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OF AN ACTIVATOR-INHIBITOR TYPE MODEL
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Abstract. We consider a reaction-diffusion system of activator-inhibitor type

arising in the theory of phase transition. It appears in biological contexts such

as pattern formation in population genetics. The purpose of this work is to
prove the convergence of the solution of this system to the solution of a free

boundary Problem involving a motion by mean curvature.

1. Introduction. In physics, biology or chemistry many phenomena are modelled
by the following large class of coupled reaction-diffusion system

ut = d1∆u+ f(u, v) vt = d2∆v + rg(u, v).

For instance this system describes pattern formation in an activator-inhibitor model
and it has been thoroughly studied by many authors. They highlighted in particular
that the patterns observed are produced by the interaction between kinetics and
diffusion effects. In activator-inhibitor models, u is the activator variable and v is
the inhibitor variable. Moreover d1 and d2 are respectively the diffusion rates of u
and v while r represents the ratio of the reaction rates of u and v. As a consequence,
the order of magnitude between d1, d2 and r has a major impact on the formation
and evolution of patterns.

In this paper, we consider the case where u diffuses very slowly and v diffuses
and react slowly, namely d1 = ε2, d2 = r = ε. More precisely, the system we study
after rescaling in time is given by

(P ε)



uεt = ∆uε +
1

ε2 f(uε, εvε) in Ω× (0, T )

εvεt = ∆vε − γvε + uε in Ω× (0, T )

∂uε

∂n
=
∂vε

∂n
= 0 on ∂Ω× (0, T )

uε(x, 0) = u0(x), vε(x, 0) = v0(x) for x ∈ Ω,

(1.1)

(1.2)

(1.3)

(1.4)

where γ is a strictly positive constant and

f(s, w) := s(1− s2)− w. (1.5)

We also suppose that Ω is a smooth bounded domain of IRN with N ≥ 2.
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The purpose of this paper is to prove that the solution of Problem (P ε) converges,
as ε tends to 0, to the solution of the following free boundary Problem

(P )



u(x, t) =

{
1 x ∈ Ω+(t)
−1 x ∈ Ω−(t) ∪ Γt

∆v(x, t) = γv(x, t)− u(x, t) x ∈ Ω+(t) ∪ Ω−(t), t ∈ (0, T ]
∂v
∂n

= 0 (x, t) ∈ ∂Ω× [0, T ]

Vn = −(N − 1)K − 3√
2
v(x, t) x ∈ Γt = Ω \ (Ω+(t) ∪ Ω−(t))

Γ|t=0 = Γ0,

where Γt ⊂⊂ Ω is a smooth compact hypersurface without boundaries dividing
Ω into two subdomains Ω−(t) and Ω+(t), such that ∂Ω+(t) = Γt and Ω−(t) =
Ω \ (Ω+(t) ∪ ∂Ω+(t)). Moreover Vn and K denote respectively the outward normal
velocity and the mean curvature of Γt.

The existence and uniqueness locally in time of the solution of (P ) have been
provided in [2]. Moreover in [2] the authors claim the convergence of the solution
of (P ε) to the solution of (P ) and here we will prove rigorously this conjecture.

Let us mention that the convergence of the solution of variant of problem (P ε) has
been extensively studied. For example E. Logak in [8] considered the case where the
equation of vε is an elliptic equation and showed the convergence to the solution
of (P ), for some prepared initial data. In [1] the authors studied the Fitzhugh-
Nagumo system, where the equation of vε is a parabolic equation and demonstrated
the convergence to the associated free boundary problem. We also refer to X. Chen
(see [4]) for the study of another scaling of the Allen-Cahn equation. In our case the
main difficulty is that the parameter ε is also introduced in the parabolic equation
(1.2) of vε, as a consequence vε satisfies a parabolic equation while its limit v
satisfies an elliptic equation. To overcome this difficulty we construct a function,
which satisfies an approximation of the elliptic equation of v.

Denoting by dist(x,Γt) the signed distance from x to Γt such that{
dist(x,Γt) > 0 if x ∈ Ω+(t)
dist(x,Γt) < 0 if x ∈ Ω−(t),

we make the following hypotheses about the initial data:
(H1) u0 is bounded in C2(Ω) and satisfies the compatibility condition

∂u0

∂n
= 0 ∀x ∈ ∂Ω. (1.6)

(H2) Γ0 := {x ∈ Ω, u0(x) = 0} is a C2+α compact hypersurface with α ∈ (0, 1)
(H3) The open set Ω+(0) defined by

Ω+(0) := {x ∈ Ω, u0(x) > 0}

is connected and Ω+(0) ⊂⊂ Ω.
(H4) v0 satisfy the elliptic problem

∆v0 = γv0 − u0 for all x ∈ Ω and
∂v0

∂n
= 0 for all x ∈ ∂Ω.

(H5) There exists a positive constant, η0, such that{
u0(x) ≥ η0dist(x,Γ0) if x ∈ Ω+(0)
u0(x) ≤ η0dist(x,Γ0) if x ∈ Ω−(0).
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Under this assumptions we will prove the convergence of (uε, vε) to (u, v), as ε
tends to 0, namely

Theorem 1.1. Assume the hypotheses (H1)− (H5). Let (uε, vε) be the solution of
Problem (P ε) and let (u, v,Γ) with Γ = (Γt × {t})t∈[0,T ] be the solution of the free

boundary Problem (P) on [0, T ]. Then (uε, vε) converges to (u, v), as ε ↓ 0. More
precisely

uε converges to u everywhere in ∪0<t≤T (Ω±t × {t}),

vε converges to v uniformly on Ω× [0, T ].

In the first step, we will prove that for any initial data u0 the solution uε becomes,
at time of order O(ε2| ln ε|), close to ±1 except in a small neighborhood of the initial
interface Γ0. Moreover for short time the function vε stay close to its initial data
v0. Precisely the Theorem of Generation of Interface reads as follow.

Theorem 1.2. Assume (H1)− (H4) then there exist positive constants ε0, M̃0 and
τ0 such that for all ε ∈ (0, ε0] we have

−1− M̃0ε ≤ uε(x, tε0) ≤ 1 + M̃0ε, for all x ∈ Ω

with tε0 := τ0ε
2| ln ε| and

|uε(x, tε0)− 1| ≤ M̃0ε, for all x ∈ Ω̃ε+,

|uε(x, tε0) + 1| ≤ M̃0ε, for all x ∈ Ω̃ε−,

where
Ω̃ε+ := {x ∈ Ω, u0(x) ≥ M̃0

√
ε| ln ε|},

Ω̃ε− := {x ∈ Ω, u0(x) ≤ −M̃0
√
ε| ln ε|}.

Moreover vε satisfies

|vε(x, t)− v0(x)| ≤ M̃0ε| ln ε|, for all x ∈ Ω and t ∈ [0, tε0]. (1.7)

In a second step we will establish the propagation of the interface, namely

Theorem 1.3. Assume (H1)− (H5) and let T be the time existence of the smooth
solution (Γ, v) of the free boundary problem (P ), such that Γ = ∪t∈[0,T ]Γt ⊂⊂
Ω × [0, T ]. Then there exist positive constants M and ε∗ such that the solution
(uε, vε) of Problem (P ε) satisfies for all ε ∈ (0, ε∗] and for all t ∈ [tε0, T ] that

|uε(x, t)− u(x, t)| ≤Mε| ln ε|, (1.8)

for all x ∈ {x ∈ Ω, |dist(x,Γt−tε0)| ≥M
√
ε| ln ε|} and

|vε(x, t)− v(x, t)| ≤M
√
ε| ln ε|, (1.9)

for all x ∈ Ω.

Clearly, Theorem 1.1 is a direct consequence of Theorem 1.3.
This paper is organized as follows : In section 2, we state some properties of the
solution of the free boundary Problem (P ). In particular, we prove that the deriva-
tives in time and in space of the function v are bounded in the whole domain
QT = Ω × [0, T ]. In section 3, we follow the ideas of X. Chen in [4] to get a pre-
cise result on the generation of interface in a short time of order O(ε2| ln ε|), which
will imply Theorem 1.2. In section 4 we first study the solution, kε, of an elliptic
equation which approximates the equation satisfied by v. Then we use this function
kε to built sub-supersolution of vε. Moreover we also construct sub-supersolution
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of uε which have the form of the travelling wave. The last part of the section 4 is
devoted to the proof of Theorem 1.3. Further in section 5 we consider the Green
function associated to the operator (−∆+γ) with Neumann Condition and an arbi-
trary hypersurface Hλ which depends continuously on λ ∈ Λ with Λ a compact set
of IRN . We then justify rigorously that the integral of the Green function on Hλ,
is uniformly bounded on Ω × Λ. As a consequence we establish a useful estimate
namely, the integral of the Green function on Γt is uniformly bounded on QT .

2. Properties of the solution of the free boundary Problem (P ). We first
recall the result of Existence and Uniqueness of the solution of Problem (P ) obtained
in [2].

Theorem 2.1. Let α ∈ (0, 1) and assume that Γ0 is a C2+α hypersurface which
is the boundary of a domain Ω+(0) ⊂⊂ Ω then there exists a positive constant T
such that the limit free boundary problem (P ) has a unique smooth solution (v,Γ)

on [0, T ], with Γ =

(
Γt × {t}

)
t∈[0,T ]

∈ C2+α, 2+α2 and v|Γ ∈ C2+α, 2+α2 .

Next we prove that the derivatives of v are bounded in the whole domain Ω ×
(0, T ).

Theorem 2.2. There exists a positive constant V > 0 such that

|v(x, t)|+ |vt(x, t)|+ |∇v(x, t)|+ |∆v(x, t)| ≤ V, (2.1)

for all (x, t) ∈ Ω× [0, T ].

Proof. Using a Maximum principle for elliptic equations, see for instance Theorem
20 in [10], we have that v is bounded on the whole domain QT . Moreover since

∆v is bounded we note that v(., t) ∈ C1+ν(Ω) for ν ∈ (0, 1). To prove that vt is
bounded in QT we adapt the idea of E. Logak given in [8]. Denoting by G the
Green function associated to the operator (−∆ + γ) with Neumann Condition, we
have

v(x, t) =

∫
Ω

G(x, x′)u(x′, t)dx′

= −
∫

Ω−(t)

G(x, x′)dx′ +

∫
Ω+(t)

G(x, x′)dx′

=

∫
Ω

G(x, x′)dx′ − 2

∫
Ω−(t)

G(x, x′)dx′,

so that

vt(x, t) = −2

∫
Γt

G(x, x′)Vn(x′, t)dx′, (2.2)

where Vn(x′, t) is the normal velocity of a point x′ on Γt. Using the smoothness of
Γt we deduce that there exists a positive constant C such that∣∣∣∣vt(x, t)∣∣∣∣ ≤ C ∫

Γt

|G(x, x′)|dx′. (2.3)

This gives in view of (5.15) that ‖vt‖L∞(QT ) ≤ C and concludes the proof of Theo-
rem 2.2.
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3. Generation of interface. We state below the existence and uniqueness of the
solution (uε, vε) of Problem (P ε).

Lemma 3.1. For all T ∈ (0,∞), Problem (P ε) admits a unique solution (uε, vε).
Moreover there exist positive constants C0 and ε0 > 0 such that for all ε ∈ (0, ε0]
we have

|uε(x, t)|+ |vε(x, t)| ≤ C0

2
, for all (x, t) ∈ Ω× [0, T ] (3.1)

and

|vε(x, t)− v0(x)| ≤ C0

ε
t, for all (x, t) ∈ Ω× [0, T ]. (3.2)

Proof. The existence of a unique solution of (P ε) follows from standard theory of
parabolic system. From the theory of the invariant region (see for instance [11]),
we obtain that uε and vε are bounded, so that

|uε(x, t)|+ |vε(x, t)| ≤ C, for all (x, t) ∈ Ω× [0, T ].

Next we prove (3.2). Let Lε2 be the parabolic operator associated to (1.2), namely

Lε2(u, v) := εvt −∆v + γv − u (3.3)

we have for B ≥ supx∈Ω |∆v0|+ γ supx∈Ω |v0|+ supx∈Ω |uε| that

Lε2(uε, v0 +
B

ε
t) = B −∆v0 + γv0 + γ

B

ε
t− uε ≥ 0,

for all (x, t) ∈ Ω× [0, T ]. By comparison principle applied to (1.2) we deduce

vε(x, t) ≤ v0(x) +
B

ε
t, for all (x, t) ∈ Ω× [0, T ].

Similarly, one can prove that vε(x, t) ≥ v0(x) − B
ε t in Ω × [0, T ]. Thus taking

C0 ≥ max(B, 2C), we obtain (3.1) and (3.2), which concludes the proof of lemma
3.1.

We now state preliminary definitions, which will be useful in the sequel. For

w ∈ B := (−2

√
3

9 , 2

√
3

9 ), the equation

f(u,w) := u(1− u2)− w = 0,

has three solutions, which we denote by h−(w) < h0(w) < h+(w). Note that
h±(0) = ±1, h0(0) = 0 and we list below the main properties of h± and h0.

Lemma 3.2. For w ∈ B := (−2

√
3

9 , 2

√
3

9 ) the functions h±(w) and h0(w) are
smooth functions such that

w 7→ h±(w) are strictly decreasing and w 7→ h0(w) is strictly increasing. (3.4)

Further, let σ ∈ (0, 1/4), then there exist positive constants H, H1, H2, H3 and H4

such that

|h±(w)− h±(v)|+ |h0(w)− h0(v)| ≤ H|v − w|, (3.5)

for all (v, w) ∈ (−2

√
3

9 + σ
2 , 2

√
3

9 −
σ
2 )2 and

h±(w) +H1δ ≤ h±(w − δ) ≤ h±(w) +H2δ, (3.6)

h±(w)−H3δ ≤ h±(w + δ) ≤ h±(w)−H4δ (3.7)

for all w ∈ (−2

√
3

9 + σ
2 , 2

√
3

9 −
σ
2 ) and δ ∈ (0, σ4 ].
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Proof. Differentiating the equality f(h±(w), w) = 0 with respect to w, we obtain

∂h±(w)

∂w
=

1

1− 3(h±(w))2 . (3.8)

Since by construction |h±(w)| > 1√
3

, we deduce from (3.8) that

∂h±(w)

∂w
< 0, for all w ∈ B (3.9)

and similarly since − 1√
3
< h0(w) < 1√

3
we have

∂h0(w)
∂w

= 1
1− 3(h0(w))2 > 0,

which implies (3.4). (3.5) follows directly from the smoothness of h± and h0 on B.

Further we have for w ∈ (−2

√
3

9 + σ
2 , 2

√
3

9 −
σ
2 ) and δ ∈ [0, σ4 ] that

h±(w − δ) = h±(w)− ∂h±(θ)

∂w
δ, (3.10)

where θ ∈ (w − δ, w) ⊂ [−2

√
3

9 + σ
4 , 2

√
3

9 −
σ
2 ]. Thus (3.9) and the continuity of

∂h±(w)
∂w

gives (3.6). In the same way one can check (3.7) and conclude the proof

of lemma 3.2.

In order to prove the generation of interface we now introduce some useful notations.
Let s 7→ ρ(s) ∈ C∞(IR) be the cut-off function defined by


ρ(s) = 1, if |s| ≤ 1,
ρ(s) = 0, if |s| ≥ 2,
0 < ρ(s) < 1, if 1 < |s| < 2,
−2 < sρ′(s) ≤ 0, if s ∈ IR,
|ρ′′(s)| ≤ 4, if s ∈ IR,

then we set ρ0 = ρ

(
u− h0(v)

ε
3
2 | ln ε|

)
, ρ+ = ρ

(
u− h+(v)

ε
3
2 | ln ε|

)
and ρ− = ρ

(
u− h−(v)

ε
3
2 | ln ε|

)
and

f̃(u, v) := ρ0
u− h0(v)

| ln ε|
+ ρ+

h+(v)− u
| ln ε|

+ ρ−
h−(v)− u
| ln ε|

+ (1− ρ0− ρ−− ρ+)f(u, v).

(3.11)

As it is done in [4], we first prove some properties of the function f̃ .

Lemma 3.3. Let

σ := −
√

3

3
+ h+

(
2
√

3

9
− σ

4

)
=

√
3

3
− h−

(
− 2
√

3

9
+
σ

4

)
,
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then there exist positive constant ε and Cf such that for all ε ∈ (0, ε] and v ∈
[− 2
√

3
9 + σ

2 ,
2
√

3
9 −

σ
2 ] the function f̃ defined by (3.11) satisfies

|f̃(u, v)− f(u, v)| ≤ Cfε
3
2 | ln ε|, for all u ∈ [−C0, C0] (3.12)

|f̃u(u, v)| ≤ Cf and |f̃v(u, v)| ≤ Cf , for all u ∈ [−C0, C0] (3.13)

f̃u(u, v) ≥ 1

| ln ε|
, for all u ∈ [−

√
3

3
+ σ,

√
3

3
− σ] (3.14)

f̃u(u, v) ≤ − 1

| ln ε|
, for all u ∈ [−C0,−

√
3

3
− σ] ∪ [

√
3

3
+ σ,C0] (3.15)

|f̃vv(u, v)| ≤ Cf

ε
3
2 | ln ε|

, for all u ∈ [−C0, C0] (3.16)

|f̃v(u, v)| ≤ Cf |f̃u(u, v)|, for all u ∈ [−C0, C0], |u±
√

3

3
| ≥ σ, (3.17)

where C0 is defined in lemma 3.1.

Proof. Since the proof is very similar to its of lemma 3.1 in [4], we only give the
sketch of the proof. We set

A(v) :

={η, |η − h0(v)| ≤ 2ε
3
2 | ln ε| or |η − h−(v)| ≤ 2ε

3
2 | ln ε| or |η − h+(v)| ≤ 2ε

3
2 | ln ε|}

and we note that f̃ = f for u /∈ A(v). Thus the inequalities of lemma 3.3 are
obvious for u /∈ A(v).
1. We now consider the case u ∈ A(v). Indeed we first assume that

|u− h0(v)| ≤ 2ε
3
2 | ln ε|. (3.18)

If ε is small enough then ρ− = ρ+ = 0 and

f̃(u, v) := ρ0
u− h0(v)

| ln ε|
+ (1− ρ0)f(u, v). (3.19)

Using (3.18) and the fact that f(h0(v), v) = 0 we deduce that∣∣∣∣u− h0(v)

| ln ε|
− f(u, v)

∣∣∣∣ = |u− h0(v)|
∣∣∣∣ 1

| ln ε|
− f(u, v)− f(h0(v), v)

u− h0(v)

∣∣∣∣ ≤ Cε 3
2 | ln ε|.

(3.20)
So by (3.19) we have ∣∣∣∣f(u, v)− f̃(u, v)

∣∣∣∣ ≤ Cε 3
2 | ln ε|,

which coincides with (3.12). Differentiating (3.19) with respect to u one has

f̃u(u, v) =
ρ′

ε
3
2 | ln ε|

(
u− h0(v)

| ln ε|
− f(u, v)

)
+

ρ0

| ln ε|
+ (1− ρ0)fu(u, v). (3.21)

As in [4] one can check that the first term of (3.21) is positive and thus

f̃u(u, v) ≥ ρ0

| ln ε|
+ (1− ρ0)fu(u, v) ≥ 1

| ln ε|
,

which implies (3.14). Using (3.19), (3.20) and the fact that ρ′ and fu are bounded
we obtain the first part of (3.13). Differentiating (3.19) with respect to v one gets

f̃v(u, v) = − ρ′h′0

ε
3
2 | ln ε|

(
u− h0(v)

| ln ε|
− f(u, v)

)
− ρ0h

′
0

| ln ε|
+ (1− ρ0)fv(u, v), (3.22)
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so that by (3.20) the last part of (3.13) is obtained. Comparing (3.21) with (3.22)
and using the same arguments as in [4] one can check (3.17). Differentiating (3.22)
with respect to v we have

f̃vv(u, v) =
ρ′′(h′0)2

(ε
3
2 | ln ε|)2

(
u− h0(v)

| ln ε|
− f(u, v)

)
+O

(
1

ε
3
2 | ln ε|

)
, (3.23)

which together with (3.20) implies (3.16). Similarly one can obtain (3.12)-(3.17) in

the cases |η − h−(v)| ≤ 2ε
3
2 | ln ε| and |η − h+(v)| ≤ 2ε

3
2 | ln ε|. This concludes the

proof of lemma 3.3.

In what follows, we prove that in a short time of order O(ε2) the solution uε can
be approximated by the solution of the following ordinary differential equation

(ODE)

{
ωτ (ζ, τ, w) = f̃(ω,w), for all τ > 0,
ω(ζ, 0, w) = ζ,

where ζ ∈ [−C0, C0] and w ∈ B. We next recall some qualitative properties of ω
and we refer to lemma 3.2 in [4] for the proof.

Lemma 3.4. Assume that ζ ∈ [−C0, C0] and w ∈ (−2

√
3

9 + σ
2 , 2

√
3

9 −
σ
2 ) and let

ω(ζ, τ, w) be the solution of (ODE). Then ω ∈ C2([−C0, C0] × IR+ × (−2

√
3

9 +

σ
2 , 2

√
3

9 −
σ
2 )) and

ωζ(ζ, τ, w) > 0. (3.24)

Moreover there exist positive constants τ0 and ε0 such that for all ε ∈ (0, ε0] and
τ ≥ τ0| ln ε|, we have

ω(ζ, τ, w) ≥ h+(w)− 2ε
3
2 | ln ε|,∀ζ ∈ [h0(w) + 2ε

3
2 | ln ε|,∞), (3.25)

ω(ζ, τ, w) ≤ h−(w) + 2ε
3
2 | ln ε|,∀ζ ∈ (−∞, h0(w)− 2ε

3
2 | ln ε|], (3.26)

and

h−(w)− 2ε
3
2 | ln ε| ≤ ω(ζ, τ, w) ≤ h+(w) + 2ε

3
2 | ln ε|,∀ζ ∈ [−C0, C0]. (3.27)

Further there exists a positive constant C1 such that for all ε ∈ (0, ε0] and τ ∈
[0, τ0| ln ε|], we have

|ωζζ | ≤ C1
ωζ

ε
3
2

, (3.28)

|ωv| ≤ C1(1 + ωζ), (3.29)

|ωζv|+ |ωvv| ≤ C1
(1 + ωζ)

ε
3
2

. (3.30)

We are now in a position to prove the generation interface result, namely

Lemma 3.5. Assume (H1)-(H4) then there exist positive constant ε0, M0 and τ0
such that for all ε ∈ (0, ε0] the solution (uε, vε) of Problem (P ε) satisfies

h−(εv0)−M0ε
3
2 | ln ε| ≤ uε(x, tε0) ≤ h+(εv0) +M0ε

3
2 | ln ε|,∀x ∈ Ω (3.31)

with tε0 := τ0ε
2| ln ε| and

|uε(x, tε0)− h+(εv0)| ≤M0ε
3
2 | ln ε|,∀x ∈ Ω̃ε+, (3.32)

|uε(x, tε0)− h−(εv0)| ≤M0ε
3
2 | ln ε|,∀x ∈ Ω̃ε−, (3.33)
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where
Ω̃ε+ := {x ∈ Ω, u0(x) ≥ h0(εv0) +M0

√
ε| ln ε|},

Ω̃ε− := {x ∈ Ω, u0(x) ≤ h0(εv0)−M0
√
ε| ln ε|}.

Proof. By (3.2) we have

|vε(x, t)− v0(x)| ≤ C0τ0ε| ln ε|, for all (x, t) ∈ Ω× [0, tε0]. (3.34)

We set

u±(x, t) := ω

(
u0± l1

t

ε
3
2

,
t

ε2 , εv0(x)∓ l2ε
3
2 | ln ε|

)
, for all (x, t) ∈ Ω× [0, T ], (3.35)

where l1 and l2 are two constants to be chosen later. We now prove that u− and u+

are respectively sub- supersolution to the parabolic equation (1.1). To that purpose,
we compute the derivatives of u+, namely

u+
t =

l1

ε
3
2

ωζ +
1

ε2ωτ , (3.36)

and by (3.28)-(3.30)

|∆u+| = |∆u0ωζ + |∇u0|2ωζζ + 2ε∇u0.∇v0ωζw + ε∆v0ωw + ε2|∇v0|2ωww|

≤ Ã0

(
1√
ε

+
ωζ

ε
3
2

)
, (3.37)

where Ã0 is a positive constant. Denoting by Lε1 the parabolic operators associated
to (1.1) we have using (3.36) and (3.37) that

Lε1(u+, vε) ≥ l1
ε

3
2

ωζ − Ã0

(
1√
ε

+
ωζ
ε

3
2

)
+ 1
ε2

(
f̃(ω, εv0 − l2ε

3
2 | ln ε|)

−f(ω, εv0 − l2ε
3
2 | ln ε|) + ε(vε − v0) + l2ε

3
2 | ln ε|

)
.

This in view of (3.34) and (3.12) gives

Lε1(u+, vε) ≥ | ln ε|√
ε

(
l2 − Cf − C0τ0

√
ε− Ã0

| ln ε|

)
+
ωζ

ε
3
2

(
l1 − Ã0

)
,

for t ∈ [0, τ0ε
2| ln ε|]. Choosing l1 ≥ Ã0 and l2 ≥ Cf + C0τ0

√
ε+ Ã0
| ln ε| , we deduce

that Lε1(u+, vε) ≥ 0. Similarly, one can check that Lε1(u−, vε) ≤ 0. By comparison
principle, this gives since

u±(x, 0) = ω(u0, 0, εv0 ∓ l2ε
3
2 | ln ε|) = u0(x)

and
∂u±

∂n
= ωζ

∂u0

∂n
+ εωw

∂v0

∂n
= 0 =

∂uε

∂n
that

u−(x, t) ≤ uε(x, t) ≤ u+(x, t), for all (x, t) ∈ Ω× [0, τ0ε
2| ln ε|]. (3.38)

Let us apply (3.38) at t = tε0 = τ0ε
2| ln ε|; then since u0(x) + l1τ0

ε2

ε
3
2
| ln ε| = u0(x) +

l1τ0
√
ε| ln ε| ∈ [−C0, C0] for ε small enough, we deduce from (3.5) and (3.27) that

uε(x, tε0) ≤ h+(εv0 − l2ε
3
2 | ln ε|) + 2ε

3
2 | ln ε| ≤ h+(εv0) + (Hl2 + 2)ε

3
2 | ln ε|

and

uε(x, tε0) ≥ h−(εv0 + l2ε
3
2 | ln ε|)− 2ε

3
2 | ln ε| ≥ h−(εv0)− (Hl2 + 2)ε

3
2 | ln ε|, (3.39)
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which gives (3.31). Similarly, by (3.5), (3.26) and (3.38) we have

uε(x, tε0) ≤ u+(x, tε0) ≤ h−(εv0 − l2ε
3
2 | ln ε|) + 2ε

3
2 | ln ε|

≤ h−(εv0) + (Hl2 + 2)ε
3
2 | ln ε|,

if u0(x) + l1τ0
√
ε| ln ε| ∈ (−∞, h0(εv0 − l2ε

3
2 | ln ε|)− 2ε

3
2 | ln ε|], which is fulfilled if

u0(x) ≤ h0(εv0)− (l1τ0 + 4)
√
ε| ln ε|.

This together with (3.39) implies (3.33). In the same way one can prove (3.32) and
achieves the proof of lemma 3.5.

Proof of Theorem 1.2. Finally, Theorem 1.2 follows directly from (3.5) and lemma
3.5.

4. Propagation of interface.

4.1. Preliminary results. We now state preliminary definitions, which will be
useful in the sequel. Let (U(z, w), C(w)) be the solution of the system

(TW )

 Uzz(z, w) + C(w)Uz(z, w) + f(U,w) = 0,∀z ∈ IR,
limz→+∞ U(z, w) = h+(w), limz→−∞ U(z, w) = h−(w),
U(0, w) = h0(w).

The velocity C(w) is a smooth function, which satisfies

C(w) =
1√
2

(
2h0(w)− h−(w)− h+(w)

)
=

3√
2
h0(w), (4.1)

so that C(0) = 0. Next we describe some qualitative properties of the travelling
wave solution (U(z, w), C(w)).

Lemma 4.1. There exist positive constants A and β such that for all w ∈ B

|U | ≤ A, 0 < Uz ≤ A and |Uw| ≤ A, for all z ∈ IR (4.2)

|Uz(z, w)|+ |Uzz(z, w)| ≤ Ae−β|z| for all z ∈ IR (4.3)

and

|U(z, w)− h+(w)| ≤ Ae−βz if z ≥ 0, (4.4)

|U(z, w)− h−(w)| ≤ Aeβz if z ≤ 0. (4.5)

Moreover the velocity C(w) satisfies

C(w) =
3√
2
w +O(|w|2). (4.6)

Proof. We refer to [6], [4] or [5] for the proof of (4.2)-(4.5). Further since h′0(0) =
1

1− 3h2
0(0)

= 1 we have

C(w) =
3√
2
h0(w) =

3√
2
w +O(w2),

which coincides with (4.6) and concludes the proof of lemma 4.1.
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We now introduce a smooth truncated approximation of the signed distance
function, namely

d(x, t) =


dist(x,Γt) if x ∈ Ω+(t) ∪ Ω−(t) and |dist(x,Γt)| ≤ L

2
L if x ∈ Ω+(t) and |dist(x,Γt)| ≥ L
−L if x ∈ Ω \ Ω+(t) and |dist(x,Γt)| ≥ L
L
2 ≤ |d| ≤ L if L2 ≤ |dist(x,Γt)| ≤ L.

Taking L small enough we may assume 0 < L < δ where δ is defined by (5.1) and
also −dist(x,Γt) > L for all (x, t) ∈ ∂Ω× [0, T ], so that

∂d

∂n
(x, t) = 0 for all (x, t) ∈ ∂Ω× [0, T ]. (4.7)

We next state an auxiliary result, which will be useful to obtain sub-supersolution
of (P ε).

Lemma 4.2. Let D1, D2, S1 and m1 be strictly positive constants and let G2 be
the constant defined in Corollary 1, then the solution kε of the following elliptic
problem

(K)

{
−∆kε + γkε = D1

√
ε| ln ε|+D2χ{−2S1

√
ε| ln ε|em1t≤d(x,t)≤0} in Ω

∂kε

∂n
= 0 on ∂Ω

satisfies for all (x, t) ∈ Ω× [0, T ]

0 < Km
√
ε| ln ε| ≤ kε(x, t) ≤ KM (t)

√
ε| ln ε|, (4.8)

where Km = D1
2γ , KM (t) = D1

γ + D2CG22S1e
m1t. Further there exists a constant,

K, independent of D1, S1 and m1 such that

|∇kε(x, t)|+ |∆kε(x, t)| ≤ K, for all (x, t) ∈ Ω× [0, T ] (4.9)

and

|kεt (x, t)| ≤ K, for all (x, t) ∈ Ω× [0, T ]. (4.10)

Proof. We first note that (K) admits a unique solution, kε, and that D1
2γ
√
ε| ln ε| is

a subsolution of (K), so

kε(x, t) ≥ D1

2γ

√
ε| ln ε| > 0, for all (x, t) ∈ Ω× [0, T ]. (4.11)

Further kε is determined by

kε(x, t) =

∫
Ω

G(x, x′)

(
D1

√
ε| ln ε|+D2χ{−2S1

√
ε| ln ε|em1t≤d(x′,t)≤0}

)
dx′, (4.12)

where G is the Green function associated to the operator (−∆ + γ) with Neumann
Condition. We remark that∫

Ω

G(x, x′)dx′ =
1

γ
, for all x ∈ Ω

and thus

0 < kε(x, t) ≤ D1

γ

√
ε| ln ε|+D2E(x, t), (4.13)

where

E(x, t) :=

∫
Ω

|G(x, x′)|χ{−2S1
√
ε| ln ε|em1t≤d(x′,t)≤0}dx

′. (4.14)
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Next we estimate E. Taking L small enough we assume that

Γt(L) := {x′ ∈ IRN , |d(x′, t)| ≤ L} ⊂⊂ Ω.

One can remark that the existence of such L is ensured by lemma 5.1. Next we
introduce for any fixed t ∈ [0, T ] the change of variables{

Γt(L) → Γt × [−L,L]
x′ 7→ (p, r),

where p = p(x′, t) is the projection of x′ on Γt. We write this change of variable as
x′ = X(p, r) = p+ rn where n denotes the normal vector to Γt pointing from Ω+(t)
to Ω−(t). Thus

E(x, t) =

∫ 0

−2S1
√
ε| ln ε|em1t

∫
Γt

|G(x,X(p, r))|Jac(X(p, r))dpdr, (4.15)

where Jac(X(p, r)) is the Jacobian of the change of variable, X. Since X is smooth,
one gets

|Jac(X)| ≤ C for all (p, r) ∈ Γt × [−L,L] and all t ∈ [0, T ],

so that

E(x, t) ≤ C
∫ 0

−2S1
√
ε| ln ε|em1t

∫
Γt

|G(x, p+ rn)|dpdr.

Thus setting q(p) = p+ rn we have

E(x, t) ≤ C
∫ 0

−2S1
√
ε| ln ε|em1t

∫
Γt+rn

|G(x, q)|dqdr.

Therefore by (5.17) we deduce that

E(x, t) ≤ CG22S1

√
ε| ln ε|em1t,

which with (4.13) gives (4.8). Furthermore by the elliptic equation satisfied by kε

we have

‖∆kε‖L∞(QT ) ≤ C. (4.16)

As it is done in Theorem 2.2 to prove that ‖∇v‖L∞(QT ) ≤ V, one can deduce from

(4.16) that ‖∇kε‖L∞(QT ) is also bounded. This together with (4.16) implies (4.9).

To achieve the proof of lemma 4.2, it remains to check (4.10). By (4.12) we have

kε(x, t) = D1

√
ε| ln ε|

∫
Ω

G(x, x′)dx′+D2

(∫
Ω−(t)

G(x, x′)dx′−
∫

Ω−(t,ε)

G(x, x′)dx′
)
,

(4.17)
where

Ω−(t, ε) := {x ∈ Ω, dε(x, t) < 0}, with dε(x, t) = d(x, t) + 2S1

√
ε| ln ε|em1t.

Let Ω+(t, ε) := {x ∈ Ω, dε(x, t) > 0} and Γt,ε := ∂Ω+(t, ε) then differentiating
(4.17) with respect to t one has

kεt (x, t) = D2

(∫
Γt

G(x, x′)Vn(x′, t)dx′

−
∫

Γt,ε

G(x, x′)(Vn(x′, t) + 2S1m1

√
ε| ln ε|em1t)dx′

)
. (4.18)
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Using (2.1) and (2.2) we obtain∣∣∣∣ ∫
Γt

G(x, x′)Vn(x′, t)dx′
∣∣∣∣ ≤ 1

2
V. (4.19)

Moreover by (5.16) and the smoothness of Γt we have∣∣∣∣ ∫
Γt,ε

G(x, x′)

(
Vn(x′, t) + 2S1m1

√
ε| ln ε|em1t

)
dx′
∣∣∣∣ ≤ CG1,

where C is a positive constant. This with (4.18) and (4.19) gives (4.10) and con-
cludes the proof of lemma 4.2.

4.2. Construction of sub-supersolution. Let S1, m1, S2, be some positive con-
stants to be chosen later, we set

Sε1(t) := S1

√
ε| ln ε|em1t(1 + t) (4.20)

Sε2 := S2ε
3
2 | ln ε|. (4.21)

Moreover we define for all t ∈ [0, T ]

U±(x, t) = U

(
d(x, t)± Sε1(t)

ε
, ε(v ∓ 2kε)(x, t)∓ Sε2

)
(4.22)

and

V ±(x, t) = v(x, t)± kε(x, t), (4.23)

where kε satisfied the system (K).

Lemma 4.3. Let Lε1 and Lε2 be the parabolic operators associated to (1.1) and (1.2)
respectively, then we have

Lε1(U+, V −) ≥ 0, (4.24)

Lε1(U−, V +) ≤ 0, (4.25)

Lε2(U+, V +) ≥ 0, (4.26)

Lε2(U−, V −) ≤ 0, (4.27)

in Ω× [0, T ].

Proof. We first prove (4.24). By a standard computation we have

Lε1(U+, V −) = I1 + I2 + I3 +
1

ε
kε +

1

ε2S
ε
2 , (4.28)

with

I1 :=
Uzz
ε2

(
1− |∇d|2

)
(4.29)

I2 :=
Uz
ε

(
dt −∆d+

C(ε(v − 2kε)− Sε2)

ε
+ (Sε1)t

)
(4.30)

I3 := ε(vt − 2kεt )Uν − 2(∇d.(∇v − 2∇kε))Uzν
−ε(∆v − 2∆kε)Uν − ε2(∇v − 2∇kε)2Uνν (4.31)

and where the derivatives of U are evaluated at the point(
d(x, t) + Sε1(t)

ε
, ε(v − 2kε)(x, t)− Sε2

)
.
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Using the definition of d and the property (4.3) of U we have∣∣∣∣Uzz(1− |∇d|2)

∣∣∣∣ ≤ sup|d|≥L2

∣∣∣∣Uzz(d(x, t) + Sε1(t)
ε , ε(v − 2kε)(x, t)− Sε2

)∣∣∣∣
≤ A sup|d|≥L2

e
−β

∣∣∣∣d(x, t) + Sε1(t)
ε

∣∣∣∣
≤ Ae−β

L/2− Sε1(t)
ε .

This gives since limε↓0 S
ε
1(T ) = 0 that

I1 ≥ −C1. (4.32)

Next we estimate the term I2. Since Vn = dt and ∆d = −(N − 1)K, we first note
that the motion equation

dt = ∆d− 3√
2
v, ∀x ∈ Γt,

together with the mean value theorem and the smoothness of the function d implies∣∣∣∣dt −∆d+
3√
2
v

∣∣∣∣ ≤ D̃|d|, in Ω× [0, T ],

where D̃ is a positive constant. This yields in view of (4.30) and the fact that
Uz ≥ 0 that

I2 ≥
Uz
ε

[
− D̃|d+ Sε1 |

]
+
Uz
ε
Ĩ2, (4.33)

with

Ĩ2 :=

[
(Sε1)t +

C(ε(v − 2kε)− Sε2)

ε
− 3√

2
v − D̃Sε1

]
. (4.34)

Moreover we have by (4.6) and (4.8) that

|C(ε(v − 2kε)− Sε2)− 3√
2

(εv − 2εkε − Sε2)| ≤ C1ε
2. (4.35)

Substituting (4.35) into (4.34) we obtain

Ĩ2 ≥ S1

√
ε| ln ε|em1t(t+ 1)

[
m1 − D̃

]
+
√
ε| ln ε|

[
S1 − C1

√
ε

| ln ε|
− 3√

2
S2

]
− 3
√

2kε.

Thus choosing m1 > 2D̃ and S1 > 1 + 3√
2
S2 and also using (4.8) we deduce

Ĩ2 ≥
√
ε| ln ε|

(
S1e

m1t
m1

4
− 3
√

2D1G
)

+
√
ε| ln ε|S1e

m1t

(
m1

4
− 6
√

2CG2

)
,

for ε small enough. So for m1 > 24
√

2D2CG2 and m1 ≥ 12
√

2D1G we obtain Ĩ2 > 0.

This together with (4.33) gives I2 ≥ −D̃Uz
|d+ Sε1 |

ε and then by (4.3)

I2 ≥ −AD̃ sup
IR

(|z|e−β|z|) ≥ −C2. (4.36)

Moreover since U , v, kε and their derivatives are bounded we have

I3 ≥ −C3. (4.37)

Substituting (4.32), (4.36), (4.37) into (4.28) we obtain

Lε1(U+, V −) ≥ −C1 − C2 − C3 +
1

ε
kε +

S2| ln ε|√
ε

.

Since kε is a positive function, we conclude that

Lε1(U+, V −) ≥ 0, for ε small enough. (4.38)
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Next we compute Lε2(U+, V +). We have that

Lε2(U+, V +) = ε(v + kε)t −∆(v + kε)− U+ + γ(v + kε).

Since v satisfies the limit equation −∆v = u− γv one has

Lε2(U+, V +) = εkεt −∆kε+γkε+ εvt+ (1−U+)χ{d>0}+ (−1−U+)χ{d≤0}. (4.39)

Using (3.5), (2.1), (4.8) we note that

|h±(0)− h±(ε(v − 2kε)− Sε2)| ≤ H(ε|v − 2kε|+ Sε2) ≤ (HV + 1)ε. (4.40)

Moreover we have

|1−U+|χ{d>0} ≤ |1−h+(ε(v−2kε)−Sε2)|+|h+(ε(v−2kε)−Sε2)−U |χ{d>0}, (4.41)

where U is evaluated at the point

(
d(x, t) + Sε1(t)

ε , ε(v−2kε)(x, t)−Sε2
)
. For d > 0

we have S1
√
ε| ln ε| ≤ d+ Sε1(t), which together with (4.4) gives

|h+(ε(v − 2kε)− Sε2)− U |χ{d>0} ≤ Ae−β
d+Sε1(t)

ε ≤ Ae
−βS1

| ln ε|√
ε ≤ ε, (4.42)

for ε small enough. By (4.40), (4.41) and (4.42) we obtain

|1− U+|χ{d>0} ≤ (HV + 2)ε, (4.43)

for ε small enough. Similarly, we have

| − 1− U |χ{d≤0} ≤ | − 1− h−(ε(v − 2kε)− Sε2)|χ{d<−2Sε1(t)}

+|h−(ε(v − 2kε)− Sε2)− U |χ{d<−2Sε1(t)} + | − 1− U |χ{−2Sε1(t)≤d≤0}. (4.44)

Further for d < −2Sε1(t) we have
d+ Sε1(t)

ε < −S
ε
1(t)
ε < −S1

| ln ε|√
ε
< 0 and then in

view of (4.5)

|h−(ε(v − 2kε)− Sε2)− U |χ{d<−2Sε1(t)} ≤ Aeβ
d+Sε1(t)

ε ≤ Ae−βS1
| ln ε|√
ε ≤ ε, (4.45)

for ε small enough. By (4.2), (4.40), (4.44) and (4.45) we obtain

| − 1− U |χ{d≤0} ≤ (HV + 2)ε+ (1 +A)χ{−2Sε1(t)≤d≤0}. (4.46)

Substituting (4.46) and (4.43) into (4.39) and also using (2.1) we deduce that

Lε2(U+, V +) ≥ εkεt −∆kε + γkε − (V + 2HV + 4)ε− (1 +A)χ{−2Sε1(t)≤d≤0}.

Let us apply lemma 4.2 with D1 = V + 2HV + 4 and D2 = 1 + A, then we deduce
from the elliptic equation satisfied by kε that

Lε2(U+, V +) ≥ εkεt +D1

√
ε| ln ε| −D1ε. (4.47)

This with (4.10) gives Lε2(U+, V +) ≥ 0, for ε small enough.

Thus choosing D1 = V + 2HV + 4, D2 = 1 +A, S1 > 1 + 3√
2
S2 and

m1 > max(2D̃, 24
√

2D2CG2, 12
√

2D1) we have shown that the estimates (4.24) and
(4.26) are satisfied. Similarly one can check (4.25) and (4.27) and conclude the
proof of lemma 4.3.

Furthermore using (4.7) and the fact that ∂k
ε

∂n
= ∂v
∂n

= 0 we obtain

∂U+

∂n
=
∂U−

∂n
=
∂V +

∂n
=
∂V −

∂n
= 0. (4.48)

We now check the initial conditions.



796 MARIE HENRY

Lemma 4.4.

V −(x, 0) ≤ vε(x, tε0) ≤ V +(x, 0) (4.49)

and

U−(x, 0) ≤ uε(x, tε0) ≤ U+(x, 0). (4.50)

Proof. It follows from (3.2) that

v0(x)− C0τ0ε| ln ε| ≤ vε(x, τ0ε2| ln ε|) ≤ v0(x) + C0τ0ε| ln ε|,

thus by (4.8) and the definition of V ±, (4.23), we have

V −(x, 0) ≤ vε(x, tε0) ≤ V +(x, 0), for ε small enough. (4.51)

To obtain the initial condition for uε we consider two cases, namely d(x, 0) ≤
−2M0

η0

√
ε| ln ε| and d(x, 0) > −2M0

η0

√
ε| ln ε|, where M0 and η0 are respectively de-

fined in lemma 3.5 and in asumption (H5).
1/ We first suppose that d(x, 0) ≤ −2M0

η0
ε| ln ε|. Then else d(x, 0) = dist(x,Γ0) <

0 or dist(x,Γ0) ≤ −L/2; thus x ∈ Ω−(0) and

dist(x,Γ0) ≤ −2
M0

η0

√
ε| ln ε|.

This gives in view of (H5) that

u0(x) ≤ −2M0

√
ε| ln ε|.

Then using (3.1), (3.5) and the fact that h0(0) = 0 we deduce

u0(x) ≤ −2M0

√
ε| ln ε| ≤ −M0

√
ε| ln ε|+ h0(εv0), for ε small enough,

so that x ∈ Ω̃ε−. Thus by (3.33) we obtain

uε(x, τ0ε
2| ln ε|) ≤ h−(εv0) +M0ε

3
2 | ln ε|. (4.52)

Furthermore since

U+(x, 0) = U

(
d(x, 0) + S1

√
ε| ln ε|

ε
, ε(v0(x)− 2kε(x, 0))− S2ε

3
2 | ln ε|

)
we deduce from (3.4) and (3.6) that

U+(x, 0) ≥ h−(ε(v0(x)− 2kε(x, 0))− S2ε
3
2 | ln ε|) ≥ h−(εv0(x)− S2ε

3
2 | ln ε|)

≥ h−(εv0(x)) +H1S2ε
3
2 | ln ε|.

Thus by (4.52) we deduce

U+(x, 0) ≥ uε(x, τ0ε2| ln ε|), (4.53)

for S2 ≥ M0
H1

.

2/ In the case d(x, 0) > −2M0

η0

√
ε| ln ε|, we have for S1 > 2M0

η0
+ 1
β

, where β is

defined in lemma 4.1, that

d(x, 0) + S1
√
ε| ln ε|

ε
≥ −2

M0

η0

| ln ε|√
ε

+

(
2
M0

η0
+

1

β

)
| ln ε|√
ε

=
1

β

| ln ε|√
ε
.

This implies since Uz > 0 that

U+(x, 0) ≥ U
(

1

β

| ln ε|√
ε
, ε(v0(x)− 2kε(x, 0))− S2ε

3
2 | ln ε|

)
.
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Thus using (4.4) and (3.4) one gets

U+(x, 0) ≥ h+(ε(v0(x)− 2kε(x, 0))− S2ε
3
2 | ln ε|)−Ae−

| ln ε|√
ε

≥ h+(εv0(x)− S2ε
3
2 | ln ε|)−Aε2,

which in view of (3.6) gives

U+(x, 0) ≥ h+(εv0(x)) +H1S2ε
3
2 | ln ε| −Aε2. (4.54)

Furthermore by the estimate (3.31) we have

uε(x, τ0ε
2| ln ε|) ≤ h+(εv0) +M0ε

3
2 | ln ε|,

which together with (4.54) implies

U+(x, 0) ≥ uε(x, τ0ε2| ln ε|),

for S2 ≥ M0 +A
H1

and ε small enough. This with (4.53) proves that U+(x, 0) ≥
uε(x, τ0ε

2| ln ε|) for all x ∈ Ω. Similarly one can check that
U−(x, 0) ≤ uε(x, τ0ε2| ln ε|) for all x ∈ Ω and concludes the proof of lemma 4.4.

4.3. Proof of Theorem 1.3. We are now in a position to prove Theorem 1.3.
Using (4.51) and the lemmas 4.3, 4.4 and A.1 with t̃ = tε0 = τ0ε

2| ln ε|, we have

U−(x, t) ≤ uε(x, tε0 + t) ≤ U+(x, t), (4.55)

V −(x, t) ≤ vε(x, tε0 + t) ≤ V +(x, t), (4.56)

for all (x, t) ∈ Ω× [0, T ]. From the definition of V ±, (4.23), and the property (4.8)
of kε we obtain

v(x, t)−KM (T )
√
ε| ln ε| ≤ vε(x, tε0 + t) ≤ v(x, t) +KM (T )

√
ε| ln ε|, (4.57)

for all (x, t) ∈ Ω× [0, T ]. Thus using (2.1) and noting that

v(x, t)− v(x, t− τ0ε2| ln ε|) =

∫ t

t−τ0ε2| ln ε|
vt(x, s)ds

we obtain

v(x, t)−KM (T )
√
ε| ln ε| − Vτ0ε2| ln ε| ≤ vε(x, t)

≤ v(x, t) + Vτ0ε2| ln ε|+KM (T )
√
ε| ln ε|,

for all (x, t) ∈ Ω× [τ0ε
2| ln ε|, T ], which implies (1.9). Next we show (1.8). We have

by (4.55) and the definition of U±, (4.22), that

U

(
d(x, t)− Sε1(t)

ε
, ε(v(x, t)+2kε(x, t))+S2ε

3
2 | ln ε|

)
≤ uε(x, τ0ε2| ln ε|+ t) (4.58)

and

uε(x, τ0ε
2| ln ε|+t) ≤ U

(
d(x, t) + Sε1(t)

ε
, ε(v(x, t)−2kε(x, t))−S2ε

3
2 | ln ε|

)
, (4.59)

for all (x, t) ∈ Ω× [0, T ].
Let (x, t) ∈ Ω× [0, T ] such that dist(x,Γt) ≥ 2Sε1(T ) then we have

d(x, t)− Sε1(t) ≥ S1

√
ε| ln ε| > 0. (4.60)
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Thus using (4.58), (4.59), (4.4) and the fact that Uz > 0 we deduce that

h+

(
ε(v(x, t) + 2kε(x, t)) + S2ε

3
2 | ln ε|

)
−Ae−β

d(x, t)− Sε1(t)
ε

≤ uε(x, τ0ε2| ln ε|+ t) ≤ h+

(
ε(v(x, t)− 2kε(x, t))− S2ε

3
2 | ln ε|

)
.

In view of (3.5) we deduce that

h+(0)−H(εV + 2KM (T )ε
√
ε| ln ε|+ S2ε

3
2 | ln ε|)−Ae−β

d(x, t)− Sε1(t)
ε

≤ uε(x, τ0ε2| ln ε|+ t) ≤ h+(0) +H(εV + 2KM (T )ε
√
ε| ln ε|+ S2ε

3
2 | ln ε|).

Further by (4.60)

e
−β d(x,t)−S

ε
1(t)

√
ε ≤ e−βS1

| ln ε|√
ε ≤ ε, for ε small enough

and thus for all (x, t) ∈ Ω× [0, T ] satisfying dist(x,Γt) ≥ 2Sε1(T ) we conclude that

1− εM1 ≤ uε(x, τ0ε2| ln ε|+ t) ≤ 1 + εM1,

where M1 is a positive constant. In the same way, one can show the existence of a
positive constant M2 such that

−1− εM2 ≤ uε(x, τ0ε2| ln ε|+ t) ≤ −1 + εM2,

for all (x, t) ∈ Ω × [0, T ] satisfying dist(x,Γt) ≤ −2Sε1(T ). This implies (1.8) and
concludes the proof of Theorem 1.3.

5. Integral of the Green function on a family of hypersurface (Hλ)λ∈Λ.

5.1. Preliminary notations. Let H0 be a compact hypersurface of IRN of class
Ck, with k ≥ 2 and ν0 : H0 → IRN a unit normal vector on H0 of class Ck−1. Let
δ > 0 be such that the function ψ0 defined by

ψ0 :

{
H0 × (−δ, δ) → IRN

(x, s) 7→ ψ0(x, s) = x+ sν0(x)

is a diffeomorphism from H0 × (−δ, δ) to a tubular neighborhood H0(δ) of H0.
(5.1)

Let Λ be a compact set and φ : Λ×H0 → IRN a continuous function satisfying the
two following assumptions :

(A1) For all λ ∈ Λ, φλ : x 7→ φ(λ, x) is a Ck-diffeomorphism from H0 to a
hypersurface Hλ,

(A2) The differential of φλ depends continuously on (λ, x) ∈ Λ×H0.
Let νλ be the unit normal vector on Hλ of class Ck−1. We denote by Jac(φλ(x)) the
jacobian of φλ. Since by (A2), Jac(φλ(x)) is a continuous function on the compact
set Λ×H0 we deduce that there exists a positive constant Cφ such that

|Jac(φλ(x))| ≤ Cφ, for all (λ, x) ∈ Λ×H0. (5.2)

Finally, we define φ∗ by

φ∗ :

{
Λ×H0 × IR → IRN

(λ, x, s) 7→ φ∗(λ, x, s) = φλ(x) + sνλ(φλ(x)).
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Further in what follows we denote by B(x,R) the open ball of IRN of center x and
radius R.

5.2. Uniform tubular neighborhood of Hλ.

Lemma 5.1. 1/ There exists s0 > 0 such that for all λ ∈ Λ the function

φ∗λ :

{
H0 × (−s0, s0) → IRN

(x, s) 7→ φ∗λ(x, s) = φ∗(λ, x, s)

is a Ck−1 diffeomorphism from H0 × (−s0, s0) to the tubular neighborhood of Hλ
denoted by Hλ(s0).
2/ Setting ψλ the diffeomorphism defined from H0(s0) to Hλ(s0) by
ψλ := φ∗λ ◦ (ψ0)−1, then there exists a strictly positive constant c > 0 such that

|ψλ(z′)− ψλ(z)| ≥ c|z′ − z|, for all λ ∈ Λ and z, z′ ∈ H0(s0). (5.3)

Proof. We first claim that
there exists s1 > 0 such that for all λ ∈ Λ and all (x, s) ∈ H0× (−s1, s1), Dφ∗λ(x, s)

is an isomorphism from TxH0 × IR to IRN , where TxH0 is the tangent hyperplane
to H0 at x.

Proof of the claim : Let ∆(λ, x, s) :=

∣∣∣∣det(Dφ∗λ(x, s)

)∣∣∣∣, then ∆ is continuous on

Λ × H0 × IR. Moreover we deduce from (A1) that ∆(λ, x, 0) > 0. Further from
(A2) we deduce the continuity of ∆ on the compact set Λ×H0. Thus there exists
a constant m > 0 such that ∆(λ, x, 0) ≥ m, for all (λ, x) ∈ Λ × H0. Since ∆ is
uniformly continuous on the compact set Λ × H0 × [−1, 1] there exists s1 ∈ (0, 1)
such that

|∆(λ, x, s)−∆(λ, x, 0)| < m, for all λ ∈ Λ and all (x, s) ∈ H0 × (−s1, s1),

which implies that

∆(λ, x, s) > 0, for all λ ∈ Λ and all (x, s) ∈ H0 × (−s1, s1). (5.4)

Thus the preliminary claim is obtained.
Further since ψλ ∈ C1(H0×(−s1, s1)) and since (λ, x, s)→ Dψλ(x, s) is continu-

ous on Λ×H0×(−s1, s1) we deduce from the previous claim and the local inversion
theorem with parameter that there exist η > 0 and c > 0 such that H0(η) ⊂ H0(s1)
and

|ψλ(z)− ψl(z′)| ≥ c|z − z′|, ∀λ ∈ Λ and all (z, z′) ∈ H0(η).

Choosing s0 ∈ (0, η], we obtain (5.3), which in particular implies that ψλ is injective
for all λ ∈ Λ. Finally by (5.4) we conclude that ψλ is a diffeomorphism from H0(s0)
to Hλ(s0), which achieves the proof of lemma 5.1.

5.3. Volume of the balls of the hypersurface Hλ. We first estimate the volume
of a ball ofH0. More precisely setting for x ∈ H0 and r > 0 β(x, r) := B(x, r)∩H0 =
{y ∈ H0, |x− y| < r} we prove the following lemma

Lemma 5.2. There exists a constant C such that

V ol(β(x, r)) ≤ CrN−1, for all (x, r) ∈ H0 × (0,∞). (5.5)

Proof. Let x ∈ H0. There exists i ∈ {1, ..., N} such that the projection, pi from IRN

to the hyperplan Hi of equation Xi = 0, induces a diffeomorphism from an open
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neighborhood Ox ⊂ H0 of x to an open set O′x of Hi. We denote by ϕx the inverse
of the restriction of pi to Ox, namely

ϕx = (pi|Ox )−1 : O′x → Ox.

Let R > 0 be such that the closed ball of center pi(x) and radius R, B(pi(x), R), is
contained in O′x, then there exists a constant Cx such that

|Jac(ϕx(y))| ≤ Cx for all y ∈ B(pi(x), R), (5.6)

where Jac(ϕx) is the Jacobian of ϕx. Further we set Ux := ϕx(B(pi(x), R)). Since
H0 is compact there exists an open finite subcover of H0, (Uxj )j∈{1,..,J}. Let ρ > 0
be the Lebesgue number of the cover (Uxj )j∈{1,...,J}, then by definition of ρ every
subset of H0 having diameter less than ρ is contained in some Uxj .
Let x ∈ H0, there exists j ∈ {1, ...,J } such that β(x, r) ⊂ Uxj for all r ≤ ρ/2. By
the previous remark, there exists a projection pi0 which is a diffeomorphism from
Uxj to pi0(Uxj ) = B(pi0(xj), R), so that for all r ≤ ρ/2

V ol(β(x, r)) =

∫
β(x,r)

dσ(x) =

∫
pi0 (β(x,r))

|Jac(ϕ(y))|dy

≤
∫
B(pi0 (xj),r))

|Jac(ϕ(y))|dy.

Setting C := max(Cx1
, ..., CxJ ) this gives in view of (5.6) that

V ol(β(x, r)) ≤ C
∫
B(pi0 (x),r)

dy = CaN−1r
N−1 for all r ≤ ρ/2, (5.7)

where aN−1 denotes the volume of the unit ball of RN−1. Moreover since λ 7→
V ol(Hλ) is continuous on the compact set Λ one has

V ol(β(x, r))

rN−1
≤ 2N−1V ol(Hλ)

ρN−1
≤ 2N−1

ρN−1
C̃, for all r ≥ ρ/2.

This together with (5.7) implies (5.5) and concludes the proof of lemma 5.2.

We now consider a ball of Hλ and prove a similar estimate to (5.5).

Lemma 5.3. Setting β(λ, x, r) = B(x, r) ∩ Hλ for x ∈ Hλ and r > 0, then there

exists a constant C̃ such that for all λ ∈ Λ we have

V ol(β(λ, x, r)) ≤ C̃rN−1, for all (x, r) ∈ Hλ × (0,∞). (5.8)

Proof. Using the change of variables φλ on gets

V ol(β(λ, x, r)) =

∫
β(x,r)∩Hλ

dσλ(y) =

∫
φ−1
λ (β(λ,x,r))

|Jac(φλ(z))|dσ0(z)

≤ CφV ol(φ
−1
λ (β(λ, x, r))). (5.9)

Further let M , M ′ ∈ φ−1
λ (β(λ, x, r)) ⊂ H0 and let N,N ′ ∈ β(λ, x, r) such that

N := φλ(M) and N ′ := φλ(M ′), then applying lemma 5.1, there exists s0 > 0 such
that for all λ ∈ Λ the diffeomorphism ψλ from H0(s0) to Hλ(s0) satisfies (5.3), so
that in particular

|M −M ′| ≤ 1

c
|ψλ(M)− ψλ(M ′)|. (5.10)

Noting that M,M ′ ∈ H0 and then ψλ(M) = φλ(M), ψλ(M ′) = φλ(M ′), we obtain

from (5.10) that |M−M ′| ≤ 1
c |N−N

′| ≤ 2r
c . Thus diam(φ−1

λ (β(λ, x, r)) ≤ 2r
c and
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φ−1
λ (β(x, r) ∩ Hλ) is contained in a ball, B′, of radius r′ = 2r

c . Finally, by lemma
5.2 we obtain

V ol(φ−1
λ (β(λ, x, r))) ≤

∫
H0∩B′

dσ0(y) ≤ C
(

2r

c

)N−1

,

which together with (5.9) implies (5.8) and achieves the proof of lemma 5.3.

5.4. Integral of the Green function on Hλ. We set for N > 2 and p ∈ IN∗

J(x, y) :=
1

|x− y|N−2
and Jp(x, y) =

{
J(x, y) if |x− y| > 1

p
pN−2 otherwise,

and for N = 2 and p ∈ IN∗

J(x, y) :=

∣∣∣∣ ln |x− y|∣∣∣∣ and Jp(x, y) =

{
J(x, y) if |x− y| > 1

p
ln(p) otherwise.

Let

P (λ, x) :=

∫
Hλ

J(x, y)dσλ(y) and Pp(λ, x) :=

∫
Hλ

Jp(x, y)dσλ(y) (5.11)

we prove below that P and Pp are bounded.

Lemma 5.4. Let the assumptions (A1) and (A2) be satisfied, then the function

(λ, x)→ P (λ, x) is continuous on Λ×IRN . Moreover there exists a positive constant
P such that

P (λ, x) =

∫
Hλ

J(x, y)dσλ(y) ≤ P, for all λ ∈ Λ and x ∈ IRN . (5.12)

Proof. We first consider the case N > 2. Using the change of variables φλ on has

Pp(λ, x) =

∫
H0

Jp(x, φλ(z))|Jac(φλ(z))|dσ0(z).

Since (λ, x, z) 7→ Jp(x, φλ(x))|Jac(φλ(x))| is continuous and bounded by Cφp
N−2,

which is integrable onH0, we deduce that (λ, x) 7→ Pp(λ, x) is continuous on Λ×IRN .

We next prove the uniform convergence of (Pp) to P on Λ × IRN , as p ↑ ∞. We
have

0 ≤ P (λ, x)− Pp(λ, x) =

∫
Hλ∩B(x, 1p )

(J(x, y)− pN−2)dσλ(y)

≤
∫
Hλ∩B(x, 1p )

J(x, y)dσλ(y). (5.13)

Let q ∈ IN, we set βq = Hλ ∩ B(x, 1
p2q ), so that |x − y| ≥ 1

p2q+1 for y ∈ βq \ βq+1.

We obtain from (5.13) and lemma 5.3

0 ≤ P (λ, x)− Pp(λ, x) ≤ Σq∈IN

∫
βq\βq+1

J(x, y)dσλ(y)

≤ Σq∈IN(p2q+1)N−2V ol(βq \ βq+1) ≤ Σq∈IN(p2q+1)N−2V ol(βq),

so that

0 ≤ P (λ, x)− Pp(λ, x) ≤ Σq∈IN(p2q+1)N−2

(
1

p2q

)N−1

C̃ =
2N−1

p
C̃.
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Thus the sequence of continuous functions (Pp) converges uniformly to P on Λ×IRN ,

as p ↑ ∞ and then P is continuous on Λ × IRN . Further let R0 be such that
φ(Λ×H0) ⊂ B(0, R0) then the continuity of P on Λ× IRN implies that

P is bounded on the compact set Λ×B(0, R0 + 1). (5.14)

Moreover let x /∈ B(0, R0 + 1) we have 0 ≤ J(x, y) ≤ 1 for y ∈ Hλ, so that

P (λ, x) ≤
∫
Hλ

dσλ(y) =

∫
H0

|Jac(φλ(x))|dσ0(z) ≤ CφV ol(H0).

This together with (5.14) implies (5.12) and concludes the proof of lemma 5.4 in
the case N > 2. Similarly, one can show lemma 5.4 in the case N = 2.

Finally, we deduce from lemma 5.4 that the integral of the Green function on
Γt or on continuous perturbation of Γt is bounded. More precisely we will apply
lemma 5.4 with successively λ = t, Λ = [0, T ] and with λ = (t, ε), Λ = [0, T ]× [0, ε̃0]
with ε̃0 to be chosen later to deduce the following Corollary.

Corollary 1. Let (u, v,Γ), with Γ = (Γt × {t})t∈[0,T ] be the solution of the free

boundary Problem (P ) and let G be the Green function associated with −∆+γ with
Neumann condition then there exists a positive constant G such that∫

Γt

|G(x, x′)|dx′ ≤ J
∫

Γt

|J(x, x′)|dx′ ≤ G, for all (x, t) ∈ Ω× [0, T ]. (5.15)

Moreover, setting

Γt,ε := {x ∈ Ω, dε(x, t) = 0}, where dε(x, t) = d(x, t) + 2S1

√
ε| ln ε|em1t

then there exist ε̃0 > 0 and a positive constant G1 independent of S1 such that∫
Γt,ε

|G(x, x′)|dx′ ≤ G1, for all (x, t, ε) ∈ Ω× [0, T ]× [0, ε̃0]. (5.16)

Similarly there exists a positive constant G2 such that∫
Γt+rn

|G(x, x′)|dx′ ≤ G2, for all (x, t, r) ∈ Ω× [0, T ]× [−L,L], (5.17)

where n is the normal to Γt and L ∈ (0, s0).

Proof. We recall (see for example [3] p.1214) that there exists a positive constant
J such that

|G(x, x′)| ≤ J J(x, x′), for all (x, x′) ∈ Ω2. (5.18)

Since Γ ∈ C2+α, 2+α2 , the function φλ related to Γ and defined by (A1) is a C2+α

diffeomorphism from Γ0 to Γt and t 7→ Γt,ε ∈ C
2+α
2 ([0, T ]) ⊂ C([0, T ]). Thus

applying lemma 5.4 we deduce from (5.12) and (5.18) the estimate (5.15). Further

let ε small enough such that 2S1
√
ε| ln ε|em1T ≤ s0 then since (t, ε) 7→ Γt,ε ∈

C
2+α
2 ,∞([0, T ] × [0, ε̃0]) ⊂ C([0, T ] × [0, ε̃0]) we also obtain from lemma 5.4 the

estimate (5.16). In the same way, assuming that L < s0 and then using (5.12) and

the fact that (t, r) 7→ Γt + rn ∈ C 2+α
2 ,∞([0, T ] × [−L,L]) ⊂ C([0, T ] × [−L,L]) we

deduce (5.17). This ends the proof of Corollary 1.
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Appendix A. Appendix : Comparison principle. In this Section, we recall a
classical comparison principle lemma and we refer to [4] for its proof.

Lemma A.1. We assume that u, v, u and v are four bounded functions satisfying
the following inequalities

Lε1(u, v) ≥ 0 and Lε1(u, v) ≤ 0 in Ω× (0, T ) (A.1)

Lε2(u, v) ≥ 0 and Lε2(u, v) ≤ 0 in Ω× (0, T ) (A.2)

∂u
∂n
≤ 0 ≤ ∂u

∂n
and

∂v
∂n
≤ 0 ≤ ∂v

∂n
on ∂Ω× (0, T ) (A.3)

u(x, 0) ≤ uε(x, t̃) ≤ u(x, 0) for x ∈ Ω (A.4)

v(x, 0) ≤ vε(x, t̃) ≤ v(x, 0) for x ∈ Ω, (A.5)

for some t̃ ∈ [0, T ). Then we have

u(x, t) ≤ uε(x, t̃+ t) ≤ u(x, t) in Ω× [0, T ) (A.6)

v(x, t) ≤ vε(x, t̃+ t) ≤ v(x, t) in Ω× [0, T ). (A.7)

Moreover u and u are called respectively supersolution and subsolution of uε. In the
same way, v and v are called respectively supersolution and subsolution of vε.
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