,

√
εgεaϕ

ε
1 → 0 (24)

in (H1(−1, 1))′, where c1 and c2 are positive constants, respectively defined by

c1 ≡ qζ(q−p+1)/(p−1)
∫ ∞
−∞

wpϕ̂∗0dy, c2 ≡
r

τ
ζ(q(r−1)−s(p−1))/(p−1)

∫ ∞
−∞

wr−1ϕ̂∗0dy.

Proof. For each z ∈ H1(−1, 1), we have

−
∫ 1

−1

1√
ε
fεhϕ

ε
0zdx =

∫ 1/ε

−1/ε
q
ãp

h̃q+1
ϕ̂ε0z̃dy → z(0)qζ(q−p+1)/(p−1)

∫ ∞
−∞

wpϕ̂∗0dy.

On the other hand, we have

−
∫ 1

−1

1√
ε
fεhϕ

ε
1zdx =

∫ 1/ε

−1/ε
q
ãp

h̃q+1
ϕ̂ε1z̃dy →

z(0)qζ(q−p+1)/(p−1)

‖w′‖L2(R)

∫ ∞
−∞

wpw′dy = 0

for each z ∈ H1(−1, 1) by the Lebesgue dominated convergence theorem. Thus (23)
holds.

Next we will show (24). If r ≥ 1, we can easily show in the same way as in the
proof of (23) that (24) holds, so we may assume r < 1. At first we have

〈
√
εgεaϕ

ε
0, z〉 =

∫ 1/ε

−1/ε

r

τ

ãr−1

h̃s
ϕ̂ε0z̃dy =

(∫ R

−R
+

∫ 1/ε

R

+

∫ −R
−1/ε

)
r

τ

ãr−1

h̃s
ϕ̂ε0z̃dy. (25)

From (2), (3) and Lemmas 2.3, 2.6, the first term of the right-hand side of (25)
converges to

r

τ
ζ(q(r−1)−s(p−1))/(p−1)z(0)

∫ R

−R
wr−1ϕ̂∗0dy

as ε → 0. Next we estimate the second and the third terms of the right-hand side
of (25) from above such as(∫ 1/ε

R

+

∫ −R
−1/ε

)∣∣∣∣ rτ ãr−1h̃s
ϕ̂ε0z̃

∣∣∣∣dy ≤ c‖z‖L∞(−1,1)

∫ 1/ε

R

e−(
√
1+γ−1+r)ydy

≤ c‖z‖L∞(−1,1)e
−(
√
1+γ−1+r)R.
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Hence we have∣∣∣∣ lim
ε→0

∫ 1

−1

√
εgεaϕ

ε
0zdx−

r

τ
ζ(q(r−1)−s(p−1))/(p−1)z(0)

∫ ∞
−∞

wr−1ϕ̂∗0dy

∣∣∣∣
≤ c‖z‖L∞(−1,1)e

−(
√
1+γ−1+r)R → 0

as R → ∞. In the same way, we see that (24) holds. This completes the proof of
the lemma.

3.2. Asymptotic behavior of Kε,λ. In Section 2.1, we introduced Kε,λ which is
the invertible operator of (−Mε− gεaRε,λ(−fεh·) +λ) and K∗,λ which is the limiting
operator of Kε,λ as ε → 0 in a certain sense. In this subsection, we give precise
definition of these operators. In order to do so, we consider the following bilinear
form:

Bε,λ(z1, z2) =
d

τ
(z′1, z

′
2)− ({gεaRε,λ(−fεh·) + gεh − λ}z1, z2), (26)

where λ ∈ Λ+, z1, z2 ∈ H1(−1, 1). Here we abbreviate (·, ·)L2(−1,1) as (·, ·) for
simplicity. Applying Lax-Milgram’s theorem to this bilinear form, we shall define
Kε,λ.

Lemma 3.2. For each T ∈ (H1(−1, 1))′, there exists a unique φ ∈ H1(−1, 1) such
that

Bε,λ(φ, ψ) = 〈T, ψ〉 for ψ ∈ H1(−1, 1), (27)

where ε is sufficiently small, d is sufficiently large and λ ∈ Λ+. Moreover, the
operator

Kε,λ : (H1(−1, 1))′ → H1(−1, 1)

is well-defined by φ = Kε,λT , and satisfies

‖Kε,λ‖ ≤
2τ

min{d, dl2 + µ}
,

where ‖·‖ is the usual norm for operators. In addition, Kε,λ is analytic with respect
to λ and continuous with respect to ε.

In order to prove Lemma 3.2, we first study the asymptotic behavior of
gεaRε,λ(−fεh·) in the right-hand side of (26).

Lemma 3.3. For each z ∈ H1(−1, 1) and λ ∈ Λ+, it holds that

gεaRε,λ(−fεhz)→ z(0)Fδ, gεa
d

dλ
Rε,λ(−fεhz)→ z(0)

dF

dλ
δ (28)

in (H1(−1, 1))′ as ε → 0. Here F = F (λ) is an analytic function in Λ+, which is
real-valued for real λ, defined by

F (λ) =
r

τ
ζ(q(r−1)−s(p−1))/(p−1)(φ0, w

r−1)L2(R),

where φ0 is some function belonging to H1(R) independent of ε, z and has the expo-
nentially decaying property such as |φ0| ≤ ce−|y| for y ∈ R, with a positive constant
c independent of λ ∈ Λ+. Furthermore, as ε→ 0, one has

‖gεaRε,λ(−fεhz)− z(0)Fδ‖(H1(−1,1))′ → 0

uniformly in ‖z‖H1(−1,1) ≤M and λ ∈ Λ+.
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Proof. Throughout this proof, we abbreviate (·, ·)L2(−1/ε,1/ε), ‖ · ‖L2(−1/ε,1/ε), and
‖ · ‖H1(−1/ε,1/ε) as (·, ·), ‖ · ‖L2 , and ‖ · ‖H1 , respectively, for simplicity. We set
φε = Rε,λ(−fεhz).

First, we show that ‖φ̃ε‖H1 , ‖dφ̃ε/dλ‖H1 are uniformly bounded in ε > 0 and

λ ∈ Λ+. Since φ̃ε can be expressed as

φ̃ε =

∞∑
i=2

(−fεhz, ϕεi )L2(−1,1)

ξεi − λ
ϕ̃εi =

∞∑
i=2

(−f̃εhz̃, ϕ̂εi )ϕ̂εi
ξεi − λ

, (29)

we see that

‖φ̃ε‖2L2 =

∞∑
i=2

|(f̃εhz̃, ϕ̂εi )|2

|ξεi − λ|2
≤
‖f̃εhz̃‖2L2

γ2 + |λ|2

by using Parseval’s identity and |ξεi − λ|2 ≥ γ2 + |λ|2 for i ≥ 2, sufficiently small ε

and λ ∈ Λ+, which implies that ‖φ̃ε‖L2 is uniformly bounded in ε > 0 and λ ∈ Λ+.

Next we show that ‖φ̃ε‖H1 is also uniformly bounded in ε > 0 and λ ∈ Λ+.

By (29), φ̃ε satisfies (φ̃ε, ϕ̂
ε
0) = 0, (φ̃ε, ϕ̂

ε
1) = 0 and the following equation with

Neumann boundary condition:{
φ′′ + (f̃εa − λ)φ = −f̃εhz̃ + (f̃εhz̃, ϕ̂

ε
0)ϕ̂ε0 + (f̃εhz̃, ϕ̂

ε
1)ϕ̂ε1, y ∈ (−1/ε, 1/ε),

φ′ = 0, y = ±1/ε.
(30)

Then, multiplying φ̃ε to the first equation of (30) for φ = φ̃ε and integrating it over
(−1/ε, 1/ε), we have

‖φ̃′ε‖2L2 + (1 + ε2l2 +Reλ)‖φ̃ε‖2L2 ≤ (p
ãp−1

h̃q
φ̃ε, φ̃ε) + |(f̃εhz̃, φ̃ε)|

≤ c(‖φ̃ε‖2L2 + ‖z‖L∞(−1,1)‖φ̃ε‖L2).

(31)

Since ‖φ̃ε‖L2 is uniformly bounded in ε > 0 and λ ∈ Λ+, ‖φ̃ε‖H1 is also uniformly
bounded in ε > 0 and λ ∈ Λ+.

Next we show that ‖dφ̃ε/dλ‖H1 is uniformly bounded in ε > 0 and λ ∈ Λ+. We

should note that dφ̃ε/dλ is expressed as

dφ̃ε
dλ

=

∞∑
i=2

(−f̃εhz̃, ϕ̂εi )ϕ̂εi
(ξεi − λ)2

.

Then we have (dφ̃ε/dλ, ϕ̂
ε
0) = 0 and (dφ̃ε/dλ, ϕ̂

ε
1) = 0. Using this and Parse-

val’s identity, we obtain ‖dφ̃ε/dλ‖L2 ≤ ‖f̃εhz̃‖L2/(γ2 + |λ|2), which implies that

‖dφ̃ε/dλ‖L2 is uniformly bounded in ε > 0 and λ ∈ Λ+. Then we can show in the

same way as in the case of φ̃ε that ‖dφ̃ε/dλ‖H1 is also uniformly bounded in ε > 0
and λ ∈ Λ+. Furthermore, Lemmas 2.2, 2.4 and 2.6 imply that

|φ̃ε| ≤ ce−θ|y|,
∣∣∣∣dφ̃εdλ

∣∣∣∣ ≤ ce−θ|y| (32)

for y ∈ (−1/ε, 1/ε) with 0 < θ < 1 fixed arbitrarily independent of ε, λ.
Next we shall show that there exists φ0 ∈ H1(R) such that

φ̃ε → z(0)φ0,
dφ̃ε
dλ
→ z(0)

dφ0
dλ

(33)
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in (H1(R))′ as ε → 0. By ‖φ̃ε‖H1(−1/ε,1/ε) ≤ c and ‖dφ̃ε/dλ‖H1(−1/ε,1/ε) ≤ c for

ε > 0, there exist φ0, ψ0 ∈ H1(R) and a subsequence {εn}∞n=1 such that εn → 0 and

φ̃εn → z(0)φ0,
dφ̃εn
dλ
→ z(0)ψ0

in (H1(R))′ as n→∞. We note that φ0 satisfies (φ0, ϕ̂
∗
0)L2(R) = 0, (φ0, ϕ̂

∗
1)L2(R) = 0

and

φ′′0 − (1 + λ)φ0 + pwp−1φ0

= qζ(q−p+1)/(p−1)(wp − (wp, ϕ̂∗0)L2(R)ϕ̂
∗
0 − (wp, ϕ̂∗1)L2(R)ϕ̂

∗
1)

= qζ(q−p+1)/(p−1)(wp − (wp, ϕ̂∗0)L2(R)ϕ̂
∗
0)

(34)

for each y ∈ R. Here we used (wp, ϕ̂∗1)L2(R) = (wp, w′/‖w′‖L2)L2(R) = 0. On the
other hand, ψ0 satisfies (ψ0, ϕ̂

∗
0)L2(R) = 0, (ψ0, ϕ̂

∗
1)L2(R) = 0 and

ψ′′0 − (1 + λ)ψ0 + pwp−1ψ0 = φ0 (35)

for each y ∈ R. Owing to λ ∈ Λ+ and the orthogonal conditions (φ0, ϕ̂
∗
0)L2(R) = 0

and (φ0, ϕ̂
∗
1)L2(R) = 0, (34) admits only one solution. Moreover, (35) also admits

only one solution. These imply that

φ̃ε → z(0)φ0,
dφ̃ε
dλ
→ z(0)ψ0

in (H1(R))′ as ε→ 0. Here we do not need to choose a subsequence of ε.
Now let us show that φ0 is analytic with respect to λ and ψ0 = dφ0/dλ. It is

easy to see that φ0 is C1 with respect to λ ∈ Λ+ (see Hartman [6] section V). In
order to prove the analyticity, it suffices to verify that φ0 satisfies Cauchy-Riemann
conditions. We differentiate φ0 with respect to λ = λ1 − λ2i if λ = λ1 + λ2i. Then
dφ0/dλ satisfies (dφ0/dλ, ϕ̂

∗
0)L2(R) = 0, (dφ0/dλ, ϕ̂

∗
1)L2(R) = 0 and

φ′′ − (1 + λ)φ+ pwp−1φ = 0, y ∈ R.

This problem is the same as equivalent to (10), which admits only two solutions
(λ, φ) = (ξ∗0 , cϕ̂

∗
0) or (0, cϕ̂∗1) since λ is restricted in Λ+, where c is an arbitrary

constant. From (dφ0/dλ, ϕ̂
∗
0)L2(R) = 0 and (dφ0/dλ, ϕ̂

∗
1)L2(R) = 0, we see that

dφ0/dλ is identically equal to 0. This implies that φ0 satisfies the Cauchy-Riemann
conditions so that φ0 is analytic with respect to λ. Now we differentiate both sides
of (34) with respect to λ. Then dφ0/dλ must satisfy (35). The equality (35) with
the orthogonal conditions admits only one solution so that ψ0 = dφ0/dλ. By this,
(32), (33), and the Lebesgue dominated convergence theorem, it is easy to verify
that (28) holds. Furthermore φ0 satisfies |φ0| ≤ ce−|y| for c independent of λ ∈ Λ+.

Next we show the last part of the lemma by contradiction. For each κ > 0, we
may assume that there exist zn ∈ {z ∈ H1(−1, 1) | ‖z‖H1(−1,1) ≤ M}, λn ∈ Λ+,
and a subsequence {εn}∞n=1 such that εn → 0 as n→∞ and

‖gεna Rεn,λn(−fεnh zn)− zn(0)F (λn)δ‖(H1(−1,1))′ ≥ κ.

Due to this inequality and (31), λn is supposed to satisfy |λn| ≤ c for a constant
c > 0 independent of n without loss of generality. Since ‖zn‖H1(−1,1) ≤ M and

|λn| ≤ c, there exist z0 ∈ H1(−1, 1) and λ0 ∈ Λ+ such that zn → z0 in (H1(−1, 1))′

and λn → λ0 as n→∞. Here we may replace n with an appropriate subsequence if
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needed, but we use the same notation. The space H1(−1, 1) is compactly embedded
in C[−1, 1] so that zn → z0 in C[−1, 1] as n→∞. Then we have

κ ≤ ‖gεna Rεn,λn(−fεnh zn)− zn(0)F (λn)δ‖
≤ ‖gεna Rεn,λn(−fεnh (zn − z0))‖+ ‖gεna Rεn,λ0

(−fεnh z0)− z0(0)F (λ0)δ‖
+ ‖gεna Rεn,λn(−fεnh z0)− gεna Rεn,λ0

(−fεnh z0)‖
+ ‖z0(0)(F (λ0)− F (λn))δ‖+ ‖(z0(0)− zn(0))F (λn)δ‖,

(36)

where we abbreviate ‖ · ‖(H1(−1,1))′ as ‖ · ‖. Note that the second term of the right
side of the above inequality tends to 0 as n→∞ by (28).

Next we verify that the first term converges to 0 as n → ∞. For each ϕ ∈
H1(−1, 1), 〈gεna Rεn,λ(−fεnh (zn − z0)), ϕ〉 can be represented by (Rεn,λ(−fεnh (zn −
z0)), gεna ϕ)L2(−1,1). For simplicity, we set φn = Rεn,λ(−fεnn (zn − z0)). Then we
see in the same way as in the above proof that there exists a positive constant c
independent of n such that ‖φ̃n‖H1(R) ≤ c and |φ̃n| ≤ ce−θ|y| for y ∈ (−1/εn, 1/εn)
with any θ ∈ (0, 1) independent of n. Using these facts, we see that

|(φn, gεna ϕ)L2(−1,1)| ≤ c‖ϕ‖H1(−1,1)

∫ 1/εn

−1/εn
|φ̃n|ãr−1dy → 0

as n→∞.
It is easy to see that the other terms also tends to 0 as n → ∞. This is a

contradiction. Hence we complete the proof.

Next we consider the continuity and convergence of arz/εhs+1 in (H1(−1, 1))′ as
ε → 0, contained in the term gεhz, where z ∈ H1(−1, 1). In the following we use a
constant D = qr− (p−1)(s+1), which was already given in the last part of Section
1.1.

Lemma 3.4. For any z ∈ H1(−1, 1), as ε→ 0, one has

ar

εhs+1
z → z(0)ζD/(p−1)

∫
R
wrdyδ (37)

in (H1(−1, 1))′. Furthermore for each M > 0,

‖ ar

εhs+1
z − z(0)ζD/(p−1)

∫
R
wrdyδ‖(H1(−1,1))′ → 0

as ε→ 0 uniformly in ‖z‖H1(−1,1) ≤M .

Proof. By the Lebesgue dominated convergence theorem, it is easy to verify that
(37) holds. Let us show the second part of the lemma by contradiction. We suppose
that for each κ > 0, there exist zn ∈ {z ∈ H1(−1, 1) | ‖z‖H1(−1,1) ≤ M} and a
subsequence {εn} such that εn → 0 and

‖ ar

εnhs+1
zn − zn(0)ζD/(p−1)

∫
R
wrdyδ‖(H1(−1,1))′ ≥ κ.

Since ‖zn‖H1(−1,1) ≤M for any n, there exists z0 ∈ H1(−1, 1) such that zn → z0 in

(H1(−1, 1))′ as n→∞. Here we may replace zn with an appropriate subsequence
if needed (we use the same notation for the subsequence). Since H1(−1, 1) is com-
pactly embedded in C[−1, 1], we may assume that zn → z0 in C[−1, 1]. Then we
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can show in the same argument as in the proof of Lemma 3.3 that

κ ≤ ‖ ar

εnhs+1
(zn − z0)‖+ ‖ ar

εnhs+1
z0 − z0(0)ζD/(p−1)

∫
R
wrdyδ‖

+‖(zn(0)− z0(0))ζD/(p−1)
∫
R
wrdyδ‖ → 0

as n → ∞, where we abbreviate ‖ · ‖(H1(−1,1))′ as ‖ · ‖ for simplicity. This is a
contradiction.

Applying Lemmas 3.3 and 3.4, we can prove Lemma 3.2. In what follows, we
abbreviate (·, ·)L2(−1,1), ‖ · ‖L2(−1,1), ‖ · ‖H1(−1,1) and ‖ · ‖(H1(−1,1))′ as (·, ·), ‖ · ‖L2 ,
‖ · ‖H1 , and ‖ · ‖(H1)′ , respectively, for simplicity.

Proof. For any z1, z2 ∈ H1(−1, 1), we have

|Bε,λ(z1, z2)| ≤ d

τ
‖z′1‖L2‖z′2‖L2 +

dl2 + µ+ τ |λ|
τ

‖z1‖L2‖z2‖L2 + c‖z1‖H1‖z2‖H1

≤ 2

τ
max{d, dl2 + µ+ τ |λ|}‖z1‖H1‖z2‖H1 ,

where c is independent of ε, d, λ. Next, for any z ∈ H1(−1, 1), we have

|Bε,λ(z, z)| ≥ d

τ
‖z′‖2L2 +

dl2 + µ+ τReλ

τ
‖z‖2L2 − c‖z‖2H1

≥ min{d, dl2 + µ}
2τ

‖z‖2H1 ,

(38)

where c is independent of ε, d, λ. By these two inequalities, we can apply Lax-
Milgram’s theorem to Bε,λ, that is, for each T ∈ (H1(−1, 1))′, there exists φ ∈
H1(−1, 1) such that

Bε,λ(φ, ψ) = 〈T, ψ〉 for any ψ ∈ H1(−1, 1)

for ε > 0 and λ ∈ Λ+. Then we define the operator Kε,λ : (H1(−1, 1))′ → H1(−1, 1)
by Kε,λT = φ, which implies that Kε,λ is well-defined. Furthermore we take ψ =
Kε,λT for the above equation and have an estimate such as

min{d, dl2 + µ}
2τ

‖Kε,λT‖2H1 ≤ |〈T,Kε,λT 〉| ≤ ‖T‖(H1)′‖Kε,λT‖H1 .

This implies that

‖Kε,λ‖ ≤
2τ

min{d, dl2 + µ}
, (39)

where ‖ · ‖ is the usual norm for operators.
Secondly we shall show that Kε,λ is continuous with respect to ε and analytic

with respect to λ ∈ Λ+ in a certain sense. We take any T ∈ (H1(−1, 1))′. Then it
holds that for each ψ ∈ H1(−1, 1), ε, ε′ > 0, λ, λ′ ∈ Λ+,

Bε,λ(Kε,λT, ψ) = 〈T, ψ〉 = Bε′,λ′(Kε′,λ′T, ψ).

Using this, we obtain

Bε′,λ′((Kε,λ −Kε′,λ′)T, ψ) = Bε′,λ′(Kε,λT, ψ)−Bε,λ(Kε,λT, ψ). (40)

Substituting (Kε,λ −Kε′,λ′)T into ψ and using the inequality (38), we obtain

|Bε′,λ′((Kε,λ−Kε′,λ′)T, (Kε,λ−Kε′,λ′)T )| ≥ min{d, dl2 + µ}
2τ

‖(Kε,λ−Kε′,λ′)T‖2H1 .
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On the other hand, the right side of (40) is estimated from above as

|Bε′,λ′(Kε,λT, ψ)−Bε,λ(Kε,λT, ψ)|
≤ |((gε

′

a Rε′,λ′(−fε
′

h ·)− gεaRε,λ(−fεh·))Kε,λT, ψ)|
+|(( s

τε′
arε′

hs+1
ε′
− s

τε

arε
hs+1
ε

)Kε,λT, ψ)|+ |λ′ − λ||(Kε,λT, ψ)|

≤
(
‖(gε

′

a Rε′,λ′(−fε
′

h ·)− gεaRε,λ(−fεh·))Kε,λT‖(H1)′

+‖( s

τε′
arε′

hs+1
ε′
− s

τε

arε
hs+1
ε

)Kε,λT‖(H1)′ + |λ′ − λ|‖Kε,λT‖H1

)
‖ψ‖H1 ,

where we write a, h as aε, hε for ε to distinguish aε, hε from aε′ , hε′ . Taking ψ =
(Kε,λ −Kε′,λ′)T in (40), we obtain from the above two inequalities

‖(Kε,λ −Kε′,λ′)T‖H1

≤ 2τ

min{d, dl2 + µ}
{
‖((gε

′

a Rε′,λ′(−fε
′

h ·)− gεaRε,λ(−fεh·))Kε,λT‖(H1)′

+‖( s

τε′
arε′

hs+1
ε′
− s

τε

arε
hs+1
ε

)Kε,λT‖(H1)′ + |λ′ − λ|‖Kε,λT‖H1

}
.

(41)

Here it follows from (39) that ‖Kε,λT‖H1 ≤ 2τ‖T‖(H1)′/min{d, dl2 + µ}, which
implies ‖Kε,λT‖H1 is uniformly bounded in ε > 0 and λ ∈ Λ+. By this and
Lemmas 3.3, 3.4, three terms of the right-hand side of (41) tend to 0 as ε′ → ε and
λ′ → λ. Hence Kε,λ is continuous with respect to ε and analytic with respect to
λ.

Next let us define K∗,λ. Let B∗,λ be a bilinear form which is the limiting form
of Bε,λ as ε→ 0. From Lemmas 3.3, 3.4, we have

(gεaRε,λ(−fεhz1), z2)L2(−1,1) → F (λ)z1(0)z2(0),

(
ar

εhs+1
z1, z2)L2(−1,1) → ζD/(p−1)

∫ ∞
−∞

wrdyz1(0)z2(0)

as ε→ 0. Hence we define B∗,λ by

B∗,λ(z1, z2) =
d

τ
(z′1, z

′
2) +

dl2 + µ+ τλ

τ
(z1, z2) + (E − F (λ))z1(0)z2(0),

where E = sζD/(p−1)
∫∞
−∞ wrdy/τ and we abbreviate (·, ·)L2(−1,1), as (·, ·) for sim-

plicity. We apply Lax-Milgram’s theorem to B∗,λ as well as Bε,λ and define K∗,λ.

Lemma 3.5. For each T ∈ (H1(−1, 1))′, there exists a unique φ ∈ H1(−1, 1) such
that

B∗,λ(φ, ψ) = 〈T, ψ〉 for ψ ∈ H1(−1, 1), (42)

where d is sufficiently large and λ ∈ Λ+. Moreover, the operator

K∗,λ : (H1(−1, 1))′ → H1(−1, 1)

is well-defined by φ = K∗,λT , and is analytic with respect to λ.

Proof. It is easily shown that B∗,λ satisfies

|B∗,λ(z1, z2)| ≤ 2

τ
max{d, dl2 + µ+ τ |λ|}‖z1‖H1‖z2‖H1 ,

|B∗,λ(z, z)| ≥ min{d, dl2 + µ}
2τ

‖z‖2H1

(43)
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for z1, z2, z ∈ H1(−1, 1). Then the proof of Lemma 3.5 is obtained in the same way
as in the proof of Lemma 3.2. So, we omit details of the proof.

As described previously, B∗,λ is the limiting form of Bε,λ as ε → 0. Hence it
is expected that Kε,λ converges to K∗,λ as ε → 0 in a certain sense. Indeed, the
following lemma holds.

Lemma 3.6. Fix λ ∈ Λ+ and T ∈ (H1(−1, 1))′. Let εn > 0, λn ∈ Λ+ and
Tn ∈ (H1(−1, 1))′ satisfy εn → 0, λn → λ and Tn → T in (H1(−1, 1))′ as n→∞,
respectively. Then Kεn,λnTn converges to K∗,λT in H1(−1, 1) as n→∞.

Proof. By the same argument as in the proof of Lemma 3.2, we obtain

‖Kεn,λnTn −K∗,λT‖H1 ≤ 2τ

min{d, dl2 + µ}
{
‖Tn − T‖(H1)′

+ ‖gεna Rεn,λn(−fεnh Kεn,λnT )− F (λ)(K∗,λT )(0)δ‖(H1)′

+
s

τ
‖
arεn
hs+1
εn

Kεn,λnT − ζD/(p−1)
∫
R
wrdy(K∗,λT )(0)δ‖(H1)′ + |λn − λ‖Kεn,λnT‖H1

}
.

This completes the proof.

3.3. Proof of Theorem 1.1. Now we are in a position to prove Theorem 1.1.
Since K∗,λδ satisfies B∗,λ(K∗,λδ, ψ) = 〈δ, ψ〉 for any ψ ∈ H1(−1, 1), we have

−d
τ

(K∗,λδ)
′′ +

dl2 + µ+ τλ

τ
K∗,λδ = {1 + (F − E)(K∗,λδ)(0)}δ.

Then we have

(K∗,λδ)(x) =
τ

dl2 + µ+ τλ
{1 + (F − E)(K∗,λδ)(0)}Gd,λ(x, 0), (44)

where Gd,λ is the Green’s function with Neumann boundary condition for the fol-
lowing equation

− d

dl2 + µ+ τλ
G(·, z)′′ +G(·, z) = δz on (−1, 1),

where z ∈ (−1, 1) and δz is Dirac’s δ-function at z. Here it follows from (44) that
(K∗,λδ)(0) must satisfy a compatibility condition so that we can solve (44) with
respect to (K∗,λδ)(0) to obtain

(K∗,λδ)(0) =
τGd,λ(0, 0)

dl2 + µ+ τλ+ τGd,λ(0, 0)(E − F )
,

where Gd,λ(0, 0) is explicitly given by

Gd,λ(0, 0) =

√
dl2 + µ+ τλ

2
√
d tanh(

√
dl2 + µ+ τλ/

√
d)
.

If d is sufficiently large, (K∗,λδ)(0) is much smaller than ξ∗0 . Furthermore, d(K∗,λδ)
/dλ is also small if d is sufficiently large. Therefore we obtain an unstable eigenvalue
λ by the implicit function theorem.

Next we show that (P) has exactly one unstable eigenvalue and it is a real number.
Let λ′ε be an eigenvalue in Λ+. Then limε→0 λ

′
ε exists in Λ+ by (8) and (39). Here we

may replace ε with an appropriate subsequence if needed (we use the same notation
for the subsequence). Setting λ′ = limε→0 λ

′
ε, we have λ′ = ξ∗0 − c1c2(K∗,λ′δ)(0).
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Since (K∗,λ′δ)(0) is small, a neighborhood of ξ∗0 contains λ′ if d is sufficiently large.
If λ′ is not equal to λ, we obtain

1 =
(K∗,λδ)(0)− (K∗,λ′δ)(0)

λ− λ′
.

This is a contradiction because d(K∗,λδ)(0)/dλ is smaller than 1 if d is sufficiently
large. Hence we have the uniqueness of a solution of (9) in Λ+. Since F is a real
continuous function with respect to λ if λ ∈ Λ+ is real number, the uniqueness of
a solution of (9) in Λ+ implies that λ must be a real number. This completes the
proof.

4. Proof of Lemmas and Theorem 4.3.

4.1. Proof of Lemmas 2.1, 2.2. We first prove Lemma 2.1. In fact, we can show
that an unstable eigenvalue of (P) does not approach ξ∗0 as ε → 0, which implies
that Lemma 2.1 holds. Hence it suffices to show the following lemma.

Lemma 4.1. There is no eigenvalue of (P) which approaches ξ∗0 as ε→ 0.

Proof. We show this lemma by contradiction. Suppose there exists an eigenvalue
of (P), denoted by λε, such that λε → ξ∗0 as ε → 0. Then two cases can occur:
the first case is when λε is equal to ξε0 and the second case is when there exists a
sequence {εn} such that εn tends to 0 as ε→ 0 and λεn is not equal to ξεn0 for each
n. We will denote the eigenfunction of (P) by (φε, ηε).

In the first case, φε can be expressed as

φε = κεϕ
ε
0 +

(−fεhηε, ϕε1)L2(−1,1)

ξε1 − λε
ϕε1 +Rε,λ(−fεhηε), (45)

where κε is an arbitrary constant. Furthermore fεhηε must satisfy the solvability
condition (−fεhηε, ϕε0)L2(−1,1) = 0. Substituting (45) into the second equation of (P)
and carrying out the same calculations as in Section 2.1, we have 〈δ,K∗,ξ∗0 δ〉 = 0.
However this contradicts the positive definiteness of K∗,λ (see (43)). Hence the first
case does not occur.

In the second case, we also obtain 〈δ,K∗,ξ∗0 δ〉 = 0, by carrying out the same
calculations as in the first case. Hence the second case does not occur either. This
completes the proof.

Next we prove Lemma 2.2. We denote the solution of (13), (14) by φ and
suppose that ‖φ‖H1(−1/ε,1/ε) ≤ c0 for a constant c0 independent of ε, α. From
‖φ‖H1(−1/ε,1/ε) ≤ c0, there exists a constant c > 0 independent of ε, α such that
‖φ‖L∞(−1/ε,1/ε) ≤ c for any ε > 0 by Sobolev’s embedding (Theorems 8.6, 8.8 in
[1]). Hence in order to prove Lemma 2.2, it suffices to show that φ has an expo-
nentially decaying property on (R, 1/ε), that is, (15) holds on (R, 1/ε), where R is
assumed to be sufficiently large and fixed independently of ε, α.

Since the problem (13) on (R, 1/ε) is of an inhomogeneous Sturm-Liouville type,
it is natural to consider the following homogeneous equation:

φ′′ − (α2 + U(y))φ = 0, y ∈ (R, 1/ε). (46)

Taking two linearly independent solutions of (46), we can express φ by using them
and their Wronskian. To show that φ has an exponentially decaying property, it
suffices to show that they have such property. In what follows, if we use a constant
c, we suppose that it is independent of ε,R, α.
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We first consider the problem (46) with the following boundary conditions:

φ(R) = 1, φ′(1/ε) = 0. (47)

By using (12), it is not difficult to show that there exists a solution of (46), (47),
denoted by φ−. Equation (46) can be regarded as a perturbed problem for

φ′′ − α2φ = 0, y ∈ (R, 1/ε). (48)

A unique solution of (48), (47), denoted by φ0, can be explicitly written as

φ0(y) =
1

1 + e−2α(1/ε−R)
(e−α(2/ε−y−R) + e−α(y−R))

and satisfies ∣∣∣∣ dkdyk φ0
∣∣∣∣ ≤ c|α|ke−α1(y−R) (49)

for y ∈ (R, 1/ε) and k = 0, 1, 2, where α = α1 + α2i and α1, α2 are real constants.
We consider that the solution of (46), (47) also satisfies (49). Indeed, the following
lemma holds.

Lemma 4.2. Let φ− be the solution of (46), (47). Suppose that R > 0 is sufficiently
large and fixed independently of ε, α. Then there exists ε0 > 0 such that∣∣∣∣ dkdyk φ−

∣∣∣∣ ≤ c|α|ke−α1(y−R) (50)

for any ε < ε0, k = 0, 1, 2 and y ∈ (R, 1/ε). Moreover, one has

|φ′−(R) + α| ≤ c|α|e−uR (51)

and

|φ−(1/ε)− 2e−α(1/ε−R)| ≤ ce−α1(1/ε−R)−uR/2. (52)

In order to prove Lemma 4.2, we rewrite (46) to the following first order ordinary
differential system:

Φ′ = AΦ + U(y)K0Φ, (53)

where Φ = (φ−, φ
′
−)t and

A =

(
0 1
α2 0

)
, K0 =

(
0 0
1 0

)
.

Let

P =

(
1 1
α −α

)
.

Then

P−1 =
1

2α

(
α 1
α −1

)
, P−1AP =

(
α 0
0 −α

)
.

Then Ψ = e−αyP−1Φ(≡ (Ψ1,Ψ2)t) satisfies an ordinary differential system

Ψ′ = BΨ + U(y)KΨ, (54)

where B = P−1AP − αI and K = P−1K0P with the identity I on C2. For each
matrix M on C2, we put

‖M‖ ≡ sup
v∈C2

|Mv|
|v|

.

By using these notation and definition, we shall show Lemma 4.2.
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Proof. By (54), we have the integral equation

Ψ(y) = eB(y−R)Ψ(R) +

∫ y

R

eB(y−ζ)U(ζ)KΨ(ζ)dζ. (55)

Here, by (55), we obtain∣∣∣∣ ∫ y

R

eB(y−ζ)U(y)KΨ(ζ)dζ

∣∣∣∣ ≤ c max
ζ∈[R,1/ε]

|Ψ(ζ)|
∫ y

R

e−uζdζ ≤ ce−uR max
ζ∈[R,1/ε]

|Ψ(ζ)|.

By assuming that R is so large that ce−uR ≤ 1/2, it follows from (55) that

|Ψ(y)| ≤ |Ψ(R)|+ 1

2
max

ζ∈[R,1/ε]
|Ψ(ζ)|.

Hence we have maxζ∈[R,1/ε] |Ψ(ζ)| ≤ 2|Ψ(R)| and

|Ψ1(y)−Ψ1(R)| ≤ c|Ψ(R)|e−uR,
|Ψ2(y)− e−2α(y−R)Ψ2(R)| ≤ c|Ψ(R)|e−uy.

Setting y = 1/ε in these two inequalities, we have

|αφ−(1/ε)e−α/ε − e−αR(α+ φ′−(R))| ≤ c
√
|α|2 + |φ′−(R)|2e−uR−α1R,

|αφ−(1/ε)e−α/ε − eα(−2/ε+R)(α− φ′−(R))| ≤ c
√
|α|2 + |φ′−(R)|2e−u/ε−α1R.

Then we have

|α+ φ′−(R)− e−2α(1/ε−R)(α− φ′−(R))| ≤ c
√
|α|2 + |φ′−(R)|2e−uR, (56)

which implies |φ′−(R)| ≤ 2|α| and

|α+ φ′−(R)| ≤ c|α|e−uR

if R is large and ε is small. Hence (51) holds. Furthermore we have

|Ψ(1/ε)| ≤ c1e−u/ε−α1R, (57)

where c1 is a positive constant independent of ε,R, α.
To prove (50) and (52) we next consider the following integral equation:

Ψ(y) = eB(y−1/ε)Ψ(1/ε)−
∫ 1/ε

y

eB(y−ζ)U(ζ)KΨ(ζ)dζ. (58)

Now we define a positive constant c2 independent of ε,R by c2 = 4cu/|α|(2α1− u).
Using (57) and (58), we obtain

|Ψ(y)| ≤ e−2α1(y−1/ε)|Ψ(1/ε)|+ 2cu‖K‖|Ψ(R)|
∫ 1/ε

y

e−2α1(y−ζ)−uζdζ

≤ (c1 + c2)eα1(−2y+2/ε−R)−u/ε.

(59)

Note that ‖K‖ = 1/|α| and |Ψ(R)| ≤ 2e−α1R. Then we have

|Ψ(y)− eB(y−1/ε)Ψ(1/ε)|

≤ cu‖K‖(c1 + c2)

∫ 1/ε

y

e−2α1(y−ζ)−uζ+α1(−2ζ+2/ε−R)−u/εdζ

≤ cu(c1 + c2)

|α|u
eα1(−2y+2/ε−R)−uy−u/ε.

(60)
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Taking y = R in (60), we have

|Ψ2(1/ε)| ≤ |Ψ2(R)|e2α1(R−1/ε) +
cu(c1 + c2)

|α|u
e−α1R−uR−u/ε

≤ 2eα1(−2/ε+R) +
cu(c1 + c2)

|α|u
e−α1R−uR−u/ε

≤
(

2 +
cu(c1 + c2)

|α|u

)
e−α1R−uR−u/ε.

Note that 2α1(1/ε − R) > u(1/ε + R) if ε is small. Here we assume that R is so
large that (

2 +
cu(c1 + c2)

|α|u

)
e−uR/2 ≤ min{ c1√

2
, c2}. (61)

Note that R can be given independently of α, ε. Then we see that

|Ψ(1/ε)| =
√

2|Ψ2(1/ε)| ≤ c1e−u/ε−α1R−uR/2. (62)

Next we shall show that

|Ψ(1/ε)| ≤ c1e−u/ε−α1R−muR/2, (63)

|Ψ(y)| ≤ (c1 + c2)eα1(−2y+2/ε−R)−u/ε−(m−1)uR/2 (64)

if the integer m satisfies

2α1(1/ε−R) > u/ε+ (m+ 1)uR/2

by using the principle of induction. The case of m = 1 was already proved in (59),
(62). Next we suppose that (63), (64) hold for m. Then it follows from (58), (61)
that

|Ψ(y)| ≤ |Ψ(1/ε)|e−2α1(y−1/ε) + cu‖K‖
∫ 1/ε

y

e−2α1(y−ζ)−uζ |Ψ(ζ)|dζ

≤ c1e−2α1(y−1/ε)−u/ε−α1R−muR/2

+
cu(c1 + c2)

|α|u
e−2α1y+α1(2/ε−R)−u/ε−(m+1)uR/2

≤ (c1 + c2)e−2α1(y−1/ε)−u/ε−α1R−muR/2.

Then we obtain

|Ψ(y)− eB(y−1/ε)Ψ(1/ε)|

≤ cu‖K‖(c1 + c2)

∫ 1/ε

y

e−2α1(y−ζ)−uζ−2α1(ζ−1/ε)−u/ε−α1R−muR/2dζ

≤ cu(c1 + c2)

|α|u
eα1(−2y+2/ε−R)−u/ε−(m+2)uR/2.

(65)

Setting y = R in (65), we have

|Ψ2(1/ε)| ≤ |Ψ2(R)|e2α1(R−1/ε) +
cu(c1 + c2)

|α|u
e−α1R−u/ε−(m+2)uR/2

≤ 2e−α1(2/ε−R) +
cu(c1 + c2)

|α|u
e−α1R−u/ε−(m+2)uR/2.

If 2α1(1/ε−R) > u/ε+ (m+ 2)uR/2, we obtain

|Ψ2(1/ε)| ≤ (2 +
cu(c1 + c2)

|α|u
)e−α1R−u/ε−(m+2)uR/2 ≤ c1√

2
e−α1R−u/ε−(m+1)uR/2.
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This implies that (63) and (64) hold for m+ 1.
From the above argument, there exists an integer n such that

u/ε+ (n+ 2)uR/2 ≥ 2α1(1/ε−R) > u/ε+ (n+ 1)uR/2 (66)

and

|Ψ(1/ε)| ≤ c1e−u/ε−α1R−nuR/2,

|Ψ(y)| ≤ (c1 + c2)eα1(−2y+2/ε−R)−u/ε−(n−1)uR/2.

By (66), we have −nuR/2 ≤ −2α1(1/ε−R) + u/ε+ uR so that

|Ψ(1/ε)| ≤ c1eα1(−2/ε+R)+uR, |Ψ(y)| ≤ (c1 + c2)eα1(−2y+R)+3uR/2.

Using these inequalities and carrying out the same calculation as above, we obtain

|Ψ(y)| ≤ ceα1(−2y+R), |Ψ(y)− eB(y−1/ε)Ψ(1/ε)| ≤ ceα1(−2y+R)−uR/2.

Hence

|φ−(y)| ≤ ce−α1(y−R), |φ−(1/ε)− 2e−α(1/ε−R)| ≤ ce−α1(1/ε−R)−uR/2.

Since it is easy to verify that (50) holds k = 1, 2, the proof is completed.

Since (13), (14) are of Sturm-Liouville type, the solution φ of (13), (14), can be
represented by two linearly independent solutions of (46). We obtained one solution
φ− in Lemma 4.2. We take another solution of (46) satisfying

φ′(R) = 0, φ(1/ε) = 1,

denoted by φ+. Then φ+ and φ− are linearly independent owing to their boundary
conditions. We can show in the same way as in the proof of Lemma 4.2 that for
sufficiently large R > 0, there exists ε0 > 0 such that∣∣∣∣ dkdyk φ+

∣∣∣∣ ≤ c|α|ke−α1(1/ε−y) (67)

for any y ∈ (R, 1/ε), ε < ε0 and k = 0, 1, 2, and

|φ′+(1/ε)− α| ≤ c|α|e−uR, (68)

|φ+(R)− 2e−α(1/ε−R)| ≤ ce−α1(1/ε−R)−uR/2. (69)

By φ+ and φ−, φ can be expressed as

φ(y) = c+φ+(y) + c−φ−(y)

+
1

W

(
φ−(y)

∫ y

R

φ+(ζ)V (ζ)dζ + φ+(y)

∫ 1/ε

y

φ−(ζ)V (ζ)dζ

)
,

(70)

where c+, c− are constants and W is defined by

W = φ′−(R)φ+(R)− φ−(R)φ′+(R) = φ′−(R)φ+(R),

by using φ′+(R) = 0. Here we differentiate the both sides of (70) with respect to y
and substitute y = 1/ε into the resulting equation. Then, using φ′−(1/ε) = 0, we
have

0 = c+φ
′
+(1/ε) + c−φ

′
−(1/ε)

+
1

W

(
φ′−(1/ε)

∫ 1/ε

R

φ+(ζ)V (ζ)dζ + φ′+(1/ε)

∫ 1/ε

1/ε

φ−(ζ)V (ζ)dζ

)
= c+φ

′
+(1/ε).
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Then c+ must be 0, because φ′+(1/ε) 6= 0 due to (68). Finally φ can be expressed
as

φ(y) = c−φ−(y) +
1

W

(
φ−(y)

∫ y

R

φ+(ζ)V (ζ)dζ + φ+(y)

∫ 1/ε

y

φ−(ζ)V (ζ)dζ

)
. (71)

Here we estimate W from below as

|W | ≥ 1

2
|α|e−α1(1/ε−R),

by using (51) and (69). The second and third terms are estimated as∣∣∣∣ 1

W
φ−(y)

∫ y

R

φ+(ζ)V (ζ)dζ

∣∣∣∣ ≤ c

|α|
e−α1y

∫ y

R

e(α1−v)ζdζ ≤ c

|α|
e−ρy, (72)

where ρ = min{γ, v} and∣∣∣∣ 1

W
φ+(y)

∫ 1/ε

y

φ−(ζ)V (ζ)dζ

∣∣∣∣ ≤ c

|α|
eα1y

∫ 1/ε

y

e−(α1+v)ζdζ ≤ c

|α|
e−vy. (73)

If α1 < v and α1 is independent of ε, it is easy to prove that we can take ρ = α1

in (72). Hence if c− is uniformly bounded in ε > 0, the proof of Lemma 2.2 is
completed by using (50), (72) and (73). In order to prove that c− is uniformly
bounded in ε, we recall ‖φ‖L∞(−1/ε,1/ε) ≤ c̃0 for a constant c̃0 independent of
ε, α,R because of ‖φ‖H1(−1/ε,1/ε) ≤ c0. Substituting y = R into (71), we have

c̃0 ≥ |c−| − ce−ρR thanks to φ−(R) = 1, which implies that |c−| ≤ 2c̃0 if R is
sufficiently large. Therefore (15) holds. This completes the proof of Lemma 2.2.

4.2. Existence of a single-spike solution of (1). In this subsection we prove
that there exists a solution of (1) satisfying (2), (3). In fact, the existence of a
solution was pointed out in [7] and [25]. However it seems unclear whether the
solution given in [7] or [25] has these properties. Then we give the rigorous proof
of the existence of a solution satisfying these properties.

Theorem 4.3. Assume that r > 1. There exists a solution of (1), denoted by (a, h),
such that it has the properties (2) and (3).

Remark 2. The assumption r > 1 may be unnecessary and we may be able to
prove the existence of a single-spike solution for r > 0 though we need it in our
proof of Theorem 4.3.

In what follows, we assume that µ = 1 in (1) without loss of generality by some
scaling. Then we can take c = 1 in (2). We use the useful notations such as

L2
e(I) = {φ ∈ L2(I) | φ(x) = φ(−x)}, H2

e (I) = H2(I) ∩ L2
e(I),

and set ‖ · ‖L2 = ‖ · ‖L2(−1/ε,1/ε) and ‖ · ‖H2 = ‖ · ‖H2(−1/ε,1/ε) for simplicity. We
need several lemmas to prove Theorem 4.3. We shall prove some of them after the
proof of Theorem 4.3.

First of all, we need the existence of a unique solution of the problem{
dT ′′ − T +

A

T s
= 0, x ∈ (−1, 1),

T ′ = 0, x = ±1
(74)

for any nonnegative function A ∈ H2
e (−1, 1) (see Lemmas 4.9, 4.11). We denote the

solution of the above equation by T = T [A]. Here we set A = (wε(x/ε)+φ(x/ε))r/ε
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define T̃ [wε + φ](y) = T [A](εy) for φ ∈ B√ε(0;H2
e ), where B√ε(0;H2

e ) is a closed

ball in H2
e (−1/ε, 1/ε) with center 0, radius

√
ε, that is,

B√ε(0;H2
e ) = {φ ∈ H2

e (−1/ε, 1/ε) | ‖φ‖H2 ≤
√
ε},

wε(y) = ζq/(p−1)χε(y)w(y), and χε is a cut-off function, belonging to C∞, which
satisfies 0 ≤ χε ≤ 1 and

χε(y) =


1, |y| ≤ 1

4ε
,

0,
1

2ε
≤ |y| ≤ 1

ε
.

Next we consider a problemS[A] ≡ A′′ −A+
Ap

T̃ [A]q
= 0, y ∈ (−1/ε, 1/ε),

A′ = 0, y = ±1/ε.

To prove Theorem 4.3, we find a solution φ ∈ B√ε(0;H2
e ) such as S[wε+φ] = 0 with

Neumann boundary condition. Now we set a linear operator Rε : L2
e(−1/ε, 1/ε)→

(−∞,∞) such as

Rεφ =
1

1 + s

∫ 1/ε

−1/ε
G(0, 0)

rwr−1ε

T̃ [wε]s
φdz,

where G = G(x, z) is the Green’s function of a problem{
−dφ′′ + φ = δz, x ∈ (−1, 1),
φ′ = 0, x = ±1

and can be explicitly written by

G(x, z) =


1√

d sinh(2/
√
d)

cosh

[
1 + x√

d

]
cosh

[
1− z√
d

]
, −1 < x < z,

1√
d sinh(2/

√
d)

cosh

[
1− x√

d

]
cosh

[
1 + z√
d

]
, z < x < 1.

Here δz is the Dirac’s δ-function at z. Note that G is a Lipschitz function, that is,
there is a constant c > 0 such that

|G(x1, z1)−G(x2, z2)| ≤ c(|x1 − x2|+ |z1 − z2|) (75)

for x1, x2, z1, z2 ∈ [−1, 1]. In fact, it seems that Rε is the linearized operator of
T [A] with respect to A = wε in the following sense.

Lemma 4.4. For any δ > 0 and 0 < α < 1, there exists ε0 > 0 such that

‖e−α|y|(T̃ [wε + φ1]− T̃ [wε + φ2]−Rε(φ1 − φ2))‖L2 ≤ δ‖φ1 − φ2‖L2 , (76)

for ε < ε0 and φ1, φ2 ∈ B√ε(0;H2
e ) satisfying |φ1|, |φ2| ≤ ce−α|y| for a constant

c > 0 independent of ε, δ, and

‖e−α|y|(T̃ [wε]− ζ)‖L2 ≤ cε, (77)

for ε < ε0.

Proof. Throughout this proof, we abbreviate
∫ 1/ε

−1/ε as
∫

for simplicity. Since the

solution T [A] of (74) satisfies

T [A](x) =

∫ 1

−1
G(x, z)

A

T [A]s
dz,
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we have

T̃ [wε + φ1](y)− T̃ [wε + φ2](y)

=

∫
G(εy, εz)

(wε + φ1)r

T̃ [wε + φ1]s
dz −

∫
G(εy, εz)

(wε + φ2)r

T̃ [wε + φ2]s
dz

=

∫
(f1(ε, y, z) + g1(ε, z))(φ1 − φ2)dz

−s
∫

(f2(ε, y, z) + g2(ε, z))(T̃ [wε + φ1]− T̃ [wε + φ2])dz,

where f1(ε, y, z), f2(ε, y, z), g1(ε, z) and g2(ε, z) are defined by

f1(ε, y, z) = (G(εy, εz)−G(0, 0))
r(wε + (1− κ)φ1 + κφ2)r−1

T̃ [wε + φ1]s
,

f2(ε, y, z) = (G(εy, εz)−G(0, 0))
(wε + φ2)r

(T̃ [wε + φ1] + θ(T̃ [wε + φ2]− T̃ [wε + φ1]))s+1
,

g1(ε, z) = G(0, 0)
r(wε + (1− κ)φ1 + κφ2)r−1

T̃ [wε + φ1]s
,

and

g2(ε, z) = G(0, 0)
(wε + φ2)r

(T̃ [wε + φ1] + θ(T̃ [wε + φ2]− T̃ [wε + φ1]))s+1

for some 0 ≤ κ ≤ 1 and 0 ≤ θ ≤ 1. Note that f1, f2, g1 and g2 satisfy

|f1(ε, y, z)| ≤ cε(|y|+ |z|)e−α(r−1)|z|, g1(ε, z) ≤ ce−α(r−1)|z|,
|f2(ε, y, z)| ≤ cε(|y|+ |z|)e−αr|z|, g2(ε, z) ≤ ce−αr|z|. (78)

Here we used (89), which will be proved later. Then we have∫
g2(ε, z)(T̃ [wε + φ1]− T̃ [wε + φ2])dz

=

∫
g2(ε, z)

{∫
(f1(ε, z, z1) + g1(ε, z1))(φ1 − φ2)dz1

−s
∫

(f2(ε, z, z1) + g2(ε, z1))(T̃ [wε + φ1]− T̃ [wε + φ2])dz1

}
dz

=

∫
g2(ε, z)

(∫
f1(ε, z, z1)(φ1 − φ2)dz1

)
dz +

(∫
g2dz

)(∫
g1(φ1 − φ2)dz

)
−s
∫
g2(ε, z)

(∫
f2(ε, z, z1)(T̃ [wε + φ1]− T̃ [wε + φ2])dz1

)
dz

−s
(∫

g2dz

)(∫
g2(T̃ [wε + φ1]− T̃ [wε + φ2])dz

)
,

from which we obtain∫
g2(ε, z)(T̃ [wε + φ1]− T̃ [wε + φ2])dz =

∫
g2dz

1 + s
∫
g2dz

(∫
g1(φ1 − φ2)dz

)
+

1

1 + s
∫
g2dz

∫
g2(ε, z)

(∫
f1(ε, z, z1)(φ1 − φ2)dz1

)
dz

− s

1 + s
∫
g2dz

∫
g2(ε, z)

(∫
f2(ε, z, z1)(T̃ [wε + φ1]− T̃ [wε + φ2])dz1

)
dz.
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So we have

T̃ [wε + φ1](y)− T̃ [wε + φ2](y)

=

∫
f1(ε, y, z)(φ1 − φ2)dz +

1

1 + s
∫
g2dz

∫
g1(φ1 − φ2)dz

− s

1 + s
∫
g2dz

∫
g2(ε, z)

(∫
f1(ε, z, z1)(φ1 − φ2)dz1

)
dz

+
s2

1 + s
∫
g2dz

∫
g2(ε, z)

(∫
f2(ε, z, z1)(T̃ [wε + φ1]− T̃ [wε + φ2])dz1

)
dz

−s
∫
f2(ε, y, z)(T̃ [wε + φ1]− T̃ [wε + φ2])dz.

Now we define an operator K : L2
e(−1/ε, 1/ε)→ L2

e(−1/ε, 1/ε) by

Kψ =
s2e−α|y|

1 + s
∫
g2dz

∫
g2(ε, z)

(∫
f2(ε, z, z1)eα|z1|ψdz1

)
dz

− se−α|y|
∫
f2(ε, y, z)eα|z|ψdz.

From (78), we have ‖Kψ‖L2 ≤ cε‖ψ‖L2 , which implies that I−K has the invertible
operator (I−K)−1 with ‖(I−K)−1‖ ≤ c, where ‖·‖ is the usual norm for operators.
So we have

e−α|y|(T̃ [wε + φ1](y)− T̃ [wε + φ2](y))

=
e−α|y|

1 + s
∫
g2dz

∫
g1(φ1 − φ2)dz

+ (I −K)−1
{
K

e−α|y|

1 + s
∫
g2dz

∫
g1(φ1 − φ2)dz + e−α|y|

∫
f1(ε, y, z)(φ1 − φ2)dz

− se−α|y|

1 + s
∫
g2dz

∫
g2(ε, z)

(∫
f1(ε, z, z1)(φ1 − φ2)dz1

)
dz

}
.

Using (78) again and wε ≤ ce−|y|, we have

‖e−α|y|(T̃ [wε + φ1]− T̃ [wε + φ2]−Rε(φ1 − φ2))‖L2

≤ c‖φ1 − φ2‖L2

·
(
ε+ e−α(r−1)R + ‖e−α|y|(T̃ [wε + φ1]− T̃ [wε])‖L2 +

∣∣∣∣ ∫ g2dz − 1

∣∣∣∣),
(79)

for sufficiently large R > 0. Because of (78), (79) and |Rεφ| ≤ c‖φ‖L2 , we have

‖e−α|y|(T̃ [wε + φ1]− T̃ [wε + φ2])‖L2 ≤ c‖φ1 − φ2‖L2 . (80)

Similarly, we can also prove (77) because of ζ =
∫∞
−∞ G(0, 0)ζ

qr
p−1wr/ζsdz. Then,

because of
∫∞
−∞G(0, 0) (ζ

q
p−1w)r/ζs+1dz = 1, |φ2| ≤ ce−α|y| and (80), we have∣∣∣∣ ∫ g2dz − 1

∣∣∣∣ ≤ c(‖e−α|y|(T̃ [wε + φ1]− T̃ [wε])‖L2

+ ‖e−α|y|(T̃ [wε + φ2]− T̃ [wε])‖L2 + ‖e−α|y|(T̃ [wε]− ζ)‖L2 + ε)

≤ c
√
ε.

Hence it follows from (79) that

‖e−α|y|(T̃ [wε + φ1]− T̃ [wε + φ2]−Rε(φ1 − φ2))‖L2 ≤ δ‖φ1 − φ2‖L2 .
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Thus we complete the proof.

We define another linear operator Lε : D(Lε)→ L2
e(−1/ε, 1/ε) by

Lεφ = φ′′ − φ+ p
wp−1ε

T̃ [wε]q
φ− q wpε

T̃ [wε]q+1
Rεφ,

where the domain of Lε, denoted by D(Lε), is defined by

D(Lε) = {φ ∈ H2
e (−1/ε, 1/ε) | φ′(±1/ε) = 0}.

As well as Rε, we expect that Lε is the linearized operator of S[A] with respect to
A = wε. In addition we set a nonlinear map M(φ) : D(Lε) → L2

e(−1/ε, 1/ε) such
as M(φ) = S[wε + φ]− S[wε]− Lεφ. Note that

M(φ) =
(wε + φ)p

T̃ [wε + φ]q
− wpε
T̃ [wε]q

− p w
p−1
ε

T̃ [wε]q
φ+ q

wpε
T̃ [wε]q+1

Rεφ.

Since we would like to seek a solution such as S[wε+φ] = 0, it suffices to show that
there is a solution φ ∈ D(Lε) such as M(φ) = −S[wε]− Lεφ, namely,

φ = N(φ) ≡ −L−1ε (M(φ) + S[wε]), (81)

because Lε has an invertible operator L−1ε .

Lemma 4.5. There is a constant κ > 0 independent of ε such that ‖Lεφ‖L2 ≥
κ‖φ‖H2 for any ε < ε0 and φ ∈ D(Lε). In addition, Lε is surjective.

This lemma is similar to Lemma 4.1 in [4]. However, the authors of [4] considered
the case of two-dimensional whole space, which is different from our case. So we
need to prove Lemma 4.5, which shall be done later.

We construct a Cauchy sequence in H2(−1/ε, 1/ε) in order to seek a solution of
(81). We take a sequence φn ∈ D(Lε) such as{

φ0 = 0,
φn+1 = −L−1ε (M(φn) + S[wε]).

(82)

It can be shown from the following three lemmas that {φn} is a Cauchy sequence
in H2(−1/ε, 1/ε).

Lemma 4.6. There is a constant c > 0 such as ‖S[wε]‖L2 ≤ cε and |S[wε]| ≤ ce−|y|
in y ∈ (−1/ε, 1/ε).

Proof. We obtain

S[wε] = w′′ε − wε +
wpε

T̃ [wε]q
=

wpε
T̃ [wε]q

− (ζ
q
p−1w)p

ζq
χε + ζ

q
p−1 (2w′χ′ε + wχ′′ε )

= wpε

(
1

T̃ [wε]q
− 1

ζq

)
+ ζ

q
p−1wp(χpε − χε) + ζ

q
p−1 (2w′χ′ε + wχ′′ε ).

Because of Lemma 4.4, (89) and w ≤ ce−|y|, we have

‖S[wε]‖L2 ≤ c‖e−p|y|(T̃ [wε]− ζ)‖L2 + ce−1/4ε ≤ cε.

Also, it is easy to verify the second inequality in the statement of the lemma. So
we omit the details of the proof.
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Lemma 4.7. For each δ > 0 and 0 < α < 1, there exists ε0 > 0 such that

‖M(φ)‖L2 ≤ δ‖φ‖L2 , ‖M(φ1)−M(φ2)‖L2 ≤ δ‖φ1 − φ2‖L2 (83)

for ε < ε0 and φ, φ1, φ2 ∈ D(Lε) ∩ B√ε(0;H2
e ) satisfying |φ(y)|, |φ1(y)|, |φ2(y)| ≤

ce−α|y|.

Proof. We first have

M(φ) =
(wε + φ)p

T̃ [wε + φ]q
− wpε
T̃ [wε]q

− p w
p−1
ε

T̃ [wε]q
φ+ q

wpε
T̃ [wε]q+1

Rεφ

= p

(
(wε + θφ)p−1

T̃ [wε + φ]q
− wp−1ε

T̃ [wε]q

)
φ+ wpε

(
1

T̃ [wε + φ]q
− 1

T̃ [wε]q
+

qRεφ

T̃ [wε]q+1

)
for some 0 ≤ θ ≤ 1. Hence we obtain

‖M(φ)‖L2

≤ c‖φ‖L2(‖(wε + θφ)p−1 − wp−1ε ‖L2 + ‖wp−1ε (T̃ [wε + φ]− T̃ [wε])‖L2)

+ c(‖wpε(T̃ [wε + φ]− T̃ [wε]−Rεφ)‖L2 + ‖wpε(T̃ [wε + φ]− T̃ [wε])Rεφ‖L2).

From |φ| ≤ ce−α|y|, it holds that

‖(wε + θφ)p−1 − wp−1ε ‖L2 ≤ c(e−αR + ‖(wε + θφ)p−1 − wp−1ε ‖L2(−R,R)).

From ‖φ‖H2 ≤
√
ε and Lemma 4.4, we can readily show ‖M(φ)‖L2 ≤ δ‖φ‖L2 .

Similarly, we also have ‖M(φ1) −M(φ2)‖L2 ≤ δ‖φ1 − φ2‖L2 . We omit the details
of the proof.

Lemma 4.8. Suppose that 1/p < β < 1. Then there are ε0 > 0 independent of n

and c > 0 independent of n, ε such that φn ∈ B√ε(0;H2
e ) and |φn| ≤ cε

1
4 e−β|y| for

ε < ε0 and y ∈ (−1/ε, 1/ε).

Proof. Throughout this proof, we suppose that a constant c is independent of ε and
n. Since Lεφn+1 = −M(φn)− S[wε], it follows from Lemmas 4.6, 4.7 that

‖φn+1‖H2 ≤ 1

κ
(‖M(φn)‖L2 + ‖S[wε]‖L2) ≤ 1

κ
(δ‖φn‖L2 + cε) ≤ cδ

√
ε (84)

if φn ∈ B√ε(0;H2
e ) satisfies |φn| ≤ cε

1
4 e−β|y|.

Next we consider an ordinary differential equation

φ′′n+1 − (1− p w
p−1
ε

T̃ [wε]q
)φn+1 = −M(φn)− S[wε] + q

wpε
T̃ [wε]q+1

Rεφn+1 ≡ Fn(y),

recalling (82). Since the above equation with Neumann boundary condition is of
Sturm-Liouville type, as well as (70), we have

φn+1(y) = cn+1φ−(y)

+
1

W

{
φ−(y)

∫ y

R

φ+(z)Fn(z)dz + φ+(y)

∫ 1/ε

y

φ−(z)Fn(z)dz

}
,

(85)

where both of φ+, φ− are solutions of

φ′′ − (1− p w
p−1
ε

T̃ [wε]q
)φ = 0,

satisfying the boundary conditions φ′+(R) = 0, φ+(1/ε) = 1 and φ−(R) = 1,
φ′−(1/ε) = 0, respectively, and W is defined by

W = φ′−(R)φ+(R)− φ−(R)φ′+(R) = φ′−(R)φ+(R).
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Here we can show by the similar argument to the proof of Lemma 2.2 that

1

|W |
≤ ce1/ε−R, |φ−(y)| ≤ ce−(y−R),

|φ+(y)| ≤ ce−(1/ε−y), ‖φ−‖L2(R,1/ε) ≥
1

c
.

(86)

Using the principle of induction, we show that

|φn| ≤ cε
1
4 e−βy (87)

for R ≤ y ≤ 1/ε. Because of φ0 ≡ 0, it is clear that (87) holds for n = 0.
Next we assume that (87) holds for n. Then it follows from (84), (86), (87) and
|Rεφ| ≤ c‖φ‖L2 that ∣∣∣∣ 1

W
φ−(y)

∫ y

R

φ+(z)S[wε]dz

∣∣∣∣ ≤ cεe−βy,∣∣∣∣ 1

W
φ+(y)

∫ 1/ε

y

φ−(z)S[wε]dz

∣∣∣∣ ≤ cεe−y,∣∣∣∣ 1

W
φ−(y)

∫ y

R

φ+(z)q
wpε
T̃ [wε]

Rεφn+1dz

∣∣∣∣ ≤ c√εe−y,∣∣∣∣ 1

W
φ+(y)

∫ 1/ε

y

φ−(z)q
wpε
T̃ [wε]

Rεφn+1dz

∣∣∣∣ ≤ c√εe−y.
Furthermore we easily see that

|M(φn)| ≤ c{((wε + θφn)p−1 − wp−1ε )|φn|+ wp−1ε |T̃ [wε + φn]− T̃ [wε]||φn|

+ wpε |T̃ [wε + φn]− T̃ [wε]|+ wpε |Rεφn|}
so that we have∣∣∣∣ 1

W
φ−(y)

∫ y

R

φ+(z)M(φn)dz

∣∣∣∣ ≤ c(ε βp−1
8(1−β) + ε

1
4 )ε

1
4 e−βy,∣∣∣∣ 1

W
φ+(y)

∫ 1/ε

y

φ−(z)M(φn)dz

∣∣∣∣ ≤ c(ε βp−1
8(1−β) + ε

1
4 )ε

1
4 e−βy.

From these inequalities, (84) and (85), we obtain

cδ
√
ε ≥ ‖φn+1‖L2(R,1/ε) ≥

cn+1

c
− cδε 1

4

if R is sufficiently large and ε is sufficiently small. Here we suppose ‖e−y‖L2 ≤ c.

Therefore we have cn+1 ≤ cδε
1
4 . Using the above inequalities and (85) again, we

have

|φn+1| ≤ cδε
1
4 e−y+R + cδε

1
4 e−βy ≤ cε 1

4 e−βy

if δ is sufficiently small. On the other hand, using Sobolev’s embedding, we have
|φn| ≤ c

√
ε for −R ≤ y ≤ R so that we finally obtain

|φn| ≤ cε
1
4 e−β|y|

for −1/ε < y < 1/ε. Thus the proof is completed.

From Lemmas 4.6, 4.7, 4.8, we have

‖φn+1‖H2 ≤ 1

κ
(‖M(φn)‖L2 + ‖S[wε]‖L2) ≤ 1

κ
(δ‖φn‖L2 + cε) ≤

√
ε,

‖φn+1 − φn‖H2 ≤ δ

κ
‖M(φn)−M(φn−1)‖L2 ≤ δ

κ
‖φn − φn−1‖L2 .
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Therefore it follows that {φn} is a Cauchy sequence in H2(−1/ε, 1/ε), which implies
that there exists a function φ ∈ H2(−1/ε, 1/ε) such as φn → φ in H2(−1/ε, 1/ε)
strongly as n → ∞ and φ = N(φ). Hence we have S[wε + φ] = 0. Furthermore, it

is easy to show that the pair of ã = wε + φ and h̃ = T̃ [wε + φ] is a solution of (1)
and satisfies (2), (3). This completes the proof.

In what follows, we prove the lemmas which have not been done yet. We first
prove the existence of T [A].

Lemma 4.9. For any δ1 > 0 and any nonnegative function A ∈ H2
e (−1, 1), there

exists a unique solution Tδ1 = Tδ1 [A] of the problem dT ′′δ1 − Tδ1 +
A

(Tδ1 + δ1)s
= 0, x ∈ (−1, 1),

T ′δ1 = 0, x = ±1.
(88)

Furthermore Tδ1 [A] is even.

Proof. We take a sequence Tn defined by

T0 = 0, Tn+1 =

∫ 1

−1
G(x, z)

A

(Tn + δ1)s
dz.

Then we can easily show that

|Tn(x)| ≤ G(0, 0)

δs1

∫ 1

−1
Adz,

|Tn(x1)− Tn(x2)| ≤ c

δs1
|x1 − x2|

∫ 1

−1
Adz.

Therefore, it follows from Ascoli-Arzela’s Theorem that there exist a subsequence
Tnk and a function T such that Tnk converges to T uniformly on [−1, 1] as k →∞
and T is a solution of (88). Next we show the uniqueness of a solution of (88).
Suppose that T1, T2 are solutions of (88). Then we have

d(T1 − T2)′′ − (T1 − T2) +
A

(T1 + δ1)s
− A

(T2 + δ1)s

= d(T1 − T2)′′ − (T1 − T2)− s A

(T1 + δ1 + κ(T2 − T1))s+1
(T1 − T2) = 0

for some 0 ≤ κ ≤ 1. Multiplying T1 − T2 to the both sides and integrating it by
parts, we have

d‖T ′1 − T ′2‖2L2(−1,1) + ‖T1 − T2‖2L2(−1,1)

+

∫ 1

−1
s

A

(T1 + δ1 + κ(T2 − T1))s+1
(T1 − T2)2dx = 0,

which implies T1 − T2 = 0. Hence we obtain the uniqueness of a solution of (88).
Furthermore it can also be shown from the uniqueness that the solution of (88) is
even. This completes the proof.

Lemma 4.10. Let Tδ1 be a solution of (88) for a nonnegative function A ∈ H2
e (−1,

1). Then it must satisfy

e−2/d
{(

1

2

∫ 1

−1
Adx

) 1
s+1

− δ1
}
≤ Tδ1 ≤ e2/d

(
1

2

∫ 1

−1
Adx

) 1
s+1

.



UNSTABLE EIGENVALUES FOR STRIPE PATTERNS 323

This lemma can be shown by the same argument as in [19] and so we omit the
details.

Next we show that Tδ1 [A] approaches a solution of the problem (74) as δ1 → 0.

Lemma 4.11. Let Tδ1 [A] be a unique solution of (88) given in Lemma 4.9 for
δ1 > 0. Then Tδ1 [A] converges to a unique solution of (74), denoted by T [A],
uniformly on [−1, 1] as δ1 → 0. Furthermore T [A] is even.

Proof. Since Tδ1 [A] is a solution, we have

Tδ1 [A](x) =

∫ 1

−1
G(x, z)

A

(Tδ1 [A] + δ1)s
dz.

Then it follows from Lemma 4.10 and (75) that Tδ1 [A] is uniformly bounded in
δ1 > 0 and

|Tδ1 [A](x1)− Tδ1 [A](x2)| ≤
∫ 1

−1
|G(x1, z)−G(x2, z)|

A

(Tδ1 [A] + δ1)s
dz ≤ c|x1 − x2|,

for a constant c > 0 independent of δ1 > 0. From Ascoli-Arzela’s Theorem, we
have a subsequence δ1,k of δ1 for k = 1, 2, . . ., and a solution T [A] of (74) such that
δ1,k → 0 and Tδ1,k [A] → T [A] uniformly on [−1, 1] as k → ∞. Furthermore we
can prove the uniqueness of a solution of (74) by using the similar argument for
the uniqueness of Tδ1 [A]. Hence Tδ1 [A] converges to T [A] uniformly on [−1, 1] as
δ1 → 0. Since Tδ1 [A] is even, it is clear that T [A] is also even.

From Lemma 4.11, it is easy to show that the following result holds. So we omit
the details of the proof.

Corollary 1. Let T be a solution of the problem (74) for A ∈ H2
e (−1, 1). Then it

must satisfy

e−2/d
(

1

2

∫ 1

−1
Adx

) 1
s+1

≤ T ≤ e2/d
(

1

2

∫ 1

−1
Adx

) 1
s+1

.

From this corollary, an estimate

e−2/d
(

1

2

∫ 1/ε

−1/ε
(wε + φ)rdy

) 1
s+1

≤ T̃ [wε + φ] ≤ e2/d
(

1

2

∫ 1/ε

−1/ε
(wε + φ)rdx

) 1
s+1

holds for φ ∈ B√ε(0;H2
e ). Furthermore, if |φ| ≤ ce−α|y| with 0 < α < min{p−1, r−

1, 1/2}, we obtain

1

2
e−2/d

(
1

2

∫ ∞
−∞

ζ
qr
p−1wrdy

) 1
s+1

≤ T̃ [wε + φ] ≤ 2e2/d
(

1

2

∫ ∞
−∞

ζ
qr
p−1wrdy

) 1
s+1

. (89)

Next we prove that Lε is an invertible operator. In the proof, we consider an
operator L0 : H2

e (−∞,∞)→ L2
e(−∞,∞) such as

L0φ = φ′′ − φ+ pwp−1φ− qr

s+ 1

∫∞
−∞ wr−1φdz∫∞
−∞ wrdz

wp.

We consider that L0 is the limiting operator of Lε as ε → 0. Then the following
lemma is useful.
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Lemma 4.12. L0 is invertible.

This lemma seems to be similar to Lemma 4.1 in [4]. It is true that the authors
of [4] consider the case of the two-dimensional whole space, which is different from
our case. However, we can prove the above lemma by using the similar argument to
Lemma 4.1 in [4] because the domain of L0 is H2

e (−∞,∞). So we omit the details.
Finally we prove Lemma 4.5.

Proof. Suppose that there exists φε ∈ D(Lε) such that ‖φε‖H2 = 1 and ‖Lεφε‖L2 →
0 as ε → 0. From ‖φε‖H2 = 1, there exist a subsequence φεk and a function
φ0 ∈ H2

e (−∞,∞) such as φεk → φ0 as ε→ 0 weakly in H2(−∞,∞). From Lemma
4.4 and ‖Lεφε‖L2 → 0, it holds that

Lεkφεk → L0φ0 weakly in L2(−∞,∞)

as k →∞. Therefore we obtain φ0 = 0 from Lemma 4.12.
Let χR be a cut-off function satisfying

χR =

{
1, |y| ≤ R,
0, |y| ≥ R+ 1.

Since φεk → 0 as k → ∞ weakly in H2(−∞,∞), we have φεkχR → 0 as k → ∞
strongly in H1(−∞,∞) by using compact embedding, which implies φεkχR → 0 as
k → ∞ strongly in H2(−∞,∞) because of ‖Lεφε‖L2 → 0 as ε → 0. Here we may
replace k with an appropriate subsequence if needed, but we use the same notation.

Next we have an estimate of ψk = φεk(1− χR). Multiplying ψk to both sides of
Lεψk = Lεφεk − Lε(φεkχR) and integrating it by parts, we have

‖ψk‖H1 ≤ ‖Lεφεk‖L2 + ‖Lε(φεkχR)‖L2 + ce−(p−1)R

by using w ≤ ce−|y|. Then we obtain

lim sup
k→∞

‖ψk‖H1 ≤ ce−(p−1)R

because ‖Lεφεk‖L2 and ‖Lε(φεkχR)‖L2 tends to 0 as k → ∞. Furthermore, from
the definition of Lε, we can easily verify

lim sup
k→∞

‖ψk‖H2 ≤ ce−(p−1)R.

Hence we have

1 ≤ lim sup
k→∞

(‖φεkχR‖H2 + ‖φεk(1− χR)‖H2) ≤ ce−(p−1)R → 0

as R→∞, which is a contradiction.
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