Citation: Yuri B. Gaididei, Carlos Gorria, Rainer Berkemer, Peter L. Christiansen, Atsushi Kawamoto, Mads P. Sørensen, Jens Starke. Stochastic control of traffic patterns[J]. Networks and Heterogeneous Media, 2013, 8(1): 261-273. doi: 10.3934/nhm.2013.8.261
[1] | M. Abramowitz and I. Stegun, "Handbook of Mathematical Functions," Dover Publications, Inc., New York, 1972. doi: 10.1119/1.1972842 |
[2] | M. Bando, K. Hasebe, A. Nakayama, A. Shibata and Y. Sugiyama, Dynamical model of traffic congestion and numerical simulation, Phys. Rev. E, 51 (1995), 1035. |
[3] | A. Bose and P. Ioannou, Mixed manual/semi-automated traffic: A macroscopic analysis, Trasp. Res., Part C: Emerg. Technol., 11 (2003), 439. doi: 10.1016/j.trc.2002.04.001 |
[4] | A. H. Cohen, P. J. Holmes and R. H. Rand, The nature of the coupling between segmental oscillators of the lamprey spinal generator for locomotion: A mathematical model, J. Math. Biol., 13 (1982), 345-369. doi: 10.1007/BF00276069 |
[5] | L. C. Davis, Effect of adaptive cruise control systems on traffic flow, Phys. Rev. E, 69 (2004), 066110. doi: 10.1103/PhysRevE.69.066110 |
[6] | Submitted. |
[7] | Yu. B. Gaididei, R. Berkemer, J. G. Caputo, P. L. Christiansen, A. Kawamoto, T. Shiga, M. P. Sørensen and J. Starke, Analytical solutions of jam pattern formation on a ring for a class of optimal velocity traffic models, New Journal of Phys., 11 (2009), 073012 (1-19). doi: 10.1088/1367-2630/11/7/073012 |
[8] | Yu. B. Gaididei, R. Berkemer, C. Gorria, P. L. Christiansen, A. Kawamoto, T. Shiga, M. P. Sørensen and J. Starke, Complex spatiotemporal behavior in a chain of one-way nonlinearly coupled elements, Discrete and Continuous Dynamical Systems. Series S., 4 (2011), 1167-1179. doi: 10.3934/dcdss.2011.4.1167 |
[9] | C. W. Gardiner, "Handbook of Stochastic Method,'' 2nd ed. (Springer, Berlin), 1989. doi: 10.1007/978-3-662-02377-8 |
[10] | D. Helbing, Traffic and related self-driven many-particle systems, Rev. Modern Phys., 73 (2001), 1067-1141. doi: 10.1103/RevModPhys.73.1067 |
[11] | V. In, A. Kho, J. D. Neff, A. Palacios, P. Longhini and B. K. Meadows, Experimental observation of multifrequency patterns in arrays of coupled nonlinear oscillators, Phys. Rev. Lett., 91 (2003), 244101-244104. doi: 10.1103/PhysRevLett.91.244101 |
[12] | B. S. Kerner, "The physics of Traffic: Empirical Freeway Pattern Features, Engineering Applications, and Theory," Heidelberg: Springer, 2004. |
[13] | B. S. Kerner, "Introduction to Modern Traffic Flow Theory and Control. The Long Road to Three-Phase Traffic Theory," Berlin: Springer, 2009. |
[14] | S. Kikuchi, N. Uno and M. Tanaka, Impacts of shorter perception-reaction time of adapted cruise controlled vehicles on traffic flow and safety, J. Trans. Eng., 129 (2003), 146. |
[15] | P. E. Kloeden and E. Platen, "Numerical Solution of Stochastic Differential Equations," 3rd ed., Springer, Berlin, 2004. |
[16] | K. Konishi, H. Kokame and K. Hirata, Coupled map car-following model and its delayed-feedback control, Phys. Rev. E 60 4000; |
[17] | H. K. Lee, H.-W. Lee and D. Kim, Macroscopic traffic models from microscopic car-following models, Phys. Rev. E, 64 (2001), 056126. doi: 10.1103/PhysRevA.70.059902 |
[18] | ChiYing Liang and Huei Peng, String stability analysis of adaptive cruise controlled vehicles, JSME Int. J., Ser. C, 43 (2000), 671. |
[19] | P. Y. Li and A. Shrivastava, Traffic flow stability induced by constant time headway policy for adaptive cruise control vehicles, Transp. Res., Part C: Emerg. Technol., 10 (2002), 275. |
[20] | S. Maerivoet and B. De Moor, Cellular automata models of road traffic, Phys. Reps., 419 (2005), 1. |
[21] | T. Nagatani, The physics of traffic jams, Rep. Prog. Phys., 65 (2002), 1331-1386. |
[22] | K. Nagel and M. Schreckenberg, A cellular automaton model for freeway traffic, J. Phys. I France, 2 (1992), 2221. |
[23] | K. Nishinari, K. Sugawara, T. Kazama, A. Schadschneider and D. Chowdhury, Modelling of self-driven particles: Foraging ants and pedestrians, Physica A, 372 (2006), 132. |
[24] | C. M. A. Pinto and M. Golubitsky, Central pattern generators for bipedal locomotion, J. Math. Biol., 53 (2006), 474-489. doi: 10.1007/s00285-006-0021-2 |
[25] | A. Schadschneider, D. Chowdhury and K. Nishinari, "Stochastic Transport in Complex Systems," Elsevier, 2011 |
[26] | N. J. Suematsu, S. Nakata, A. Awazu and H. Nishimori, Collective behavior of inanimate boats, Phys. Rev. E, 81 (2010), 056210. |
[27] | Yu. Sugiyama, M. Fukui, M. Kikuchi, K. Hasebe, A. Nakayama, K. Nishinari, Sh. Tadaki and S. Yukawa, Traffic jams without bottlenecks-experimental evidence for the physical mechanism of the formation of a jam, New Journal of Phys., 10 (2008), 1-7. 033001. |
[28] | A. Takamatsu, R. Tanaka and T. Fujii, Hidden symmetry in chains of biological coupled oscillators, Phys. Rev. Lett., 92 (2004), 228102-228105. |
[29] | A. Takamatsu, R. Tanaka, T. Nakagaki, T. Fujii and I. Endo, Spatiotemporal symmetry in rings of coupled biological oscillators of Physarum Plasmodial slime mold, Phys. Rev. Lett., 87 (2001), 078102-078105. |
[30] | D. Tanaka, General chemotactic model of oscillators, Phys. Rev. Lett., 99 (2007), 134103. |
[31] | D. E. Wolf, M. Schreckenberg and A. Bachem, "Traffic and Granular Flow," Word Scientific, Singapore, 1996. |