Citation: Marie Henry. Singular limit of an activator-inhibitor type model[J]. Networks and Heterogeneous Media, 2012, 7(4): 781-803. doi: 10.3934/nhm.2012.7.781
[1] |
M. Alfaro, D. Hilhorst and H. Matano, The singular limit of the Allen-Cahn Equation and the Fitzhugh-Nagumo system, J. Differential Equations, 245 (2008), 505-565. doi: 10.1016/j.jde.2008.01.014
![]() |
[2] | A. Bonami, D. Hilhorst and E. Logak, Modified Motion by mean curvature: Local existence and uniqueness and qualitative properties, Differential and Integral Equation, 3 (2000), 1371-1392. |
[3] | A. Bonami, D. Hilhorst, E. Logak and M. Mimura, Singular limit of a chemotaxis growth model, Advances in Differential Equations, 6 (2001), 1173-1218. |
[4] |
X. Chen, Generation and propagation of interfaces in reaction-diffusion systems, Transactions of the American Mathematical society, 32 (1992), 877-913. doi: 10.2307/2154487
![]() |
[5] |
P. C. Fife and L. Hsiao, The generation and propagation of internal layers, Nonlinear Analysis TMA, 12 (1988), 19-41. doi: 10.1016/0362-546X(88)90010-7
![]() |
[6] | M. Henry, D. Hilhorst and R. Schätzle, Convergence to a viscosity solution for an advection-reaction-diffusion equation arising from a chemotaxis-growth model, Hiroshima Math. Journal, 29 (1999), 591-630. |
[7] | O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type," American Mathematical Society, 1968. |
[8] |
E. Logak, Singular limit of reaction-diffusion systems and modified motion by mean curvature, Roy. Soc. Edinburgh. Sect. A, 132 (2002), 951-973. doi: 10.1017/S0308210500001955
![]() |
[9] |
Y. Nishiura and M. Mimura, Layer oscillations in reaction-diffusion systems, SIAM J. Appl. Math., 49 (1989), 481-514. doi: 10.1137/0149029
![]() |
[10] |
M. H. Protter and H. F. Weinberger, "Maximum Principles in Differential Equations," Springer-Verlag, 1984. doi: 10.1007/978-1-4612-5282-5
![]() |
[11] | J. Smoller, "Shock Waves and Reaction-Diffusion Equations," Springer-Verlag, 1994. |