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1. Introduction and model. Traffic of people, goods and information is one
of the major issues of our civilization. Traffic flow dynamics can be considered
as a particular example of collective non-equilibrium behavior of asymmetrically
coupled nonlinear elements. Many collective phenomena such as non-equilibrium
phase transitions, pattern formations and bifurcations are inherent features of such
models. Prominent examples are traffic flow on single lane highways and road
networks which can be found in [31, 10, 21, 12, 13]. Further examples are rings
of coupled biological oscillators [29, 28], intersegmental coordination of the neural
networks responsible for generation of bipedal locomotion [4, 24], electronic circuits
[11], multiple robotic systems [23], etc. The collective character of traffic flow is
due to vehicle-vehicle correlation effects originating from interaction of drivers to
avoid colliding with other moving vehicles and pedestrians [31, 10, 21, 12, 13]. Also,
vertebrate locomotion can be described as a collective behavior of asymmetrically
coupled neuronal oscillators, and different types of motor patterns and locomotion
are due to generation of stable traveling waves [4].

Two approaches are commonly used in microscopic modeling of traffic dynamics:
discrete and continuous ones. In the discrete approach the real traffic is considered
discrete in time and space in terms of cellular automata (see e.g. a review paper
[20]). By using Monte-Carlo simulations in the framework of stochastic discrete
automaton model a spontaneous emergence of traffic jams was demonstrated in
[22]. The continuous approach describes the microscopic traffic dynamics in terms
of time-continuous differential-difference equations. In our paper we will use a
continuous car-following model, which is the so-called optimal velocity (OV) model
introduced in [2]. In the framework of this model the vehicles are ordered by their
time-dependent position, sn(t), such that sn(t) < sn+1(t). Each driver controls the
acceleration to reduce the difference between the car velocity ṡn and an optimal

velocity F
(
sn+1(t)−sn(t)−hn

)
which depends on the headway sn+1(t)−sn(t), i.e.

the distance to the vehicle in front. Here hn denotes the safety distance between
the n-th car and the car which is in front of it. The safety distance is defined as
the distance between cars for which the optimal velocity is equal to zero: F (0) = 0.
The optimal velocity F (u) is assumed to be expressed as a sigmoidal function of
the distance between cars. The sigmoidal function is motivated by the fact that
small values of F are required for small deviations of distances to the front car, i.e.
the headways sn+1(t) − sn(t) from the safety distance hn. Furthermore, F should
exhibit a monotoneous growth behaviour and a saturation for large distances. Then
the differential equation of the model reads

τ s̈n + ṡn = F
(
sn+1(t)− sn(t)− hn

)
+ v, n = 1, . . . , N, (1)

where τ is a reaction time, v is a common constant velocity of cars which drive
with a distance equal to the safety distance hn and N is the number of cars. An
interesting artificial system which has many properties similar to the OV traffic
model was proposed quite recently in [26] where an inanimate system composed
of camphor boats in an annular water channel was studied and several modes of
collective motion were observed. The boats move on the water and interact with
each other through the concentration of the camphor molecules on the water surface.
In this sense the camphor boat system provides an experimental realization of a
general chemotactic model of oscillators considered in [30].

Most of the literature on traffic flow is devoted to the situation where drivers
are responsible for keeping a safe distance from neighboring vehicles. However,
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quite recently there appeared studies on traffic flows with vehicles which possess
a control system trying to keep a desired headway: vehicles with adaptive cruise
control (ACC) [18, 19, 14, 3]. Several microscopic models have been proposed
to model the ACC vehicles [18, 16, 5]. It was shown in [16] that traffic jams are
suppressed for ACC vehicles modeled by linear dynamical equations with a delayed-
feedback control. Simulations of merging flows near an onramp and for random
sequences of ACC vehicles and manual vehicles were carried out in [5]. In [6] the
effect of deterministic high frequency time-modulation of the safety distance was
investigated. It was found that the car propagation was facilitated when the mean
distance between cars in the congestive traffic was less than the safety distance and
hindered when the neighbouring cars in the flow were well separated. In the present
paper, we demonstrate that in asymmetrically coupled systems a spatiotemporal
stochastic modulation can effectively control traffic jam formation. To this end we
study the optimal velocity model (1) with the safety distance in the form

hn(t) = h+ νn(t) (2)

where h is an equilibrium safety distance and νn(t) describes a random variation of
the safety distance. The safety distance enters nonlinearly into the optimal velocity
model (1). As a consequence it is impossible to use white noise to model this
variation, and hence we will use a colored noise process [9] The nonlinear character

of the optimal velocity function F
(
sn+1 − sn − h − νn(t)

)
requires to calculate

quantities like
(
νn(t)

)j
with j = 2, 3... These quantities have no mathematical

meaning in the case when the νn(t) is a Gaussian white noise and therefore the
safety distance stochastic modulation has to be modeled as a colored noise. It is
also necessary to take into account that the behavior of different drivers (in other
words, cars with different indices n) may be stochastically correlated. This suggests
that we use a minimalist model in the form of a stochastic Ornstein-Uhlenbeck
process with spatio-temporal correlation properties given by

〈νn(t)〉 = 0 and 〈νn(t) νn′(t
′)〉 = D2 e−α|n−n

′| 1

ε
exp

{
−|t− t

′|
ε

}
. (3)

The parameter D characterizes the intensity of the noise, ε characterizes its corre-
lation in time and the parameter α is the inverse of the correlation length between
cars which describes how many cars in the traffic flow behave in a stochastically
correlated way. The Ornstein-Uhlenbeck process (3) may be obtained by solving
the following set of stochastic equations in the limit N →∞

ε ν̇n + νn = ζn,

eα ζn − ζn+1 = 2D

√
sinhα tanh

(
N

2
α

)
ξn(t), (4)

where ξn(t) is a white noise term with the properties 〈ξn(t)〉 = 0, 〈ξn(t) ξn′(t
′)〉 =

δnn′ δ(t− t′) as described in [9].
For the described sigmoidal shaped optimal velocity function we choose the spe-

cific form F (x) = tanhx and consider the case where the cars are moving along
the closed curve of the length L and impose the periodic boundary conditions:
sn+N = sn + L. Letting sn(t) = xn(t) + n ` with ` = L/N being a mean distance
between elements, we studied the following set of stochastic differential equations
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by analytical approximation and numerically

τ ẍn + ẋn = tanh
(
xn+1(t)− xn(t) + δ − νn(t)

)
, n = 1, ...N, (5)

where δ = `−h denotes the mismatch between the safety distance h, and the mean
distance between neighboring cars `.

The dynamics of a closed loop of asymmetrically coupled nonlinear elements
based on Eqs. (1) with equal safety distances hn = h was considered in [7, 8]. It
was shown that there are two distinctive regimes of oscillatory behavior of one-way
nonlinearly coupled elements depending on the reaction time and the strength of
the coupling. In the subcritical regime where the reaction time is shorter than the
critical one, τ < τc ≡ cosh2(δ)/2, a spatially uniform stationary state is stable. In
terms of traffic dynamics this corresponds to a free flow, i.e. to a flow without jams
where all cars move with the same velocity and keep the same distance ` between
nearest neighbors, i.e., sn(t) = n ` + (tanh(δ) + v) t. For τ > τc the free flow is
unstable due to a Hopf bifurcation, leading to spontaneous formation of periodic
wave trains of jam and rarefaction regions. Figure 1 shows a typical car distribution
for the case where the reaction time τ is slightly above a critical value. A congested

Figure 1. The car distribution for t = 4 · 104 along a circular
road: free flow (left) for τ = 0.48 < τc = 0.5 and congested flow
(right) for τ = 0.52. Left: Noise level D = 0 is used. Right: The
influence of the stochastic modulation with noise level D = 0.25
of the safety distance is clearly visible for cars in the region of the
traffic jam. Parameters N = 30, h = ` = 1.

region (jam cluster) moves with a constant velocity in the direction opposite to the
common velocity of the cars. The first experimental evidence that the emergence
of a traffic jam is a bifurcation phenomenon where stochasticity plays an important
role was presented in [27] and shows that tiny fluctuations grow larger so that the
homogeneous movement cannot be maintained.

2. Variance of car distribution. As the first step, we analyze how the stochastic
modulation (2) influences a car distribution on the circular road. It is useful to
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introduce quantities which characterize integral features of the flow. These are
moments of the car distribution. The second moment

M2 =
1

N

∑
n

u2n(t) (6)

with un(t) = sn+1(t) − sn(t) − `, gives a mean square deviation of the headway
sn+1(t)− sn(t) (or a variance of headway) from the free flow solution. The variance
vanishes (M2 = 0) for the free (uniform) flow. In the flow with M2 6= 0 some
of vehicles are closer to each other than the mean distance `L/N other are more
separated. In other words, in flows with M2 6= 0 show a traffic jam. The set
of stochastic differential equations in (5) and (4) is solved numerically by the use
of an implicit Euler method. The integration of the stochastic term is done by
using the strong Taylor scheme of first order described in [15]. The results of these
calculations are presented in Fig. 2, where the second moment of the car distribution
M2 is depicted as a function of the noise intensity D for different values of the inverse
correlation length α. The figure shows an average of 65 simulations with different
series of random numbers for each intensity of the noise. The most interesting
feature of this figure is that it is possible to see how the qualitative behaviour
of the system changes when the correlation length decreases. For α = 0.1 and
α = 0.00002 the interacting mode approach compares very well with the full scale
numerical simulation. However, for α = 0.1 the quantiative comparison is only good
for larger values of D which demonstrates that the interactive mode approach is
only valid for α considerably smaller than 0.1.

When all cars change their safety distance randomly in time but synchronously
in space, that is, identical safety distance for all cars, which is described by α = 0,
the second moment is a monotonically decreasing function of the noise intensity D.
This does not model individual drivers behaviour but describes a situation where
all cars are guided automatically with the identical safety distance. In other words,
this means that such type of safety distance modulation inhibits the jam creation
and that in the presence of strong noise the car distribution is closer to the free
flow type than in the weak noise case. For finite values of the inverse correlation
length α this function becomes non-monotonic: weak safety distance modulation
plays a constructive role in the free flow creation, however, further increasing the
noise intensity destroys this tendency and the flow becomes less ordered.

To gain better insight into the mechanism of the noise induced transitions in
asymmetrically coupled nonlinear elements, we have developed an analytical ap-
proach which is based on an interacting mode approach to the dynamics of the
traffic flow which was proposed recently in [8]. For the sake of simplicity we restrict
ourselves to the case when δ = 0, i.e. the mean safety distance h coincides with the
mean distance ` = L/N between cars in the flow. By subtracting Eqs. (5) pairwise,
one can obtain equations for the functions un(t) in the form

τ ün + u̇n = tanh
(
un+1 − νn+1(t)

)
− tanh

(
un − νn(t)

)
. (7)

We assume that the safety distance modulation is weak: 〈ν2n(t)〉 < 1 and the devi-
ation of the headway from the mean distance is small |un| < 1. We approximate
the optimal velocity function by a Taylor polynomial and by treating higher order
stochastic terms in a mean-field approximation, we obtain that Eqs. (7) can be
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Figure 2. The second moment of car distribution M2 vs the
noise intensity D for different values of the correlation length 1/α.
The results shown in (a) are obtained from the full-scale numerical
simulations. (b) gives the second moment of car distribution M2

vs the noise intensity D for three values of the inverse correlation
length α = 0.00002 (solid line), α = 0.01 (thin solid line) and
α = 0.1 (dashed line) obtained by the interacting mode approach.
Parameters N = 30, L = 30, h = 1, ε = 0.1, τ = 0.52.

presented approximately as

τ ün + u̇n = C
(
un+1 − un

)
− 1

3

(
u3n+1 − u3n

)
+ νn+1(t)− νn(t) (8)

with C := 1− 〈ν2n(t)〉 = 1−D2/ε. Equations for the Fourier components

ûj(t) =
1

N

N∑
n=1

un(t) exp

{
i

2π j n

N

}
(9)

of the functions un(t) can be written in the form

τ ¨̂uj + ˙̂uj = γj

(
C ûj −

1

3

∑
j1, j2, j3

ûj1 ûj2 ûj3 δj, j1+j2+j3

)
+ γj ν̂j(t), (10)
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where γj = exp
{
i 2π j
N

}
−1 and δj,j′ is the Kronecker delta. Note that the quantities

un are real valued and therefore the Fourier amplitudes ûj satisfy the condition
ûj = û∗−j . The first term in the right-hand-side of Eqs. (10) describe noise effects
on the traffic dynamics in a mean-field approximation while the last term takes
fluctuation effects into account. The Fourier amplitudes ν̂j(t) of the stochastic
function νn(t) satisfy the correlation properties

〈ν̂j(t)〉 = 0, 〈ν̂j(t) ν̂j(t′)〉 = δj,−j′
D2

ε
exp

{
−|t− t

′|
ε

}
1

N

sinhα tanh
(
N
2 α
)

coshα− cos
(

2π j
N

) . (11)

In the mean-field approach the time evolution of the modes ûj in the linear approx-

imation is given by ez
±
j t z±j ≡ ± iωj +λ±j =

(
−1+

√
1 + 4 τ γj

)
/2 τ . The free flow

(all ûj = 0) is linearly unstable (λ+j > 0) with respect to the Fourier modes with

|j| ≤ jc, where the critical index jc is given by the equation 2C τ cos2
(
π jc/N

)
= 1.

The modes with |j| > jc are linearly stable. Eqs. (10) for |j| ≥ 2 represent a system
of damped weakly nonlinear oscillators. Near the threshold and for weak noise the
amplitudes of the Fourier modes ûj are small. Therefore in Eqs. (10) for |j| ≥ 2 one
can neglect nonlinear terms and write them approximately in the form of stochas-
tically driven linear oscillators:

τ ¨̂uj + ˙̂uj = γj

(
C ûj + ν̂j(t)

)
. (12)

An equation for the linearly unstable mode j = 1 is

τ ¨̂u1 + ˙̂u1 = γ1

(
C− | û1 |2

)
û1 + γ1 ν̂1(t)− 1

3

∑
j1,j2 |j1|≥2, |j2|≥2

ûj1 ûj2 û1−j1−j2 . (13)

Here the last term describes an influence of the linearly stable modes on the dy-
namics of the linearly unstable one. For the sake of simplicity we will consider this
influence in the mean field approximation and by replacing the last term in Eq. (13)
with

1

3

∑
j1,j2 |j1|≥2, |j2|≥2

ûj1 ûj2 û1−j1−j2 ≈ 2 û1

N/2∑
j=2

〈| ûj(t) |2〉,

one can write approximately instead of Eq. (13)

τ ¨̂u1 + ˙̂u1 = γ1

(
C̄ − |û1|2

)
û1 + γ1 ν̂1(t), (14)

where

C̄ = C − 2

N/2∑
j=2

〈| ûj(t) |2〉. (15)

By separating contributions from the linear Fourier modes and the nonlinear one,
the second moment M2 can be expressed as a sum

M2(t) = Mlin(t) +Mnl(t) ,

Mlin(t) = 2

N/2∑
j=2

〈|ûj(t)|2〉 , Mnl = 2〈|û1(t)|2〉. (16)
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It is straightforward to calculate 〈|ûj(t)|2〉 from Eqs. (12) and by considering the
case where the correlation time ε is short (ε � τ), to obtain that for t → ∞ the
linear part Mlin is determined by the expression

Mlin =
D2 sinhα tanh

(
N
2 α
)

N C τ

{
1

coshα− cosβ

[
2 cothα−N coth

(
αN/2

)
2 sinhα

+
2 cotβ −N cot

(
β N/2

)
2 sinβ

]
− 1(

coshα− cos(2π/N)
)(

cosβ − cos(2π/N)
)}, (17)

where β = arccos
(

1−C τ
C τ

)
. As it is seen from Eq. (17) the linear part of the second

moment Mlin is a monotonically increasing function of the noise intensity D.
To calculate the nonlinear part Mnl it is convenient to use polar coordinates

u1(t) = R(t) eiϕ(t). In polar coordinates the linearly unstable mode is governed by
the equations

τ
(
R̈−R ϕ̇2

)
+ Ṙ = −2 sin2

( π
N

)(
C̄ −R2

)
R+ Ref(t), (18)

τ
(
R ϕ̈+ 2 Ṙ ϕ̇

)
+R ϕ̇ = sin

(2π

N

)(
C̄ −R2

)
R+ Imf(t), (19)

where f(t) = γ1 ν̂1(t) e−iϕ. Taking into account that the deterministic dynamics of
the amplitude R(t) is slow: λ+1 τ < 1, one can solve approximately Eq. (19) and
obtain that

ϕ̇ ≈ sin
(2π

N

)(
C̄ −R2

)
+

1

R
µ(t),

µ(t) ≡ 1

τ

t∫
0

dt1 e
− t−t1τ Imf(t1). (20)

By inserting Eq. (20) into Eq. (18) and neglecting fluctuations of the quadratic
noise µ2(t), as they are small compared with the fluctuations of the linear noise
term µ(t), we obtain that the dynamics of the amplitude of the linearly unstable
mode is described by the equation

τ R̈+ Ṙ = F (R) + Ref(t) + 2 τ sin
(2π

N

)(
C̄ −R2

)
µ(t). (21)

Here, F (R) is an effective force defined by the relation

F (R) = |γ1|2 τ cos2
( π
N

)(
C̄ −R2

)(
δ −R2

)
R+

τ

R
〈µ2(t)〉, (22)

where

δ = C̄ − 1

2 τ
sec2

( π
N

)
≡ 1− 1

2 τ
sec2

( π
N

)
− D2

ε
−Mlin (23)

is a square stationary amplitude of the linearly unstable mode in the mean field
approach.

Being interested in the behavior near the threshold of instability and assuming
that the noise is weak, one can apply the limit δ → 0, and D → 0 so that
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D/δ = const. In this case Eq. (21) reduces to an effective Langevin equation
for a stochastically driven nonlinear oscillator

dR

dt̄
= − ∂U

∂R
+ z(t̄), (24)

where t̄ = |γ1|2 t is a rescaled time, the function

U(R) =
1

4
τ cos2

( π
N

)(
R2 − δ

)2
− τ

ε+ τ
T lnR (25)

defines an effective potential, and z(t) is an effective white noise with correlation
properties of the form

〈z(t̄)〉 = 0, 〈z(t̄) z(t̄′)〉 = 2
[
1 + 4 τ2 sin2

(2π

N

)]
T δ(t̄− t̄′) (26)

using the notation

T =
1

N

2D2 sinhα tanh
(
N
2 α
)

coshα− cos
(

2π
N

) . (27)

The next step is to study effects of stochastic modulations by using the formalism
of the Fokker-Planck equation. To this end we introduce the probability distribution
density

P (R; t) =
〈
δ
(
R−R(t)

)〉
. (28)

The Fokker-Planck equation for the probability density (28) has the form

∂tP =
∂

∂R

(∂U
∂R

P
)

+
[
1 + 4 τ2 sin2

(2π

N

)]
T

∂2

∂R2
P. (29)

The nonlinear part of the second moment M2 has the form

Mnl(t) = 2 〈R2(t)〉 =

∞∫
0

dRR2 P (R; t). (30)

A stationary probability density Pst(R) ≡ P (R; t)
∣∣∣
t→∞

can be found for the Fokker-

Planck equation (29) by simple integration. It has the form

Pst(R) = N exp

− U(R)(
1 + 4 τ2 sin2(2π/N)

)
T

 , (31)

where N is a normalization coefficient. It is not difficult to obtain a general expres-
sion for the nonlinear part Mnl for t→∞ from Eqs. (30), (31) and (25). However,
this expression becomes rather cumbersome. It is simplified significantly in the prac-
tically important case where the stochastic correlation time is short, ε � τ , and
the number of cars is big such that 4 τ2 sin2(2π/N)� 1. In this case the nonlinear
part of the second moment tends to the value given by the following expression

Mnl = 2 δ +
4
√
T√

π τ cos(π/N)

exp
[
− τ cos2(π/N)

4T δ2
]

1 + sign(δ) Erf
(√

τ cos2(π/N)
4T |δ|

) , (32)

where Erf(x) is the error function [1]. Here the first term represents a mean field
contribution to the second moment and the second part is a result of fluctuations.
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As it is seen from Eqs. (23) and (17) in the mean field approximation the role of the
noise reduces to the shift of the threshold of the free flow instability and as a result
in this approximation the second moment is a monotonically decreasing function of
the noise intensity D. In contrast to this the second term in Eq. (32) similarly to
Mlin monotonically increases with D.

The combination of these two tendencies provides a qualitative explanation of
the non-monotonic second moment dependence M2(D) observed in the numerical
simulations (see Fig. 2). The linear mode contribution decreases when the corre-
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Figure 3. Numerical simulations of the normalized flux J/J0 (J0
is the flux in the unmodulated case) vs. the noise intensity D for
three values of the car density ρ = 1.2 (open circles), ρ = 1 (solid
line), ρ = 0.8 (filled squares). (a) is for α = 0.5 and (b) is for
α = 5. Parameters N = 30, τ = 0.56, h = 1, ε = 0.1.

lation length 1/α increases. It explains why a weak spatially high correlated noise
(small α and D) plays a constructive role in preventing a traffic jam formation.

3. Flux of cars. One of the important quantities which characterize the traffic
dynamics is the flux of cars. The microscopic definition of the flux is [17], [6]

Ĵ(x, t) =
∑
n

ṡn(t) δ
(
x− sn(t)

)
. (33)



STOCHASTIC CONTROL OF TRAFFIC PATTERNS 271

The mean flux is given by the expression

Ĵm(t) =
1

L

L∫
0

Ĵ(x, t) dx. (34)

Introducing the mean density ρ = N/L, the macroscopic flux J can be defined as
an average of the mean flux and in the framework of the stochastic optimal velocity
model (5) with (3) can be expressed as

J = ρ

v +
1

N

∑
n

∞∫
−∞

dz tanh
(1

ρ
− h+ z

)
g
(
z − un − νn

) , (35)

where

g(z − un − νn) =
1

T

t+T∫
t

dt′
〈
δ
(
z − un(t)− νn(t)

)〉
, T →∞ (36)

is an averaged probability density. By applying a cumulant expansion [9] for the
probability density (36), in the lowest approximation one can write the average flux
in the form

J = ρ

v +
1√
π

∞∫
−∞

du e−u
2

tanh
(1

ρ
− h+ u

√
2M
) , (37)

where M =
〈(
νn(t) + un(t)

)2〉∣∣∣
t→∞

is the second cumulant. In the vicinity of the

density ρ = 1 the flux (37) can be presented as

J = ρ v + (1− ρ h)κ(M),

κ(M) =
2√
π

∞∫
0

du e−u
2

sech2
(√

2M u
)
. (38)

Taking into account that dκ
dM < 0 and that M ∼ D2, one can conclude from Eq.

(38) that the presence of noise facilitates the traffic with a high density of cars
(hρ > 1) and hinders in the opposite case.

To verify these results we solve numerically the stochastic equations (5), (4) and
calculate the average flux for several values of the car density ρ and the inverse
correlation length α. The results of these numerical studies presented in Fig. 3 are
in full agreement with our analytical predictions.

4. Summary and conclusion. In the present paper, we investigate the influence
of noise on the safety distance in a following-the-leader model which opens up also
the possibility of controlling vehicular traffic. We considered the optimal velocity
model of traffic flow with a stochastically modulated safety distance. We studied
the problem both analytically and numerically. We have found that the effect of
the random modulation of the safety distance on congested flow formation depends
on the spatial correlation of the noise: when all cars change their safety distance
randomly but synchronously the jam creation is suppressed for all values of the
noise intensity; for finite values of the correlation length only a weak noise plays
a constructive role in the free flow creation, however, further increasing the noise
intensity makes the car flow less ordered. The random safety distance modulation
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also influences the flux of cars. Our simulations and analytical considerations show
that the flux is an increasing function of the noise intensity for dense traffic flows
and a decreasing function in the opposite case. In other words, the flux on a highway
with dense traffic is augmented by random individual choice of the safety distance
by each driver (i.e. for each car as well as by fluctuations over time of this choice).
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