Citation: Grégory Faye, Pascal Chossat. A spatialized model of visual texture perception using the structure tensor formalism[J]. Networks and Heterogeneous Media, 2013, 8(1): 211-260. doi: 10.3934/nhm.2013.8.211
[1] | R. Aurich and F. Steiner, Periodic-orbit sum rules for the hadamard-gutzwiller model, Physica D, 39 (1989), 169-193. doi: 10.1016/0167-2789(89)90003-1 |
[2] | T. I. Baker and J. D. Cowan, Spontaneous pattern formation and pinning in the primary visual cortex, Journal of Physiology-Paris, 103 (2009), 52-68. doi: 10.1016/j.jphysparis.2009.05.011 |
[3] | N. L. Balazs and A. Voros, Chaos on the pseudosphere, Physics Reports, 143 (1986), 109-240. doi: 10.1016/0370-1573(86)90159-6 |
[4] | R. Ben-Yishai, RL Bar-Or and H. Sompolinsky, Theory of orientation tuning in visual cortex, Proceedings of the National Academy of Sciences, 92 (1995), 3844-3848. doi: 10.1073/pnas.92.9.3844 |
[5] | J. Bigun and G. Granlund, Optimal orientation detection of linear symmetry, in "Proc. First Int'l Conf. Comput. Vision", pages 433-438. EEE Computer Society Press, (1987). |
[6] | B. Blumenfeld, D. Bibitchkov and M. Tsodyks, Neural network model of the primary visual cortex: From functional architecture to lateral connectivity and back, Journal of Computational Neuroscience, 20 (2006), 219-241. doi: 10.1007/s10827-006-6307-y |
[7] | I. Bosch Vivancos, P. Chossat and I. Melbourne, New planforms in systems of partial differential equations with Euclidean symmetry, Archive for Rational Mechanics and Analysis, 131 (1995), 199-224. doi: 10.1007/BF00382886 |
[8] | W. H. Bosking, Y. Zhang, B. Schofield and D. Fitzpatrick, Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex, The Journal of Neuroscience, 17 (1997), 2112-2127. |
[9] | P. C. Bressloff and J. D.Cowan, The functional geometry of local and horizontal connections in a model of v1, Journal of Physiology, Paris, 97 (2003), 221-236. doi: 10.1016/j.jphysparis.2003.09.017 |
[10] | P. C. Bressloff and J. D. Cowan, A spherical model for orientation and spatial frequency tuning in a cortical hypercolumn, Philosophical Transactions of the Royal Society B, (2003). doi: 10.1098/rstb.2002.1109 |
[11] | P. C. Bressloff, Spatially periodic modulation of cortical patterns by long-range horizontal connections, Physica D: Nonlinear Phenomena, 185 (2003), 131-157. doi: 10.1016/S0167-2789(03)00238-0 |
[12] | P. C. Bressloff and J. D. Cowan, The visual cortex as a crystal, Physica D: Nonlinear Phenomena, 173 (2002), 226-258. doi: 10.1016/S0167-2789(02)00677-2 |
[13] | P. C. Bressloff, J. D. Cowan, M. Golubitsky and P. J. Thomas, Scalar and pseudoscalar bifurcations motivated by pattern formation on the visual cortex, Nonlinearity, 14 (2001), 739. doi: 10.1088/0951-7715/14/4/305 |
[14] | P. C. Bressloff, J. D. Cowan, M. Golubitsky, P. J. Thomas and M. C. Wiener, Geometric visual hallucinations, euclidean symmetry and the functional architecture of striate cortex, Phil. Trans. R. Soc. Lond. B, 306 (2001), 299-330. doi: 10.1098/rstb.2000.0769 |
[15] | P. C. Bressloff and A. M. Oster, Theory for the alignment of cortical feature maps during development, Physical Review E, 82 (2010), 021920. doi: 10.1103/PhysRevE.82.021920 |
[16] | I. Chavel, "Eigenvalues in Riemannian Geometry," 115. Academic Press, 1984. |
[17] | S. Chemla and F. Chavane, Voltage-sensitive dye imaging: Technique review and models, Journal of Physiology-Paris, 104 (2010), 40-50. doi: 10.1016/j.jphysparis.2009.11.009 |
[18] | P. Chossat, G. Faye and O. Faugeras, Bifurcations of hyperbolic planforms, Journal of Nonlinear Science, February 2011. doi: 10.1007/s00332-010-9089-3 |
[19] | P. Chossat and R. Lauterbach, "Methods in Equivariant Bifurcations and Dynamical Systems," World Scientific Publishing Company, Singapur, 2000. |
[20] | P. Chossat and O. Faugeras, Hyperbolic planforms in relation to visual edges and textures perception, Plos. Comput. Biol., 5 (2009), e1000625. doi: 10.1371/journal.pcbi.1000625 |
[21] | P. G. Ciarlet and J. L. Lions, "Handbook of Numerical Analysis," II Finite Element Methods (part1). North-Holland, 1991. |
[22] | G. Citti and A. Sarti, A cortical based model of perceptual completion in the roto-translation space, J. Math. Imaging Vis., (2006), 307-326. doi: 10.1007/s10851-005-3630-2 |
[23] | D. P. Edwards, K. P. Purpura and E. Kaplan, Contrast sensitivity and spatial frequency response of primate cortical neurons in and around the cytochrome oxidase blobs, Vision Research, 35 (1995), 1501-1523,. |
[24] | I. Erdélyi, "Higher Transcendental Functions," 1 Robert E. Krieger Publishing Company, 1985. |
[25] | G. B. Ermentrout and J. D. Cowan, A mathematical theory of visual hallucination patterns, Biological Cybernetics, 34 (1979), 137-150. doi: 10.1007/BF00336965 |
[26] | G. Faye and P. Chossat, Bifurcation diagrams and heteroclinic networks of octagonal h-planforms, Journal of Nonlinear Science, 22 (2012), 277-326. doi: 10.1007/s00332-011-9118-x |
[27] | G. Faye, P. Chossat and O. Faugeras, Analysis of a hyperbolic geometric model for visual texture perception, The Journal of Mathematical Neuroscience, 1 (2011). doi: 10.1186/2190-8567-1-4 |
[28] | M. Golubitsky, L. J. Shiau and A. Török, Bifurcation on the visual cortex with weakly anisotropic lateral coupling, SIAM Journal on Applied Dynamical Systems, 2 (2003), 97-143. doi: 10.1137/S1111111102409882 |
[29] | M. Golubitsky, I. Stewart and D. G. Schaeffer, "Singularities and Groups in Bifurcation Theory," volume II. Springer, 1988. doi: 10.1007/978-1-4612-4574-2 |
[30] | D. Hansel and H. Sompolinsky, Modeling feature selectivity in local cortical circuits, Methods of Neuronal Modeling, (1997), 499-567. |
[31] | M. Haragus and G. Iooss, "Local Bifurcations, Center Manifolds, and Normal Forms in Infinite Dimensional Systems," EDP Sci. Springer Verlag UTX Series, 2010. doi: 10.1007/978-0-85729-112-7 |
[32] | S. Helgason, "Groups and Geometric Analysis," 83 of Mathematical Surveys and Monographs. American Mathematical Society, 2000. |
[33] | R. B. Hoyle, "Pattern Formation: an Introduction to Methods," Cambridge Univ Pr, 2006. doi: 10.1017/CBO9780511616051 |
[34] | D. H. Hubel and T. N. Wiesel, Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat, Journal of Neurophysiology, 28 (1965), 229-289, |
[35] | D. H. Hubel and T. N. Wiesel, Receptive fields and functional architecture of monkey striate cortex, The Journal of Physiology, 195 (1968), 215. |
[36] | D. H. Hubel and T. N. Wiesel, Functional architecture of macaque monkey, Proceedings of the Royal Society, London [B]: (1977), 1-59. |
[37] | H. Iwaniec, "Spectral Methods of Automorphic Forms," 53 of AMS Graduate Series in Mathematics, AMS Bookstore, 2002. |
[38] | M. Kaschube, M. Schnabel, S. Löwel, D. M. Coppola, L. E. White and F. Wolf, Universality in the evolution of orientation columns in the visual cortex, Science, 330 (2010), 1113. doi: 10.1126/science.1194869 |
[39] | M. Kaschube, M. Schnabel and F. Wolf, Self-organization and the selection of pinwheel density in visual cortical development, New Journal of Physics, 10 (2008), 015009. doi: 10.1088/1367-2630/10/1/015009 |
[40] | S. Katok, "Fuchsian Groups," Chicago Lectures in Mathematics. The University of Chicago Press, 1992. |
[41] | H. Kluver, "Mescal, and Mechanisms of Hallucinations," University of Chicago Press Chicago, 1966. |
[42] | H. Knutsson, Representing local structure using tensors, Scandinavian Conference on Image Analysis, (1989), 244-251. doi: 10.1007/978-3-642-21227-7_51 |
[43] | N. N. Lebedev, "Special Functions and Their Applications," (edited by R. A. Silverman), Dover Pubns, 1972. |
[44] | P. S. Leon, I. Vanzetta, G. S. Masson and L. U. Perrinet, Motion Clouds: Model-based stimulus synthesis of natural-like random textures for the study of motion perception, Journal of Neurophysiology, 107 (2012), 3217-3226. doi: 10.1152/jn.00737.2011 |
[45] | M. S. Livingstone and D. H. Hubel, Anatomy and physiology of a color system in the primate visual cortex, Journal of Neuroscience, 4 (1984), 309-356. |
[46] | J. S. Lund, A. Angelucci and P. C. Bressloff, Anatomical substrates for functional columns in macaque monkey primary visual cortex, Cerebral Cortex, 12 (2003), 15-24. doi: 10.1093/cercor/13.1.15 |
[47] | I. Melbourne, A singularity theory analysis of bifurcation problems with octahedral symmetry, Dynamics and Stability of Systems, 1 (1986). doi: 10.1080/02681118608806020 |
[48] | W. Miller, "Symmetry Groups and Their Applications," Academic Press, 1972. |
[49] | M. Moakher, A differential geometric approach to the geometric mean of symmetric positie-definite matrices, SIAM J. Matrix Anal. Appl., 26 (2005), 735-747. doi: 10.1137/S0895479803436937 |
[50] | J. D. Murray, "Mathematical Biology II, Spatial Models and Biomedical Applications," Springer, 2003. |
[51] | G. A. Orban, H. Kennedy and J. Bullier, Velocity sensitivity and direction selectivity of neurons in areas V1 and V2 of the monkey: Influence of eccentricity, Journal of Neurophysiology, 56 (1986), 462-480. |
[52] | G. Oster, Phosphenes, Scientific American, 222 (1970), 82. doi: 10.1038/scientificamerican0270-82 |
[53] | A. M. Oster and P. C. Bressloff, A developmental model of ocular dominance column formation on a growing cortex, Bulletin of Mathematical Biology, (2006). doi: 10.1007/s11538-005-9055-7 |
[54] | J. Petitot, The neurogeometry of pinwheels as a sub-Riemannian contact structure, Journal of Physiology-Paris, 97 (2003), 265-309. |
[55] | J. Petitot, "Neurogéométrie de la Vision," Les Éditions de l'École Polytechnique, 2009. |
[56] | G. Sanguinetti, A. Sarti and G. Citti, Implementation of a Model for Perceptual Completion in $\R^2\times S^1$, Computer Vision and Computer Graphics, Communications in Computer and Information Science, 24 (2009), 188-201. |
[57] | A. Sarti and G. Citti, Non-commutative field theory in the visual cortex, Computer Vision: from Surfaces to 3D Objects, C. Tyler editor, CRC Press, (2010). |
[58] | A. Sarti, G. Citti and J. Petitot, The symplectic structure of the primary visual cortex, Biological Cybernetics, 98 (2008), 33-48. doi: 10.1007/s00422-007-0194-9 |
[59] | J. Schummers, J. Mariño and M. Sur, Synaptic integration by v1 neurons depends on location within the orientation map, Neuron, 36 (2002), 969-978. doi: 10.1016/S0896-6273(02)01012-7 |
[60] | J. P. Serre, "Représentations Linéaires des Groupes Finis," Hermann, 1978. |
[61] | L. C. Sincich and J. C. Horton, Divided by cytochrome oxidase: A map of the projections from V1 to V2 in macaques, Science, 295 (2002), 1734-1737. |
[62] | A. Terras, "Harmonic Analysis on Symmetric Spaces and Applications," Springer-Verlag, 2, 1988. doi: 10.1007/978-1-4612-3820-1 |
[63] | R. B. H. Tootell, S. L. Hamilton, M. S. Silverman, E. Switkes and R. L. De Valois, Functional anatomy of macaque striate cortex. V. Spatial Frequency, Journal of Neuroscience, 8 (1988), 1610-1624. |
[64] | R. Veltz and O. Faugeras, Local/global analysis of the stationary solutions of some neural field equations, SIAM Journal on Applied Dynamical Systems, 9 (2010), 954-998. doi: 10.1137/090773611 |
[65] | R. Veltz and O. Faugeras, Illusions in the ring model of visual orientation selectivity, Technical Report, arXiv:1007.2493, (2010). doi: 10.1137/090773611 |
[66] | G. N. Watson, "A Treatise on the Theory of Bessel Functions," Cambridge University Press, 1995. |
[67] | H. R. Wilson and J. D. Cowan, Excitatory and inhibitory interactions in localized populations of model neurons, Biophys. Journal, 12 (1972), 1-24. doi: 10.1016/S0006-3495(72)86068-5 |
[68] | H. R. Wilson and J. D. Cowan, A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue, Biological Cybernetics, 13 (1973), 55-80. doi: 10.1007/BF00288786 |
[69] | F. Wolf and T. Geisel, Spontaneous pinwheel annihilation during visual development, Nature, 395 (1998), 73-78. |
[70] | A. Zettl, "Sturm-Liouville Theory," 121, American Mathematical Society, 2005. |