Citation: Matthieu Alfaro, Thomas Giletti. Varying the direction of propagation in reaction-diffusion equations in periodic media[J]. Networks and Heterogeneous Media, 2016, 11(3): 369-393. doi: 10.3934/nhm.2016001
[1] | M. Alfaro and T. Giletti, Asymptotic analysis of a monostable equation in periodic media, Tamkang J. Math., 47 (2016), 1-26. |
[2] | D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, Partial differential equations and related topics (Program, Tulane Univ., New Orleans, La., 1974), 5-49. Lecture Notes in Math., Vol. 446, Springer, Berlin, 1975. |
[3] |
D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. in Math., 30 (1978), 33-76. doi: 10.1016/0001-8708(78)90130-5
![]() |
[4] |
H. Berestycki and F. Hamel, Front propagation in periodic excitable media, Comm. Pure Appl. Math., 55 (2002), 949-1032. doi: 10.1002/cpa.3022
![]() |
[5] |
H. Berestycki and F. Hamel, Generalized transition waves and their properties, Comm. Pure Appl. Math., 65 (2012), 592-648. doi: 10.1002/cpa.21389
![]() |
[6] |
H. Berestycki, F. Hamel and G. Nadin, Asymptotic spreading in heterogeneous diffusive excitable media, J. Funct. Anal., 255 (2008), 2146-2189. doi: 10.1016/j.jfa.2008.06.030
![]() |
[7] |
H. Berestycki, F. Hamel and L. Roques, Analysis of the periodically fragmented environment model. I. Species persistence, J. Math. Biol., 51 (2005), 75-113. doi: 10.1007/s00285-004-0313-3
![]() |
[8] |
H. Berestycki, F. Hamel and L. Roques, Analysis of the periodically fragmented environment model. II. Biological invasions and pulsating traveling fronts, J. Math. Pures Appl., 84 (2005), 1101-1146. doi: 10.1016/j.matpur.2004.10.006
![]() |
[9] |
H. Berestycki, B. Nicolaenko and B. Scheurer, Traveling wave solutions to combustion models and their singular limits, SIAM J. Math. Anal., 16 (1985), 1207-1242. doi: 10.1137/0516088
![]() |
[10] | H. Berestycki and L. Nirenberg, Travelling fronts in cylinders, Ann. Inst. H. Poincaré Anal. Non Linéaire, 9 (1992), 497-572. |
[11] | P. C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equations to travelling front solutions, Arch. Rational Mech. Anal., 65 (1977), 335-361. |
[12] |
R. A. Fisher, The wave of advance of advantageous genes, Ann. of Eugenics, 7 (1937), 355-369. doi: 10.1111/j.1469-1809.1937.tb02153.x
![]() |
[13] |
F. Hamel, Qualitative properties of monostable pulsating fronts: Exponential decay and monotonicity, J. Math. Pures Appl., 89 (2008), 355-399. doi: 10.1016/j.matpur.2007.12.005
![]() |
[14] |
F. Hamel and L. Roques, Uniqueness and stability properties of monostable pulsating fronts, J. Eur. Math. Soc., 13 (2011), 345-390. doi: 10.4171/JEMS/256
![]() |
[15] | W. Hudson and B. Zinner, Existence of traveling waves for reaction diffusion equations of Fisher type in periodic media, Boundary value problems for functional-differential equations, 187-199, World Sci. Publ., River Edge, NJ, 1995. |
[16] | J. I. Kanel, Stabilization of solutions of the Cauchy problem for equations encountered in combustion theory, (Russian) Mat. Sb., 59 (1962), 245-288. |
[17] | A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Etude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bulletin Université d'Etat Moscou, Bjul. Moskowskogo Gos. Univ., 1937, 1-26. |
[18] |
G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co. Inc., River Edge, NJ, 1996. doi: 10.1142/3302
![]() |
[19] |
G. Nadin, Traveling fronts in space-time periodic media, J. Math. Pures Appl., (9) 92 (2009), 232-262. doi: 10.1016/j.matpur.2009.04.002
![]() |
[20] |
J. Nolen and L. Ryzhik, Traveling waves in a one-dimensional heterogeneous medium, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1021-1047. doi: 10.1016/j.anihpc.2009.02.003
![]() |
[21] | P. Quittner and P. Souplet, Superlinear Parabolic Problems, Birkhäuser Verlag, Basel, 2007. |
[22] | arXiv:1503.09010. |
[23] | N. Shigesada and K. Kawasaki, Biological Invasion: Theory and Practise, Oxford University Press, 1997. |
[24] | A. Volpert, V. Volpert and V. Volpert, Travelling Wave Solutions of Parabolic Systems, Translations of Mathematical Monographs, vol. 140, AMS Providence, RI, 1994. |
[25] |
H. Weinberger, On spreading speed and travelling waves for growth and migration, J. Math. Biol., 45 (2002), 511-548. doi: 10.1007/s00285-002-0169-3
![]() |
[26] |
J. Xin, Existence and stability of traveling waves in periodic media governed by a bistable nonlinearity, J. Dynam. Differential Equations, 3 (1991), 541-573. doi: 10.1007/BF01049099
![]() |
[27] |
J. Xin, Existence of planar flame fronts in convective-diffusive periodic media, Arch. Ration. Mech. Anal., 121 (1992), 205-233. doi: 10.1007/BF00410613
![]() |
[28] |
J. Xin, Existence and nonexistence of traveling waves and reaction-diffusion front propagation in periodic media, J. Statist. Phys., 73 (1993), 893-926. doi: 10.1007/BF01052815
![]() |
[29] |
J. Xin, Front propagation in heterogeneous media, SIAM Rev., 42 (2000), 161-230. doi: 10.1137/S0036144599364296
![]() |
[30] |
A. Zlatoš, Generalized traveling waves in disordered media: Existence, uniqueness, and stability, Arch. Ration. Mech. Anal., 208 (2013), 447-480. doi: 10.1007/s00205-012-0600-x
![]() |