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Abstract. In this paper, we explain in simple PDE terms a famous result of
Bramson about the logarithmic delay of the position of the solutions u(t, x) of

Fisher-KPP reaction-diffusion equations in R, with respect to the position of
the travelling front with minimal speed. Our proof is based on the comparison

of u to the solutions of linearized equations with Dirichlet boundary conditions

at the position of the minimal front, with and without the logarithmic delay.
Our analysis also yields the large-time convergence of the solutions u along

their level sets to the profile of the minimal travelling front.

1. Introduction. This paper is concerned with the large time behavior of the
solutions of the Cauchy problem for the reaction-diffusion equation

ut = uxx + f(u), t > 0, x ∈ R, (1)

u(0, x) = u0(x), x ∈ R.

We assume that u0 is localized (in a sense to be made more precise below), and
we are interested in how the “positions” of the level sets of u compare to those of
travelling fronts. The reaction function f ∈ C2 is assumed to be of the Fisher-KPP
(for Kolmogorov-Petrovskii-Piskunov) type [11, 14], that is{

f(0) = f(1) = 0, f ′(0) > 0, f ′(1) < 0,

0 < f(s) ≤ f ′(0)s for all s ∈ (0, 1).
(2)
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A typical example is a concave positive function f on (0, 1) that vanishes at 0 and 1,
such as f(u) = u(1− u). The initial datum u0 ∈ L∞(R) is such that

0 ≤ u0 ≤ 1, u0 6≡ 0, and u0 = 0 in (A,+∞)

for some real number A. The solution u(t, x) is classical for t > 0, and 0 < u(t, x) <
1 for all t > 0 and x ∈ R from the strong maximum principle. Such equations arise
in many mathematical models in biology, ecology or genetics, see e.g. [10, 11, 15, 19],
and u typically stands for the density of a population.

The assumptions on f imply that 0 and 1 are, respectively, unstable and stable
equilibria for the ODE ζ̇ = f(ζ). For the PDE (1) the state u ≡ 1 invades the
state 0. Specifically, a celebrated result of Aronson and Weinberger [1] states that

the solution u spreads at the speed c∗ = 2
√
f ′(0), in the sense that

min
|x|≤ct

u(t, x)→ 1 as t→ +∞, for all 0 ≤ c < 2
√
f ′(0), (3)

and

sup
x≥ct

u(t, x)→ 0 as t→ +∞, for all c > 2
√
f ′(0). (4)

Sharp asymptotics of the location of the level sets of u(t, x) was given by Bram-
son in the celebrated papers [3, 4]. Given m ∈ (0, 1), let Em(t) be the set of
points in (0,+∞) where u(t, ·) equals m, that is Em(t) =

{
x > 0, u(t, x) = m

}
.

Bramson [3, 4] has shown with probabilistic arguments that there exist a shift xm
depending on m and the initial data u0, and some constants γ > 0 and Cm > 0
such that

Em(t) ⊂
[
c∗t− 3

2λ∗
ln t−xm−

γ√
t
−Cm

t
, c∗t− 3

2λ∗
ln t−xm−

γ√
t
+
Cm
t

]
(5)

for t large enough, with λ∗ = c∗/2.1 The goal of the present paper is to explain the
logarithmic shift in (5) in simple PDE terms, at the expense of losing precision in
the O(1) terms. More precisely, we will show the following result.

Theorem 1.1. For every m ∈ (0, 1), there is C ≥ 0 such that

Em(t) ⊂
[
c∗t− 3

2λ∗
ln t− C, c∗t− 3

2λ∗
ln t+ C

]
for t large enough.

To observe that the deviation of Em(t) from c∗t grows in time, notice that since
f(s) ≤ f ′(0)s, the maximum principle implies that u(t, x) ≤ ũ(t, x), where ũ solves
the linear heat equation

ũt = ũxx + f ′(0)ũ, t > 0, x ∈ R, (6)

with the initial condition ũ(0, x) = u0(x). Therefore,

u(t, x) ≤ ef
′(0)t

√
4πt

∫ A

−∞
e−

(x−y)2

4t dy =
ef
′(0)t

√
π

∫ (A−x)/
√
4t

−∞
e−z

2

dz (7)

for all t > 0 and x ∈ R. Remember that c∗ = 2
√
f ′(0) = 2λ∗. As a consequence,

lim sup
t→+∞

(
max
x≥C

u
(
t, c∗t− ln t

2λ∗
+ x
))
→ 0 as C → +∞. (8)

1We keep a separate notation for λ∗ since it is a mere coincidence that in a homogeneous
medium the relation between c∗ and λ∗ is so explicit. The O(t−1/2) and O(t−1) terms in (5) are

actually due to Ebert and Van Saarloos [8].
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For every m ∈ (0, 1), there is then C ∈ R such that

maxEm(t) ≤ c∗t− ln t

2λ∗
+ C for all t large enough. (9)

In other words, the positions of the levels sets Em(t) are corrected by a term which
is at least of the order (ln t)/(2λ∗) to the left of the position c∗t at large times.
However, this calculation turns out to underestimate the gap c∗t −maxEm(t) (or
c∗t−minEm(t)). The fact that the function u cannot exceed the value 1 shall force
level sets of u to lag even further behind those of ũ.

As (3) implies that u(t, x)→ 1 as t→ +∞ locally uniformly in x, it follows from
Theorem 1.1 that

lim inf
t→+∞

(
min

0≤x≤c∗t−(3/(2λ∗)) ln t−C
u(t, x)

)
→ 1 as C → +∞. (10)

Furthermore, since u(t,+∞) = 0 for all t ≥ 0, there also holds

lim sup
t→+∞

(
max

x≥c∗t−(3/(2λ∗)) ln t+C
u(t, x)

)
→ 0 as C → +∞. (11)

In other words, the region of points x ≥ 0 where u(t, x) is bounded away from 0
and 1 has a bounded width as t → +∞, and is located around the position c∗t −
(3/(2λ∗)) ln t.

Theorem 1.1, together with more precise estimates on the behavior of u to the
right of c∗t − (3/(2λ∗)) ln t, implies that the solution u approaches the family of
shifted travelling fronts Uc∗(x − c∗t + (3/(2λ∗)) ln t + ξ) uniformly in {x ≥ 0}.
Indeed, it is well-known [1, 14] that problem (1) admits travelling fronts of the type

Uc(x− ct) with Uc(+∞) = 0 < Uc < 1 = Uc(−∞) if and only if c ≥ c∗ = 2
√
f ′(0).

Furthermore, each profile Uc satisfies

U ′′c + cU ′c + f(Uc) = 0 in R, (12)

is unique up to a shift, and is decreasing. Here is the result.

Theorem 1.2. There exist a constant C ≥ 0 and a function ξ : (0,+∞)→ R such
that |ξ(t)| ≤ C for all t > 0 and

lim
t→+∞

∥∥∥∥u(t, ·)− Uc∗
(
· −c∗t+

3

2λ∗
ln t+ ξ(t)

)∥∥∥∥
L∞(0,+∞)

= 0. (13)

Furthermore, for every m ∈ (0, 1) and every sequence (tn, xn) such that tn → +∞
as n→ +∞ and xn ∈ Em(tn) for all n ∈ N, there holds

u(t+ tn, x+ xn) −→
n→+∞

Uc∗
(
x− c∗t+ U−1c∗ (m)

)
loc. unif. in (t, x) ∈ R2, (14)

where U−1c∗ denotes the inverse of the function Uc∗ .

Note that Bramson’s result is more precise, in the sense that it identifies a unique
travelling wave in the possible limiting trajectories of u(t, x). This is of course due
to the precision of the front location asymptotics (5).

A brief bibliographical survey is now in order. The first result on the large
time behavior for the parabolic Cauchy problem (1) is the work of Kolmogorov,
Petrovskii and Piskunov [14]: here, u0 is a Heaviside type function and the authors
prove, the existence of a function s(t) such that limt→+∞ s(t)/t = 0, and such that

lim
t→+∞

|u(t, x)− Uc∗(x− c∗t− s(t))| = 0, uniformly in x ∈ R.
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The key point in [14] is the beautiful observation that t 7→ |ux(t, .)| decreases on
each Em. The KPP theorem is generalized in [16], for a large class of monotone
initial data. The observation that s(t) might have a nontrivial behavior was proved
by Uchiyama [18]: s(t) = −3/(2λ∗) ln t+O(ln ln t) for a large class of Heaviside-like
initial data. This was obtained by a refinement of the KPP argument. The sharpest
asymptotics is, as we have mentioned, due to Bramson [3, 4]. Those results were also
proved by Lau [13], using the decrease of the number of intersection points between
any two solutions of the parabolic Cauchy problem (1). Both Bramson and Lau
used the additional assumption f ′(s) ≤ f ′(0). Let us also mention Eckmann and
Gallay [7]: they prove the stability of the critical wave under (essentially) compact
perturbations, thus a context quite different from ours (the solution converges to the
wave with no shift). However, their work makes it quite clear that subtle diffusion
phenomena are at work in the tail of the solution.

The logarithmic shift in KPP type equations has been much revisited in the
recent years: in [5], the link is made with the behavior of (1) when f has a tiny
cut-off. In [8, 9] the question is cast in the more general problem of the dynamics
of pulled fronts. In these works the authors show, from the point of view of formal
asymptotics, the universal character of this shift, retrieving it not only in KPP
or Ginzburg-Landau type equations, but also in systems and 4th order parabolic
equations (e.g. Swift-Hohenberg). We finally mention [6]: here the problem is
studied in an heterogeneous medium, and the solutions are shown (in a formal
fashion) to have a behavior different from that of the homogeneous case.

Let us now describe our approach. It is based on the following observation: in
the region {x ≥ c∗t}, u is small and should then be close to (or at least bounded
from below by) the solution u of the linearized equation (6) with the Dirichlet
boundary condition u(t, c∗t) = 0 at the position x = c∗t for t ≥ 1, and with initial
condition u(1, x) having a Gaussian decay as x→ +∞ at time t = 1 (we here use the
notation u instead of ũ in (6) because the Dirichlet boundary condition u(t, c∗t) = 0
will make u a subsolution of the linearized equation and even a subsolution of the
nonlinear equation up to some time-dependent prefactor). The function p(t, y) =
eλ
∗yu(t, y + c∗t) solves the heat equation

pt = pyy

for y > 0 with the Dirichlet boundary condition p(t, 0) = 0. The explicit expression
for p implies that p(t, y) is of the order y(t)/t3/2 (up to some bounded positive
prefactors) at the position 1 << y(t) ≤ O(

√
t) as t→ +∞, meaning that

u(t, c∗t+ y(t)) ∼ Ct
y(t)

t3/2
e−λ

∗y(t) (15)

for some Ct which is bounded from above and below by two positive constants as
t→ +∞. On the other hand, recall that

Uc∗(s) ∼ B s e−λ
∗s as s→ +∞, (16)

with some constant B > 0 [1]. When ln t << y(t) ≤ O(
√
t), due to the s prefactor

in (16), the value (15) corresponds to that of the front shifted to the position
c∗t− 3/(2λ∗) ln t:

Uc∗(x− c∗t+ (3/(2λ∗)) ln t)
∣∣
x=c∗t+y(t)

∼ B
(
y(t) +

3

2λ∗
ln t
)
e−λ

∗(y(t)+3/(2λ∗) ln t) ∼ B y(t)

t3/2
e−λ

∗y(t).
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This gives the exact estimate c∗t − (3/(2λ∗)) ln t as a lower bound of the location
of u. Notice that the above heuristic arguments work for ln t << y(t) ≤ O(

√
t) as

t→ +∞, and that these bounds are sharp.
The above ideas can be adapted to periodic equations of the type

ut = uxx + g(x)f(u),

where g is a periodic function which is bounded between two positive constants,
and with weaker regularity assumptions on the function f . The calculations in the
periodic case are more involved and are combined with further more sophisticated
estimates, see [12]. This approach can also be used in higher dimensions. Our aim in
the present paper is to present the key ideas in the simple homogeneous setting (1),
where the analysis is very explicit. The paper is organized as follows: in Section 2,
we present the proof of Theorem 1.1 with the additional assumption that f is linear
in a vicinity of 0. The estimates of this section, together with a refinement, are
used in Section 3 to prove the theorem for a general C2 nonlinearity. Theorem 1.2
is proved in Section 4.

2. The Dirichlet problem in the logarithmically shifted frame.

The linearized Dirichlet problem. As we have mentioned, one of the key obser-
vations is that the solution of the nonlinear KPP equation behaves as the solution
of the linearized equation with the Dirichlet boundary condition imposed at an
appropriate point X(t):

ut = uxx + f ′(0)u, t > 0, x > X(t), (17)

with u(t,X(t)) = 0. Our goal is to devise a reference frame in which the Dirich-
let problem will have solutions that remain bounded both from above and below
in a certain region, and this is exactly what the (3/(2λ∗)) ln t shift achieves, see
Lemma 2.1 below.

Motivated by (9), we choose X(t) = c∗t − (r/λ∗) ln(t + t0), with t0 > 0 to be
chosen later, and change variables in (17) as

x′ = x−
(
c∗t− r

λ∗
ln(t+ t0)

)
.

For the moment we keep r > 0 general. After dropping the primes the problem
becomes

zt − zxx −
(
c∗ − r

λ∗(t+ t0)

)
zx − f ′(0)z = 0, t > 0, x > 0, (18)

with the boundary condition z(t, 0) = 0, and with compactly supported initial data
z0 ≥ 0 in (0,+∞) and z0 6≡ 0 (that is fixed and does not depends on t0). The
following lemma explains why r = 3/2 is a good choice, and contains the essence of
the PDE reason for the Bramson correction.

Lemma 2.1. If r = 3/2, then there is a constant t0 > 0 that depends on z0 such
that, for all 0 < a ≤ b < +∞, we have

0 < inf
t≥1, a≤x≤b

z(t, x) ≤ sup
t≥1, a≤x≤b

z(t, x) < +∞.

Proof. Let us introduce the function v(t, x) by

z(t, x) = e−λ
∗xv(t, x).
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This transforms (18) into

vt − vxx +
r

λ∗(t+ t0)
(vx − λ∗v) = 0, t > 0, x > 0,

with v(t, 0) = 0. In the self-similar variables τ = ln(t+ t0)− ln t0, y =
x√
t+ t0

this

becomes

vτ − vyy −
y

2
vy +

re−τ/2

t
1/2
0 λ∗

vy − rv = 0,

with v(τ, 0) = 0. We rewrite this as

vτ + Lv = (r − 1)v − εe−τ/2vy, τ > 0, y > 0, (19)

with

Lv = −vyy −
y

2
vy − v,

and ε = r/(t
1/2
0 λ∗). From Lemma 2.2 below we have

v(τ, y) = e(r−1)τy

(
e−y

2/4

2
√
π

∫ +∞

0

ξv0(ξ)dξ +O(ε) +O(e−τ/2)

)
.

Here O(ε) and O(e−τ/2) denote functions of t and y which are of that order for
τ > 0, and for y in any fixed compact set.

Let us now come back to the solution z(t, x) of (18) with boundary condition
z(t, 0) = 0, and with compactly supported initial data z0 ≥ 0 in (0,+∞) and z0 6≡ 0.
It follows from the previous paragraph that there exist a constant C > 0 depending
on z0 and a constant t0 > 0 depending on C and r such that

z(t, x) =
(t+ t0)r−3/2

tr−10

xe−λ
∗x
[
Ce−x

2/4(t+t0) + h(t, x)
]
, (20)

where, for each σ > 0,

lim sup
t→+∞

sup
0≤x≤σ

√
t+1

|h(t, x)| < C

2
. (21)

Therefore, if we choose r = 3/2 (and only with that value of r), and t0 sufficiently
large, the function z(t, x) will remain bounded from above and below away from
zero on any fixed interval a ≤ x ≤ b for all t ≥ 1 with 0 < a ≤ b < +∞. For times
t ≥ t0, this follows from (20-21) and, for times 1 ≤ t ≤ t0, this follows from the
continuity and positivity of z in (0,+∞) × (0,+∞), due to the strong maximum
principle. Therefore,

0 < inf
t≥1

(
min
[a,b]

z(t, ·)
)
≤ sup

t≥1

(
max
[a,b]

z(t, ·)
)
< +∞

for all 0 < a ≤ b. Note finally that, in order to get these lower and upper bounds
by positive constants, the logarithmic shift is needed – without the shift we get a
solution that decays as t−3/2. The proof of Lemma 2.1 is thereby complete. �

We now prove the perturbation result used in the proof of Lemma 2.1. Although
it is quite standard, we present its proof for the sake of completeness.

Lemma 2.2. Let v(t, y) solve

vτ + Lv = −εe−τ/2vy, τ > 0, y > 0; v(τ, 0) = 0. (22)
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There exists ε0 > 0 so that, for all compact sets K of R+ there is CK > 0 such
that, for 0 < ε < ε0:

v(τ, y) = y

(
e−y

2/4

2
√
π

( ∫ +∞

0

ξv0(ξ)dξ +O(ε)
)

+ e−τ/2ṽ(τ, y)

)
y > 0, τ > 0,

where |ṽ(τ, y)| ≤ CK for all y ∈ K, τ > 0.

Proof. Let us introduce the function w(τ, y) = ey
2/8v(τ, y). This new function

solves
wτ +Mw = −εe−τ/2(wy −

y

4
w), τ > 0, y > 0, (23)

with

Mw = −wyy + (
y2

16
− 3

4
)w.

For later purposes, we introduce the quadratic form

Q(w) = 〈Mw,w〉L2((0,+∞)) =

∫ +∞

0

(
w2
y + (

y2

16
− 3

4
)w2
)
dy

in the space H1
0 ((0,+∞)) with yw ∈ L2((0,+∞)). The operator M is symmetric,

its null space is generated by the unit eigenfunction e0(y) = ye−y
2/8/(2

√
π)1/2 and

the form Q is nonnegative. Moreover, we have

Q(w) ≥ ‖w‖2L2((0,+∞)) in e⊥0 , (24)

as the second eigenfunction of M is e1(y) = (ye−y
2/4)′′ey

2/8. Higher order eigen-
functions of M can be easily expressed in terms of the Hermite polynomials. Let
us first notice that ‖w(τ, ·)‖L2 = ‖w(τ, ·)‖L2(0,+∞) is uniformly controlled from
above. Indeed, multiplying (23) by w and integrating by parts over (0,+∞) gives
immediately

d

dτ
‖w(τ, ·)‖2L2 + 2Q(w(τ, ·)) = 2εe−τ/2

∫ +∞

0

y

4
w(τ, y)2dy.

Note that∫ +∞

0

y

4
w(τ, y)2dy ≤

∫ +∞

0

(y2
16

+
1

4

)
w(τ, y)2dy

≤
∫ +∞

0

(
wy(τ, y)2 +

(y2
16

+
1

4

)
w(τ, y)2

)
dy

= Q(w(τ, ·)) + ‖w(τ, ·)‖2L2 ,

whence
d

dτ
‖w(τ, ·)‖2L2 + 2(1− εe−τ/2)Q(w(τ, ·)) ≤ 2εe−τ/2‖w(τ, ·)‖2L2 .

If ε < 1, this implies
‖w(τ, ·)‖L2 ≤ C, (25)

for all times. Throughout this proof we denote by C various constants that depend
only on the initial data.

Set now, for all w ∈ L2((0,+∞)):

w = 〈e0, w〉e0 + w̃.

Thus, w̃ is orthogonal to e0. First, w1(τ) = 〈e0, w(τ, ·)〉 satisfies

w′1(τ) = −εe−τ/2〈e0, wy(τ, ·)− y

4
w(τ, ·)〉 = εe−τ/2〈(e0)y +

y

4
e0, w(τ, ·)〉.
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It follows from (25) that
|w1(τ)− w1(0)| ≤ Cε. (26)

Next, the equation for w̃ is

w̃τ +Mw̃ = −εe−τ/2
(
〈(e0)y + y

4e0, w(τ, ·)〉e0

+〈e0, w(τ, ·)〉((e0)y − y
4e0) + w̃y(τ, ·)− y

4 w̃(τ, ·)
)
.

(27)

Multiplication by w̃, integration by parts and use of (25) yields the inequality

d

dτ
‖w̃(τ, ·)‖2L2 + 2Q(w̃(τ, ·)) ≤ Cεe−τ/2(Q(w̃(τ, ·)) + ‖w̃(τ, ·)‖L2 + ‖w̃(τ, ·)‖2L2).

Using (24) for w̃ gives the following inequality for the function φ(τ) := ‖w̃(τ, ·)‖2L2 ,
for ε sufficiently small:

φ′ + 2(1− Cε− Cεe−τ/2)φ ≤ Cεe−τ ,
which yields ‖w̃(τ, ·)‖L2 ≤ Ce−τ/2. By parabolic regularity, we have, for any com-
pact set K,

‖w̃y(τ, ·)‖L∞(K) ≤ CKe−τ/2,
and so |w̃(τ, y)| ≤ CKye−τ/2. This implies the lemma, with

ṽ(τ, y) =
w̃(t, y)e−y

2/8+τ/2

y
,

and |ṽ(τ, y)| ≤ CKe−y
2/8. This completes the proof. �

An upper bound for u. Let us now come back to the solution u(t, x) of the
nonlinear problem (1) on the whole line, with the initial data u0(x) supported in
(−∞, A) and such that 0 ≤ u0(x) ≤ 1. Without loss of generality, one can assume
that A > 0. Lemma 2.1 leads to the following upper bounds on u.

Proposition 2.3. There holds

lim sup
t→+∞

u
(
t, c∗t− 3

2λ∗
ln t+ y

)
< 1 for all y ∈ R. (28)

Moreover,

lim sup
t→+∞

(
max

x≥c∗t−(3/(2λ∗)) ln t+y
u(t, x)

)
→ 0 as y → +∞. (29)

Lastly, for every σ > 0, there is a positive constant ρ > 0 such that

u
(
t, c∗t− 3

2λ∗
ln t+ y

)
≤ ρ (y + 1) e−λ

∗y for all t ≥ 1 and 0 ≤ y ≤ σ
√
t. (30)

Proof. In the moving frame with the logarithmic correction, the function

U(t, x) = u(t, c∗t− (3/(2λ∗))(ln(t+ t0)− ln(t0)) + x) (31)

satisfies

Ut −
(
c∗ − 3

2λ∗(t+ t0)

)
Ux = Uxx + f(U), t > 0, x ∈ R. (32)

Let zA be the solution of (18), with initial condition equal to the indicator function
of the interval [0, 2A]. The function zA(t, x) is a super-solution to (32) for x > 0, as
is any multiple BzA(t, x) with B > 0. However, we can not immediately compare
U(t, x) and zA(t, x) since zA(t, 0) = 0 while U(t, x) > 0. In order to overcome this
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difficulty, fix B > 0 large enough so that, thanks to Lemma 2.1 (where t0 > 0 in (31)
only depends on A), we have

BzA(t, A) ≥ 1 for all t > 0.

Define Ū(t, x) for all x ∈ R as

Ū(t, x) =

{
1, if x ≤ A

min(1, BzA(t, x)), if x ≥ A.

The role of the 3/(2λ∗) ln t logarithmic shift is to ensure that the two supersolutions
U ≡ 1 and BzA intersect at a point x(t) whose location is uniformly bounded in
time. The function Ū being a super-solution to (32), and sitting above U0 = u0 at
t = 0, we have

u
(
t, c∗t− 3

2λ∗
ln(1 + t/t0) + x

)
= U(t, x) ≤ Ū(t, x) for all t > 0 and x ∈ R.

The above inequality, together with (20-21) and the boundedness of u lead to (30)
and (29).

Finally, let us prove (28). Assume it does not hold. There exist then y0 ∈ R and a
sequence of positive times tn → +∞ such that u(tn, c

∗tn− (3/(2λ∗)) ln tn+y0)→ 1
as n → +∞. Up to extraction of a subsequence, the functions un(t, x) = u(t +
tn, x+ c∗tn− (3/(2λ∗)) ln tn) converge locally uniformly in R2 to a classical solution
u∞ of

(u∞)t = (u∞)xx + f(u∞), t ∈ R, x ∈ R, (33)

such that 0 ≤ u∞ ≤ 1 in R2 and u∞(0, 0) = 1. The strong maximum principle
implies that u∞ ≡ 1, whereas u∞(0, y) ≤ 1/2 for y large enough, from (29). One
has reached a contradiction and the proof of Proposition 2.3 is thereby complete.�

Property (29) can be rewritten as an upper bound for the level sets Em(t):

Corollary 2.4. For any m ∈ (0, 1), there are some constants t0 > 0 and C ∈ R
such that

maxEm(t) ≤ c∗t− 3

2λ∗
ln t+ C for all t ≥ t0.

A lower bound for u when f is linear at zero. It is immediate to see that
in the special case when f(s) = f ′(0)s for s ∈ [0, s0) with some s0 > 0, the same
argument can be used to obtain a lower bound on u(t, x). Indeed, in that case the
function z̃ = δzA is a subsolution for u provided that δ > 0 is chosen sufficiently
small so as to ensure that 0 ≤ z̃ ≤ s0. This will ensure that

u
(
t, c∗t− 3

2λ∗
ln(t+ 1) + x

)
≥ z̃(t, x) for all t > 0 and x ∈ R. (34)

It is quite straightforward to get the full lower bound on u as in Theorem 1.1
from (34). We will not do that here since the argument is similar to that for the
general f considered in the next section.

3. Lower bound on the location of u. In this section we prove lower bounds
on the function u at the right of the position c∗t − (3/(2λ∗)) ln t. The strategy is
to construct a subsolution on the interval [c∗t,+∞), with the Dirichlet boundary
condition at a point close to x = c∗t, that behaves as y e−λ

∗y t−3/2 at x = c∗t + y
as t→ +∞, see (42) and (43) below.
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Proposition 3.1. There holds

lim inf
t→+∞

u
(
t, c∗t− 3

2λ∗
ln t+ y

)
> 0 for all y ∈ R, (35)

uniformly in y in any compact set. Moreover, for every σ > 0, there is a positive
constant κ > 0 such that

u
(
t, c∗t− 3

2λ∗
ln t+ y

)
≥ κ y e−λ

∗y for all t ≥ 1 and 0 ≤ y ≤ σ
√
t. (36)

Proof. We will follow the strategy described above for the proof of (35), the in-
equality (36) being a by-product of the proof.
Step 1. The linearized problem with Dirichlet boundary condition at c∗t. In the
frame moving with speed c∗, the function v(t, y) = u(t, c∗t+ y) solves

vt − c∗vy = vyy + f(v). (37)

Consider the linearized equation

wt − c∗wy = wyy + f ′(0)w (38)

with Dirichlet boundary condition at y = 0:

w(t, 0) = 0, for all t > 0, (39)

and the same initial condition w(0, ·) = v(0, ·) on (0,+∞). Since c∗ = 2
√
f ′(0) =

2λ∗, the function p(t, y) = eλ
∗yw(t, y) solves

pt = pyy, t > 0, y > 0, (40)

p(t, 0) = 0, t > 0,

whence

w(t, y) =
e−λ

∗y

√
4πt

∫ +∞

0

(
e−

(y−y′)2
4t − e−

(y+y′)2
4t

)
p(0, y′) dy′ (41)

for all t > 0 and y ≥ 0, which implies that

w(t, y) ∼ C y e−λ
∗y−y2/(4t) t−3/2 as t→ +∞, (42)

in the interval y ∈ [0,
√
t], where C > 0 only depends on p(0, ·) (without loss of

generality, p(0, ·) is nonnegative and not identically zero on (0,+∞)).
Step 2. Lower bound at x = c∗t+O(

√
t). For simplicity, let us first suppose that f

is actually linear in a small neighborhood of 0: f(s) = f ′(0)s for s ∈ [0, s0). In this
case, v(t, y) := δw(t, y) is a subsolution of the nonlinear problem problem (37) for
all t > 0 and y ≥ 0, if δ is sufficiently small. It follows then from the maximum
principle that

u(t, c∗t+ y) = v(t, y) ≥ v(t, y) for all t ≥ 0 and y ≥ 0.

In particular, for any σ > 0, there is δ̃ > 0 such that

u(t, c∗t+ y) ≥ v(t, y) ≥ δ̃ y e−λ
∗y t−3/2 for all t ≥ 1 and y ∈ [0, σ

√
t]. (43)

This inequality holds first for large t from (42). Even if it means decreasing δ̃,
the inequality (43) then holds for all t ≥ 1 from the continuity and positivity of v
in (0,+∞)×(0,+∞) and from the Hopf lemma at y = 0, implying that the function
t 7→ wy(t, 0) is positive and continuous for all t > 0.

If f(u) is not linear in a neighborhood of u = 0 (such as f(u) = u(1 − u)),
then (43) can be proved via a slight modification of the subsolution v(t, y). As
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f ∈ C2([0, 1]), there exists M > 0 so that f(s) − f ′(0)s ≥ −Ms2 for s ∈ [0, s0).
The function v(t, y) := a(t)w(t, y) satisfies

vt − c∗vy − vyy − f(v) = a′(t)w + f ′(0)aw − f(aw) ≤ a′(t)w +M(aw)2.

Then, v is a subsolution to (37) provided that a′(t)w+M(aw)2 ≤ 0. Since w(t, y) ≤
C(t+ 1)−3/2 for all t > 0 and y ≥ 0 (since p(0, ·) has compact support), it suffices
to choose a(t) to solve

a′(t) = −CM(t+ 1)−3/2a2, t > 0.

Hence, a(t) can be chosen uniformly bounded from above and below: 0 < a0 ≤
a(t) ≤ a1 < +∞, hence (43) still holds.
Step 3. The approximate travelling fronts are subsolutions for 0 ≤ x ≤ c∗t+O(

√
t).

Let us now prove property (35). Fix σ > 0 and let ξ(t) = σ
√
t. Using the estimate

(43), we will construct an explicit subsolution to (1) on the interval 0 ≤ x ≤ c∗t+ξ(t)
(in the original frame) for t large enough. This subsolution will be an approximate
travelling front, moving at a speed close to c∗.

By (43) there exist δ̃ > 0 and T1 ≥ 1 such that

u(t, c∗t+ ξ(t)) ≥ v(t, ξ(t)) ≥ δ̃ ξ(t) e−λ
∗ξ(t) t−3/2 for all t ≥ T1. (44)

It is known from [1] that u(t, x) → 1 as t → +∞ locally uniformly in x ∈ R.
Therefore, there exists T2 ≥ T1 such that u(t, 0) ≥ 1/2 for all t ≥ T2. Let now f1 be
a C1 function such that f1 ≤ f in [0, 1/2], f1(0) = f1(1/2) = 0, f ′1(0) = f ′(0) and
f1 > 0 on (0, 1/2). The function f1 then satisfies f1(s) ≤ f(s) ≤ f ′(0)s = f ′1(0)s

for all s ∈ [0, 1/2]. Thus, there exists a travelling front Ũc∗(x − c∗t) of (1) with

nonlinearity f1 instead of f , such that 0 < Ũc∗ < 1/2 in R, Ũc∗(−∞) = 1/2,

Ũc∗(+∞) = 0, with minimal speed c∗ = 2
√
f ′1(0) = 2

√
f ′(0). The profile Ũc∗ is

decreasing in R and is such that

Ũc∗(s) ∼ B̃ s e−λ
∗s as s→ +∞, (45)

for some constant B̃ > 0. Let now γ > 0 and fix x1 ∈ R large enough so that

B̃ (γ + 1) e−λ
∗x1 < δ̃. Since there exists T3 ≥ T2 such that ( 3

2λ∗ ln(t) + x1) < γξ(t)
for t ≥ T3, it follows that

Ũc∗
( 3

2λ∗
ln t+ ξ(t) + x1

)
≤ δ̃ ξ(t) e−λ

∗ξ(t) t−3/2 for all t ≥ T3. (46)

On the other hand, since minx∈[0,c∗T3+ξ(T3)] u(T3, x) > 0 and Ũc∗(+∞) = 0, there
exists x2 ≥ x1 such that

Ũc∗
(
x− c∗T3 +

3

2λ∗
lnT3 + x2

)
≤ u(T3, x) for all x ∈ [0, c∗T3 + ξ(T3)]. (47)

Define the subsolution u as follows:

u(t, x) = Ũc∗
(
x− c∗t+

3

2λ∗
ln t+ x2

)
for all t ≥ T3 and x ∈ [0, c∗t+ ξ(t)].

It follows from (47) that u(T3, x) ≤ u(T3, x) for all x ∈ [0, c∗T3 + ξ(T3)]. Using (44)

and (46), and since x2 ≥ x1, and Ũc∗ is decreasing, we have

u(t, c∗t+ ξ(t)) = Ũc∗
( 3

2λ∗
ln t+ ξ(t) + x2

)
≤ δ̃ ξ(t) e−λ

∗ξ(t) t−3/2

≤ u(t, c∗t+ ξ(t).
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for all t ≥ T3 (≥ T1). Furthermore, u(t, 0) ≤ 1/2 ≤ u(t, 0) for all t ≥ T3 (≥ T2),

Lastly, since f1 ≤ f in [0, 1/2] and since Ũc∗ is decreasing and

Ũ ′′c∗ + c∗Ũ ′c∗ + f1(Ũc∗) = 0,

for all t ≥ T3 and x ∈ [0, c∗t+ ξ(t)], we get

ut(t, x)−uxx(t, x)−f(u(t, x)) ≤
(
− c∗+ 3

2λ∗t

)
Ũ ′c∗(z)−Ũ ′′c∗(z)−f1(Ũc∗(z))

=
3

2λ∗t
Ũ ′c∗(z)

≤ 0,

where z = x− c∗ t+ (3/(2λ∗)) ln t+ x2. To sum up, the function u is a subsolution
of (1) for all t ≥ T3 and x ∈ [0, c∗t+ ξ(t)]. The maximum principle implies that

u(t, x) ≥ u(t, x) = Ũc∗
(
x− c∗t+

3

2λ∗
ln t+ x2

)
for all t ≥ T3 and 0 ≤ x ≤ c∗t+ ξ(t).

(48)

Step 4. Conclusion and proof of (35-36). From the inequality (48), it follows in
particular that, for any given y ∈ R,

u
(
t, c∗t− 3

2λ∗
ln t+ y

)
≥ u

(
t, c∗t− 3

2λ∗
ln t+ y

)
= Ũc∗(y + x2) > 0

for t large enough. This provides (35), together with uniformity in y in compact
sets. On the other hand, fixing σ > 0 and ξ(t) = σ

√
t, (45) and (48) lead to (36).

This completes the proof of Proposition 3.1. �

Corollary 3.2. For any m ∈ (0, 1), there are some constants t0 > 0 and C ∈ R
such that

minEm(t) ≥ c∗t− 3

2λ∗
ln t+ C for all t ≥ t0.

Proof. The proof of Proposition 3.1 has already established this result for m < 1/2.
In order to show it for 1/2 ≤ m < 1, we can simply repeat the argument in Steps 3
and 4 of that proof but replacing f1 by a nonlinearity that vanishes at s = 0 and
s = (1 +m)/2 rather than at s = 1/2. �

4. Convergence to the family of shifted approximated minimal fronts.
This section contains the sketch of the proof of Theorem 1.2. It is based on the fact
that the set where u is bounded away from 0 or 1 is located around the position
c∗t − (3/(2λ∗)) ln t for t large enough. To the right of this position, the solution u
has the same type of decay as the critical front Uc∗ in (16), because of the upper
and lower bounds on u obtained in the previous sections. Therefore, u is almost
trapped between two finite shifts of the profile of the front Uc∗ . From a Liouville-
type result, similar to that in [2] and based on the sliding method, the convergence
to the shifted approximated minimal fronts follows.

First, let 0 ≤ κ ≤ ρ be given as in the statements of Proposition 3.1 and 2.3
with, say, σ = 1. Let B > 0 be given as in (16) and let C ≥ 0 be such that

B e−λ
∗C ≤ κ ≤ ρ ≤ B eλ

∗C . (49)

Let us prove that (13) holds with this choice of C. Assume not. There are then
ε > 0 and a sequence of positive times (tn)n∈N such that tn → +∞ as n → +∞
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and

min
|ξ|≤C

∥∥∥∥u(tn, ·)− Uc∗
(
· −c∗tn +

3

2λ∗
ln tn + ξ

)∥∥∥∥
L∞(0,∞)

≥ ε

for all n ∈ N. Since Uc∗(−∞) = 1, Uc∗(+∞) = 0, properties (10) and (11) then
give the existence of a constant θ ≥ 0 such that

min
|ξ|≤C

(
max
|y|≤θ

∣∣u(tn, y + c∗tn −
3

2λ∗
ln tn

)
− Uc∗(y + ξ)

∣∣) ≥ ε (50)

for all n ∈ N. Up to extraction of a subsequence, the functions un defined by

un(t, x) = u
(
t+ tn, x+ c∗tn −

3

2λ∗
ln tn

)
converge locally uniformly in R2 to a solution u∞ of (33) such that 0 ≤ u∞ ≤ 1
in R2. Furthermore, the limits (10) and (11) imply that

lim
y→+∞

(
sup

(t,x)∈R2, x≥c∗t+y
u∞(t, x)

)
= 0

and

lim
y→−∞

(
inf

(t,x)∈R2, x≤c∗t+y
u∞(t, x)

)
= 1. (51)

On the other hand, for each fixed t ∈ R and y > 0, there holds yn = y +
(3/(2λ∗)) ln((t + tn)/tn) ≥ 0 for n large enough, together with t + tn ≥ 1 and
0 ≤ yn ≤

√
t+ tn, whence

κ yn e
−λ∗yn ≤ un(t, c∗t+ y) ≤ ρ (yn + 1) e−λ

∗yn

for n large enough. Therefore,

κ y e−λ
∗y ≤ u∞(t, c∗t+ y) ≤ ρ (y + 1) e−λ

∗y for all t ∈ R and y ≥ 0. (52)

The following Liouville-type result gives a classification of the time-global solu-
tions u∞ satisfying the above properties.

Lemma 4.1. For any solution 0 ≤ u∞ ≤ 1 of (33) in R2 satisfying (51) and (52)
for some positive constants κ and ρ, there is ξ0 ∈ R such that

u∞(t, x) = Uc∗(x− c∗t+ ξ0) for all (t, x) ∈ R2. (53)

The conclusion of this lemma follows directly from Theorem 3.5 of [2]. The proof
is based on the exponential estimates (52) and on the sliding method. In particular,
it can be proved that the set

{
ξ ∈ R, u∞(t, x + ξ) ≤ u∞(t, x) for all (t, x) ∈ R2

}
is not empty, is bounded from below and that its minimum ξ0 satisfies (53). An
interested reader may consult [12] for more details, where the proof is done in the
more general case of x-periodic equations.

We now complete the proof of Theorem 1.2. It follows from Lemma 4.1, from (52)
and from the exponential decay (16) of Uc∗ , that κ ≤ B e−λ∗ξ0 ≤ ρ, whence |ξ0| ≤ C
from (49). But since (at least for a subsequence) un → u∞ locally uniformly in R2,
it follows in particular that un(0, ·)− Uc∗(·+ ξ0)→ 0 uniformly in [−θ, θ], that is

max
|y|≤θ

∣∣∣u(tn, y + c∗tn −
3

2λ∗
ln tn

)
− Uc∗(y + ξ0)

∣∣∣→ 0 as n→ +∞.

Since |ξ0| ≤ C, one gets a contradiction with (50). Therefore, (13) is proved.
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Let us now turn to the proof of (14). Let m ∈ (0, 1) be fixed and let (tn)n∈N and
(xn)n∈N be two sequences of positive real numbers such that tn → +∞ as n→ +∞
and u(tn, xn) = m for all n ∈ N. Set

ξn = xn − c∗tn +
3

2λ∗
ln tn.

Theorem 1.1 implies that the sequence (ξn)n∈N is bounded, and then converges to a
real number ξ∞, up to extraction of a subsequence. From the previous paragraph,
the functions

vn(t, x) = u(t+ tn, x+ xn) = u
(
t+ tn, x+ ξn + c∗tn −

3

2λ∗
ln tn

)
converge, up to extraction of another subsequence, locally uniformly in R2 to
v∞(t, x) = Uc∗(x − c∗t + ξ∞ + ξ) for some ξ ∈ [−C,C], where C ≥ 0 is given
in (13). Since vn(0, 0) = m for all n ∈ N, one gets that Uc∗(ξ∞ + ξ) = m, that
is ξ∞ + ξ = U−1c∗ (m). Finally, the limit v∞ is uniquely determined and the whole
sequence (vn)n∈N therefore converges to the travelling front Uc∗(x− c∗t+U−1c∗ (m)).
The proof of Theorem 1.2 is thereby complete.
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