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Abstract. We investigate, from a more ecological point of view, a free bound-

ary model considered in [11] and [8] that describes the spreading of a new or

invasive species, with the free boundary representing the spreading front. We
derive the free boundary condition by considering a “population loss” at the

spreading front, and correct some mistakes regarding the range of spreading

speed in [11]. Then we use numerical simulation to gain further insights to
the model, which may help to determine its usefulness in concrete ecological

situations.

1. Introduction. Understanding the nature of spreading of invasive species is a
central problem in invasion ecology. It is known that many animal species spread
to their new environment in a linear fashion, namely the range radius eventually
exhibits a linear growth curve against time ([28, 24]). A well known example is due
to Skellam [29] concerning the spreading of muskrat in Europe in the early 1900s:
He calculated the area of the muskrat range from a map obtained from field data,
took the square root and plotted it against years, and found that the data points
lay on a straight line.

Several mathematical models have been proposed to describe this phenomenon
and a number of them may be found in [28]. One of the most successful mathemat-
ical approaches to this problem is based on the investigation of front propagation
governed by the following diffusive logistic equation over the entire space RN :

ut − d∆u = u(a− bu), t > 0, x ∈ RN . (1.1)

Here u = u(t, x) may be regarded as the population density of a spreading species
with diffusion rate d, intrinsic growth rate a and habitat carrying capacity a/b. If
the population density at time t = 0 is given by a nonnegative function u0(x) (i.e.,
u(0, x) = u0(x)), with u0(x) not identically zero but vanishes outside some bounded
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domain Ω of RN , then a well known result of Aronson and Weinberger [2] (see also

Section 4 in [1] for the one space dimension case) states that, with c∗ := 2
√
ad,

lim
t→∞, |x|≤(c∗−ε)t

u(t, x) = a/b, lim
t→∞, |x|≥(c∗+ε)t

u(t, x) = 0

for any small ε > 0. This means that if an observer travels in the direction of
propagation at a speed c which is below c∗, then he would find that the population
is close to the positive steady-state level a/b, while if his speed is above c∗, he
would observe that the population is nearly 0. Therefore the transition phase of
the solution, which is used to represent the propagation front here, propagates
linearly in t at the speed c∗ (for large time). The number c∗ is usually called the
(asymptotic) spreading speed of the species.

The intrinsic growth rate a and diffusion rate d in (1.1) can often be calculated
from field data for specific animal species, which then yield a theoretical spreading
speed c∗ through the formula c∗ = 2

√
ad. This theoretical rate has been compared

with observed spreading rate in a number of works, and on page 55 of [28] one
may find a comparison table. For most species listed in this table the theoretical
rate c∗ agrees reasonably well with the observed rate, with one exception where the
theoretical rate is one magnitude smaller than the observed one.

The proof of the above Aronson-Weinberger result is based on the theory of
traveling waves. In the pioneering works of Fisher [16] and Kolmogorov et al [19],
for space dimension N = 1, traveling wave solutions have been found for (1.1): For

any c ≥ c∗ := 2
√
ad, there exists a solution u(t, x) := w(x − ct) with the property

that

w′(y) < 0 for y ∈ R1, w(−∞) = a/b, w(+∞) = 0;

no such solution exists if c < c∗. The number c∗ in this context is called the minimal
speed of the traveling waves. Thus the spreading speed coincides with this minimal
speed. Based on these classical works, extensive further development on traveling
wave solutions and the spreading speed has been achieved in several directions (e.g.,
[3, 4, 5, 22, 30, 31, 32]).

We note that the above mathematical result predicts successful spreading and es-
tablishment of the new species with any nontrivial initial population u(0, x) (namely
u(t, x) → a/b as t → ∞), regardless of its initial size and supporting area. This
is not consistent to numerous empirical evidences; for example, the introduction
of several bird species from Europe to North America in the 1900s was successful
only after many initial attempts. Indeed, there is a widely accepted law in ecology,
called the “10s law”: Of all the alien species found at a given time in a given habi-
tat, about one tenth of them develop into an invasive species, and of these invasive
species, about one tenth are established eventually.

1.1. Allee effect. The above mentioned draw back would disappear if the nonlin-
ear term u(a − bu) in (1.1) is suitably modified to reflect the “Allee effect” on the
growth rate of the species. The key feature of the Allee effect is that populations
shrink at very low densities because, on average, individuals cannot replace them-
selves. This can be represented by replacing the logistic reaction term u(a− bu) in
(1.1) by a function f(u) with the following properties:

f(0) = f(θ) = f(a/b) = 0, f(u) < 0 in (0, θ) ∪ (a/b,∞), f(u) > 0 in (θ, a/b),
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where θ ∈ (0, a/b) is a threshold constant for the Allee effect, and one usually further
requires that ∫ a/b

0

f(u)du > 0.

Such a function f(u) is called a bistable nonlinearity (see, e.g., [13]), while a function
behaving like u(a− bu) is called a monostable nonlinearity. This is because in the
former case both the equilibria u = 0 and u = a/b are stable for the ODE u′ = f(u),
while in the latter case, only u = a/b is stable. A widely used example of bistable
nonlinearity is

f0(u) = au(1− u)(u− θ), θ ∈ (0, 1/2).

It is well known that for a bistable nonlinear term f(u) as described above,

ut − duxx = f(u)

has a unique traveling wave solution (up to translation) u(t, x) = w(x−ct) satisfying
w(−∞) = a/b and w(∞) = 0 when c takes a certain positive value c0, and no such
solution exists for other values of c (see, e.g., [1]). The value of c0 is usually difficult
to calculate, but when the special form f0(u) is used, then (see [17, 21])

c0 = (1/2− θ)
√

2ad.

The number c0 is known as the spreading speed for the model with Allee effect
([21]), since any solution of

ut − d∆u = f(u)

with u(0, x) ≡ 0 outside a finite ball |x| ≤ R satisfies

lim
t→∞, |x|≥(c∗+ε)t

u(t, x) = 0,

and if

lim inf
t→∞

u(t, x) ≥ a/b for every x, (1.2)

then

lim
t→∞, |x|≤(c∗−ε)t

u(t, x) = a/b,

where ε > 0 is an arbitrary small number. Various sufficient conditions for (1.2) in
terms of the initial function u(0, x) are known (see, e.g., [2]), and sharp threshold
result is obtained in [13] when the space dimension is 1.

The Allee effect is generally believed to play a crucial role at the early stage
of establishment of a spreading species, and once establishment is guaranteed, the
spreading process of the species is not expected to be greatly influenced by the
Allee effect. Therefore one may think that the asymptotic spreading speed for an
establishing invading species should not be affected in a significant manner by the
Allee effect. However, this may not to be the case. Lewis and Kareiva in [21]
demonstrate that the Allee effect may significantly reduce the spreading speed. On
the other hand, no Allee effect has been observed in some invading species (e.g.,
[14]). One may find further discussions on Allee effects in the review article [20]
and references therein.
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1.2. Spreading front as a free boundary. The main purpose of this paper is to
further examine the free boundary models investigated recently in [11] and [8], where
the authors use a free boundary to represent the spreading front of the population
(which is the edge of the expanding population range), but the nonlinearity in (1.1)
is not changed. So the population vanishes at the front, and is governed by (1.1) in
the region enclosed by the front. It is assumed that the front invades at a rate that
is proportional to the magnitude of the spatial population gradient there. It turns
out that this free boundary approach gives rise to a spreading-vanishing dichotomy
for the spreading species, and so it also does not have the problem of persistent
spreading and establishment associated with the Cauchy problem of (1.1). We note
that in this approach the spreading front is precisely described by the free boundary
for any given time t, while the Cauchy problem of (1.1) uses an unspecified level
set of the solution to describe the front.

More precisely, the model in [11] is given by the following diffusive logistic prob-
lem: 

ut − durr = u(a− bu), t > 0, 0 < r < h(t),
ur(t, 0) = 0, u(t, h(t)) = 0, t > 0,
h′(t) = −µur(t, h(t)), t > 0,
h(0) = h0, u(0, r) = u0(r), 0 ≤ r ≤ h0,

(1.3)

where r = h(t) is the moving boundary to be determined, h0, µ, d, a and b are
given positive constants, and the initial function u0(r) satisfies

u0 ∈ C2([0, h0]), u′0(0) = u0(h0) = 0, u0 > 0 in [0, h0). (1.4)

Here u(t, r) stands for the population density of a new or invasive species over a one
dimensional habitat, and the initial function u0(r) stands for the population of the
species in the very early stage of its introduction, which occupies an initial region
[0, h0]. It is assumed that the species can only invade further into the environment
from the right end of the initial region, and the spreading front expands at a speed
that is proportional to the population gradient at the front, which gives rise to the
free boundary condition h′(t) = −µur(t, h(t)).

In [8], the situation of higher space dimensions and heterogeneous environment is
considered, under the restriction that the environment and the solution are radially
symmetric. In [8], the positive solution is written as u(t, r), r = |x|, x ∈ RN (N ≥
2), and it satisfies

ut − d∆u = u(α(r)− β(r)u), t > 0, 0 < r < h(t),
ur(t, 0) = 0, u(t, h(t)) = 0, t > 0,
h′(t) = −µur(t, h(t)), t > 0,
h(0) = h0, u(0, r) = u0(r), 0 ≤ r ≤ h0,

(1.5)

where due to the radial symmetry, ∆u = urr+
N−1
r ur, r = h(t) is the moving bound-

ary to be determined, h0, µ and d are given positive constants, α, β ∈ Cν0([0,∞))
for some ν0 ∈ (0, 1), and there are positive constants κ1 ≤ κ2 such that

κ1 ≤ α(r) ≤ κ2, κ1 ≤ β(r) ≤ κ2 for r ∈ [0,∞). (1.6)

The initial function u0(r) satisfies (1.4). Thus problem (1.5) describes the spreading
of a new or invasive species with population density u(t, |x|) over an N -dimensional
habitat, which is radially symmetric but heterogeneous. The initial function u0(|x|)
stands for the population in the very early stage of its introduction, which occupies
an initial region Bh0 . Here and in what follows we use BR to stand for the ball
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with center at 0 and radius R. The spreading front is represented by the free
boundary |x| = h(t), which is the N -dimensional sphere ∂Bh(t) whose radius h(t)
grows at a speed that is proportional to the population gradient at the front: h′(t) =
−µur(t, h(t)). The coefficient function α(|x|) represents the intrinsic growth rate
of the species, β(|x|) measures its intra-specific competition, and d is the diffusion
rate.

So to understand the evolution of the population u(t, r) based on the models
of [11, 8], instead of a Cauchy problem one considers a free boundary problem,
where both u(t, r) and h(t) are unknown functions. We note that in this approach
the spreading front is given explicitly by the moving boundary r = h(t) of the
population range, which more closely resembles the real spreading process than the
Cauchy problem approach where the spreading front is described by an unspecified
level set of the solution. The results of [11, 8] show that even with the original
logistic nonlinear function, the dynamics of the population determined by the free
boundary model exhibits a spreading-vanishing dichotomy, namely the population
either spreads to all the available space (limt→∞ h(t) = ∞) and stabilizes at the
steady state solution u ≡ a/b (limt→∞ u(t, r) = a/b), or it fails to spread to all the
space (limt→∞ h(t) < ∞) and vanishes as t → ∞ (limt→∞ u(t, r) = 0). Moreover,
when spreading happens, the propagation speed of the front r = h(t) approaches a
positive constant k0 as t → ∞ (provided that limr→∞ α(r) and limr→∞ β(r) exist
in the case of (1.5)). Qualitatively, these appear to agree well with many spreading
processes of the natural world.

A mathematical theory for the free boundary model in a general non-symmetric
setting has been established in [9]. The results in [8] have been extended to the case
that the environment is time-periodic ([10]), and more recently to environments
with seasonal succession ([26]). In one space dimension, [12] considers more general
nonlinear terms for (1.3), including general monostable, bistable and combustion
types of nonlinearities.

1.3. Deduction of the free boundary condition. Due to the lack of first prin-
ciples for the ecological situation under consideration, a thorough justification of
the free boundary condition used in (1.3) and (1.5) is difficult to supply. Never-
theless, we present here a deduction of the free boundary condition based on the
consideration of “population loss” at the front. In the process of population range
expansion, near the propagating front, where population density is assumed to be
close to zero, the individuals of the species are suffering from the Allee effect. More-
over, as the front enters new unpopulated environment, the pioneering members at
the front, with very low population density, are particularly vulnerable. (Note that
since only one species is considered here, some existing interacting species are re-
garded as part of the environment.) Therefore it is plausible to assume that as the
expanding front propagates, the population suffers a loss of k units per unit volume
at the front. (A related discussion can be found in [15], where “forces” that oppose
range limitation such as random dispersal and density regulation, and those that
promote range limitation such as maladaptation of the genetic trait of the species,
are considered near the edge of the population range, and an equation representing
the balance between these forces is given; see eq. (5) there.)

For simplicity we assume that k is a constant for a given species in a given homo-
geneous environment. We now examine the case of (1.5). By Fick’s first law, for a
small time increment ∆t, during the period from t to t+∆t, the number of individ-
uals of the population that enters the region (through diffusion, or random walk)
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bounded by the old front |x| = h(t) and new front |x| = h(t+ ∆t) is approximated
by

d|∇xu|∆t× (surface area of {|x| = h(t)}) = d|∇xu|∆t ·NωNh(t)N−1,

where ωN denotes the volume of the N -dimensional unit ball, and ∇xu is calculated
at |x| = h(t). (Note that the contribution of population from the reaction term can
be ignored near the front, since u(a− bu) is close to 0 there.)

The population loss in this region is approximated by

k × (volume of the region) = k × [ωNh(t+ ∆t)N − ωNh(t)N ].

So the average density of the population in the region bounded by the two fronts is
given by

d|∇xu|NωNh(t)N−1∆t[ωNh(t+ ∆)N − ωNh(t)N ]−1 − k.
Clearly the limit of this quantity as ∆t→ 0 is the population density at the front,
namely u(t, h(t)), which by assumption is 0. It is easily checked that this limit
equals

d|∇xu|/h′(t)− k with |x| = h(t).

Therefore
d|∇xu| = kh′(t) at |x| = h(t),

or
h′(t) = −µur(t, r) at r = h(t) with µ = dk−1.

Clearly µ is reversely proportional to the population loss at the spreading front.
It can be shown that the Cauchy problem for (1.1) corresponds to the limiting

case that µ = ∞ ([9]), that is, the free boundary problem reduces to the Cauchy
problem (1.1) if the population loss at the front is 0.

The free boundary condition here coincides with the one-phase Stefan condition
arising from the investigation of the melting of ice in contact with water ([27]),
where justification can be done based on the physical principles of heat conduction.
Similar free boundary conditions also arise in the modeling of wound healing ([6]).
For population models, [23] used such a condition for a predator-prey system over
a bounded interval, showing the free boundary reaches the fixed boundary in finite
time, and in [25], a two phase Stefan condition was used for a competition system
over a bounded interval, where the free boundary separates the two competitors
from each other in the interval. In these latter cases, justification of the free bound-
ary conditions is much more difficult to obtain. In [18], the free boundary problem
of [25] was shown to be the singular limit of a competition system with standard
boundary conditions as the competition parameter goes to ∞. The works men-
tioned in this paragraph all have very different purposes from that of the current
paper.

1.4. Theoretical results for (1.3) and (1.5). For simplicity, from now on, we
always make the following extra assumption

α(r) ≡ a > 0, β(r) ≡ b > 0

for (1.5).
We now recall explicitly the main results obtained in [11, 8] (under the above

extra assumption for (1.5)).

Theorem 1 (Global existence): For the free boundary problem (1.3) or (1.5), there
is a unique solution (u(t, r), h(t)) defined for all t > 0, with u(t, r) > 0 and h′(t) > 0
for r ∈ [0, h(t)) and t > 0.
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Hence limt→∞ h(t) = h∞ ∈ (h0,∞] always exists.

Theorem 2 (Spreading-vanishing dichotomy): Let (u(t, r), h(t)) be the solution of
the free boundary problem (1.3) or (1.5). Then the following alternative holds:

Either

(i) Spreading: h∞ = +∞ and limt→+∞ u(t, r) = a
b uniformly for r in any

bounded set of [0,∞);

or

(ii) Vanishing: h∞ < +∞ and limt→+∞ ‖u(t, ·)‖C([0,h(t)]) = 0.

Theorem 3 (Spreading-vanishing criteria): There exists R∗ > 0 with the following
properties.

• If h0 ≥ R∗, then h∞ = +∞ and spreading happens.
• If h0 < R∗, then there exists µ∗ > 0 depending on u0 such that h∞ ≤ R∗ and

vanishing happens if µ ≤ µ∗; h∞ = +∞ and spreading happens if µ > µ∗.

If spreading occurs, it was shown in [11, 8] that the expanding front r = h(t)
moves at a constant speed for large time, namely

h(t) =
(
k0 + o(1)

)
t as t→∞.

The constant k0 is called the asymptotic spreading speed and it is determined
by the following auxiliary elliptic problem

− dU ′′ + kU ′ = aU − bU2, r > 0, U(0) = 0. (1.7)

The positive constant R∗ in Theorem 3 is determined in the following way:

R∗ =
√
λ1

√
d

a
,

where λ1 is the first eigenvalue of the problem

−∆u = λu for |x| < 1, u = 0 for |x| = 1.

Thus, for (1.3), R∗ = π
2

√
d
a .

The part in [11] that discusses the determination of the asymptotic speed k0
contains some mistakes. These will be corrected in the next section. In section 3,
we will make use of numerical calculations to obtain further insights to the model.
Among other things, we will examine how the spreading speed k0 varies with the
parameters, how the critical value µ∗ in Theorem 3 can be estimated, and how
u(t, r) evolves with time near the front r = h(t). It is our hope that the numerical
analysis may help to determine the usefulness of the model in concrete ecological
problems.

2. Semi-waves and the spreading speed. Recall that for each c ≥ c∗ := 2
√
ad,

the following problem

−dw′′ − cw′ = aw − bw2, w(−∞) = a/b, w(∞) = 0

has a unique solution w(x) (up to translation in x), and moreover, w′(x) < 0 for all
x. If c < c∗, then no such solution exists. Such a solution is called a traveling wave
of (1.1) with speed c because u(t, x) := w(x− ct) satisfies

ut − duxx = au− bu2 for all t, x ∈ R1,

and as t increases, the curve u = u(t, x) in the ux-plane resembles a wave which
does not change its shape but travels to the right at speed c.
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For fixed k ≥ 0, we now consider the following problem over the half line:

− dV ′′ − kV ′ = aV − bV 2 in (−∞, 0), V (−∞) = a/b, V (0) = 0. (2.1)

If V is a solution to (2.1), then clearly v(t, x) := V (x− kt) satisfies

vt − dvxx = av − bv2 for t ∈ R1, x < kt; v(t, kt) = 0.

We will call V a semi-wave, since as t increases the graph of the curve v = v(t, x),
which is defined on the half line x < kt, resembles a wave traveling to the right at
speed k, with the wave front at x = kt.

Set U(x) = V (−x); then clearly (2.1) is equivalent to

− dU ′′ + kU ′ = aU − bU2 in (0,∞), U(0) = 0, U(∞) = a/b. (2.2)

For convenience of comparison with results in [11], we will use (2.2) instead of (2.1)
in the following discussions.

We have the following result, which is a correction of Proposition 4.1 in [11].

Proposition 2.1. For any given constants a > 0, b > 0, d > 0 and k ∈ [0, 2
√
ad),

problem (2.2) admits a unique positive solution U = Uk, and it satisfies U ′k(x) > 0

for x ≥ 0, U ′k1(0) > U ′k2(0), Uk1(x) > Uk2(x) for x > 0 and 0 ≤ k1 < k2 < 2
√
ad.

Moreover, for each µ > 0, there exists a unique k0 = k0(µ) ∈ (0, 2
√
ad) such that

µU ′k0(0) = k0.

Proof. For large l > 0 and k ∈ [0, 2
√
ad), we consider the problem

− dU ′′ + kU ′ = aU − bU2, 0 < x < l, U(0) = U(l) = 0. (2.3)

Define

λ =
k√
ad

and W (x) =
b

a
e−

λ
2 xU

(√d

a
x
)
.

Then (2.3) is changed to the equivalent problem

−W ′′ =
(

1− λ2

4

)
W − eλ2 xW 2 in (0, l̃), W (0) = W (l̃) = 0, (2.4)

where

l̃ :=

√
a

d
l.

By our assumption on k, we find that 1 − λ2

4 > 0, and hence for all large l, by a
well-known result (see, e.g., Theorem 5.1 in [7]), the logistic type problem (2.4) has
a unique positive solution W l, which in turn defines a unique positive solution U l

for (2.3).
The proof now proceeds as in the proof of Proposition 4.1 in [11] until the dis-

cussion for the function

σ(k) := k − µU ′k(0)

near the end of the proof there. The function σ(k) now is defined for k ∈ [0, 2
√
ad),

and by the monotonicity of U ′k(0) on k, we know that σ(k) is strictly increasing

with σ(0) < 0. Therefore there exists a unique k0 ∈ (0, 2
√
ad) such that σ(k0) = 0

provided that we can show

lim
k↗2

√
ad
σ(k) > 0. (2.5)

To complete the proof, it remains to prove (2.5). To this end, we choose an

arbitrary sequence {kn} of positive numbers that increases to 2
√
ad as n→∞ and
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consider the corresponding sequence of solutions {Ukn}. Since 0 < Ukn(x) < a/b
for x ∈ (0,∞), and Ukn(x) is decreasing in n, the limit

U∗(x) := lim
n→∞

Ukn(x)

exists and satisfies 0 ≤ U∗(x) < a/b for x ∈ (0,∞). Moreover, applying standard
Lp estimates to the equation for Ukn and then the Sobolev embedding theorem, we
easily see that Ukn → U∗ in C1

loc([0,∞)). Hence U∗ satisfies in the week sense (and
also classical sense)

−dU ′′∗ + 2
√
adU ′∗ = aU∗ − bU2

∗ in (0,∞), U∗(0) = 0.

Define

W∗(x) =
b

a
e−xU∗

(√d

a
x
)
.

Then one readily checks that

W ′′∗ = exW 2
∗ , 0 ≤W∗ < 1 in (0,∞), W∗(0) = 0.

We claim that U∗ ≡ 0. Otherwise by the strong maximum principle we have U∗(x) >
0 for x > 0 and U ′∗(0) > 0. It follows that

W ′′∗ (x) = exW 2
∗ (x) > 0 for x > 0, and W ′∗(0) > 0.

This implies that W∗(x)→∞ as x→∞, a contradiction to the fact that W∗(x) < 1
for x > 0. Thus we must have U∗ ≡ 0.

Since {kn} is an arbitrary sequence increasing to 2
√
ad, the above discussion

shows that Uk → 0 as k → 2
√
ad in C1

loc([0,∞)). In particular, U ′k(0) → 0 as

k → 2
√
ad. Therefore

lim
k↗2

√
ad
σ(k) = 2

√
ad > 0,

as we wanted.

The number k0 is the asymptotic spreading speed for the free boundary problems
in [11] and [8]. The mistake in Proposition 4.1 of [11] affects a few conclusions
given in [11] about k0, which we now correct. These are only concerned with the
asymptotic behavior of k0 when some of the parameters are large or small; for
example, the second half of Proposition 4.3 in [11] needs to be changed. The rest of
[11] remains valid as they are not affected by the mistake in Proposition 4.1 there.

By Proposition 2.1 above, for any λ ∈ [0, 2), the problem

− Ṽ ′′ + λṼ ′ = Ṽ − Ṽ 2 in (0,∞), Ṽ (0) = 0 (2.6)

has a unique positive solution Ṽλ, and for each α > 0, the equation

λ = αṼ ′λ(0) (2.7)

has a unique solution λ = λ0(α) ∈ (0, 2).
From the proof of Proposition 2.1 we know that the function

η(λ) := Ṽ ′λ(0)

is strictly decreasing (and continuous) for λ ∈ [0, 2), and

η(0) > 0, η(2− 0) = 0.
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Hence for each fixed α > 0, (λ0(α), λ0(α)/α) is the unique intersection point of
the increasing line η = 1

αλ with the decreasing curve η = η(λ) in the η − λ plane.
Clearly

lim
α→0

(λ0(α), λ0(α)/α) = (0, η(0)), lim
α→∞

(λ0(α), λ0(α)/α) = (2, 0). (2.8)

A simple calculation confirms that for each k > 0,

Ṽ k√
ad

(x) =
b

a
Uk

(√d

a
x
)
. (2.9)

Hence

Ṽ ′ k√
ad

(0) =
b

a

√
d

a
U ′k(0),

and µU ′k(0) = k is equivalent to

aµ

bd
Ṽ ′ k√

ad

(0) =
k√
ad
.

It follows that
k0√
ad

= λ0
(aµ
bd

)
. (2.10)

We can now use (2.8) to obtain

lim
aµ
bd→∞

k0√
ad

= 2, lim
aµ
bd→0

k0√
ad

bd

aµ
= η(0).

We show next that η(0) = 1/
√

3. Indeed, by definition, η(0) = Ṽ ′0(0) and Ṽ0 satisfies

−Ṽ ′′0 = Ṽ0 − Ṽ 2
0 , Ṽ0 > 0 in (0,∞), Ṽ0(0) = 0, Ṽ0(∞) = 1.

Hence ∫ ∞
0

(−Ṽ ′′0 )Ṽ ′0dx =

∫ ∞
0

(Ṽ0 − Ṽ 2
0 )Ṽ ′0dx.

We have ∫ ∞
0

(−Ṽ ′′0 )Ṽ ′0dx = Ṽ ′0(0)2/2,

and ∫ ∞
0

(Ṽ0 − Ṽ 2
0 )Ṽ ′0dx =

∫ 1

0

(v − v2)dv = 1/6.

Therefore

Ṽ ′0(0) = 1/
√

3.

Summarizing, we have proved the following result.

Proposition 2.2. Let k0 be the spreading speed determined by Proposition 2.1.
Then

lim
aµ
bd→∞

k0√
ad

= 2, lim
aµ
bd→0

k0√
ad

bd

aµ
= 1/

√
3.

Let us note that Proposition 2.2 indicates that when the quantity aµ
bd is large,

then the spreading speed k0 is well approximated by the formula

k0 ≈ 2
√
ad, (2.11)

while when this quantity is small, k0 is well approximated by the formula

k0 ≈
1√
3

aµ

bd

√
ad. (2.12)
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In particular, for fixed a, b, µ > 0, if we regard k0 as a function of d, then

lim
d→0

k0√
d

= 2
√
a, lim

d→∞
k0
√
d =

µa3/2√
3 b

.

These limits correct those in Proposition 4.3 of [11].

Let us note that from Proposition 2.1 above we always have 0 < k0 < 2
√
ad. That

is the spreading speed determined by the free boundary model is always smaller than
that determined by the Cauchy problem of (1.1). The following remark indicates a
possible approach to determine the spreading speed k0 based on ecological consid-
erations and (2.10).

Remark 1. Recall that µ = d/k, where k is the population loss rate at the spread-
ing front. If we assume that the ratio of the carrying capacity to the population
loss rate at the front is a constant γ, then

aµ

bd
= γ and k0 = λ0(γ)

√
ad.

3. Numerical analysis. In this section, we use numerical analysis to obtain vari-
ous quantitative estimates which are missing from the theoretical results described
above for (1.3) and (1.5). These provide further insights to the model and may help
to determine its usefulness in concrete ecological problems.

3.1. Calculation of spreading speed. In this subsection, through numerical cal-
culations we indicate how the spreading speed k0 can be calculated. In particular,
we determine the ranges of aµbd for which (2.11) and (2.12) give good approximations
of the spreading speed k0, respectively.

Let us recall from the previous section that the asymptotic spreading speed for
(1.3) and (1.5) (with α(r) ≡ a, β(r) ≡ b) is given by, due to (2.10),

k0 = λ0

(aµ
bd

)√
ad,

where the function λ = λ0(α), α > 0, is uniquely determined by (2.7). From (2.9)
we find that

Uk(x) =
a

b
Ṽ k√

ad

(√
a

d
x

)
,

where Ṽλ, λ ∈ [0, 2), is the unique positive solution of (2.6).
Table 3.1 below shows how λ0(α) varies as α varies in [1,∞). In particular, it

shows that 2 > λ0(α) > 1.84 for α > 104. This indicates that when aµ
bd > 104, the

formula (2.11), namely k0 ≈ 2
√
ad, is a reasonable approximation of the spreading

speed.

α 1 10 102 103 104 105 106 107 108

λ0(α) 0.36 1.01 1.49 1.72 1.84 1.90 1.93 1.95 1.96

α 109 1010 1011 1012 1013 1014 1015 1016 ∞
λ0(α) 1.97 1.98 1.98 1.99 1.99 1.99 1.99 1.99 2.00

Table 3.1. λ0(α) for α ≥ 1
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The changes of λ0(α) and λ0(α)
α for α ∈ (0, 1] are described by Table 3.2. We

find

1√
3
>
λ0(α)

α
>

0.84√
3

for 0 < α < 0.3. Thus the formula (2.12) gives a reasonable approximation of the
spreading speed in the parameter regime aµ

bd < 0.3.

α 0 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1.0

λ0(α) 0 0.006 0.05 0.10 0.15 0.19 0.22 0.25 0.31 0.36
λ0(α)
α

√
3 1 0.99 0.94 0.89 0.84 0.80 0.77 0.73 0.68 0.63

Table 3.2. λ0(α) for α ≤ 1

3.2. Evolution of the population and the front. Though a rigorous theoret-
ical proof is lacking, our numerical simulation indicates that when spreading hap-
pens, near the spreading front, the density function u(t, r) approaches Uk0(r) =
a
b Ṽ k0√

ad

(√
a
dr
)

in the following sense

lim
t→∞

[u(t, r)− Uk0(h(t)− r)] = 0.

The behavior of the standard semi-wave Ṽλ(−r) for various values of λ ∈ [0, 2)
is described in Figure 3.3 below.

We note the significant change of the shape of the front in Figure 3.3 as λ varies.
In particular, the slope of the front gets closer and closer to 0 as the traveling speed
λ is increased closer and closer to the limiting speed 2.

We next examine the solutions of (1.3) and (1.5). The evolution with time t of
the solution (u(t, r), h(t)) of (1.3) is represented by the graphs in Figure 3.4 and

Figure 3.5, where a = b = d = 1, h0 = 2, µ = 10 and u0(r) = umaxe
− r2

2σ2 (σ = 0.25)1

and several different values of umax are taken.
In space dimension 2, taking these same parameter values in (1.5), the corre-

sponding graphs for the solution (u(t, r), h(t)) are given in Figures 3.6 and 3.7.
Let us note that with the above choices of the parameters, k0 = 1.01 from Table

3.1, and the graphs of Uk0(h(t)− r) with the same t values are given in Figure 3.8
(in dotted line), where h(t) is calculated with the parameters given in Figure 3.6
(D). The snapshots of the graphs of u(t, r) in Figure 3.6 (D) is reproduced in Figure
3.8 (in solid line) using the new scales for convenience of comparison. It shows that
from t = 8.0, the fronts of u(t, r) is already very well approximated by that of the
semi-wave.

1The function u0(r) here does not satisfy u0(h0) = 0. However, in the numerical simulations,
this function is extended to be zero for r ≥ h0 and the discretization of this extended function is

used. Therefore the assumptions in (1.4) for u0 in (1.3) and (1.5) is not violated in the numerical
simulation.
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Figure 3.3. Shape of the semi-wave solution Ṽλ(−r).

3.3. Spreading and vanishing thresholds. Taking a = b = d = 1 in (1.3), then
Theorem 2 of section 1.4 above (see also Theorems 3.4 and 3.9 of [11]) indicates
that spreading always happens when h0 ≥ π/2, and when h0 ∈ (0, π/2), there exists
µ∗ > 0 depending on u0 such that we have spreading when µ > µ∗, and vanishing
when µ ∈ (0, µ∗].

We now take h0 = 1 < π/2 and as before u0(r) = αe−
r2

2σ2 , σ = 0.25. Firstly we
fix α = 1 and use numerical simulation to find µ∗. Figures 3.9 and 3.10 give the
graphs of h(t) and h′(t) for a sequence of suitable µ values, which suggest that µ∗

is between 1.25 and 1.26.
Next we examine, with a, b, d and u0 as given above and h0 = 1, whether for

fixed µ > 0, there is a critical α∗ > 0 such that spreading happens for α > α∗, and
vanishing happens for α < α∗. The existence of such an α∗ is not known from the
theoretical analysis in [11, 8]. On the other hand, in [12] it was shown that when

the logistic term u(a− bu) is replaced by u(a− bup) with p > 3 +
√

13, then there
exists some h∗0 > 0 so that when h0 ∈ (0, h∗0], vanishing always happens no matter
what α value is taken.

Figure 3.11 shows the graphs of h(t) for fixed µ = 1.3 and a sequence of values
of α, which indicates that a critical value α∗ exists, and its value lies between 1.0
and 1.1.

In space dimension 2 we now consider (1.5) with the same parameter values
(except that h0 = 0.3) and the same u0 as that in Figures 3.9 and 3.10. Let us
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Figure 3.4. Snapshots for the evolution of u(t, x) for the 1-d prob-
lem (1.3), at t = 0, 0.64, 8.0 and 20.0, with parameters set to:
a = 1, b = 1, d = 1, µ = 10, h0 = 2.

Figure 3.5. Spreading radius h(t) for the 1-d problem (1.3), with
parameters set to: a = 1, b = 1, d = 1, µ = 10, h0 = 2 and four
different values of umax.

recall that we assume α(r) ≡ a and β(r) ≡ b, and by Theorem 3 in section 1.4
above, there exists R∗ > 0 such that spreading always happens when h0 ≥ R∗,
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Figure 3.6. Snapshots of the evolution of u(t, r) for the 2-d prob-
lem (1.5), at t = 0, 0.64, 8.0 and 20.0, with parameters set to:
a = 1, b = 1, d = 1, µ = 10, h0 = 2.

Figure 3.7. Spreading radius h(t) for the 2-d problem (1.5), with
parameters set to: a = 1, b = 1, d = 1, µ = 10, h0 = 2 and four
different values of umax.

while if h0 ∈ (0, R∗), then there exists µ∗ > 0 such that spreading happens when
µ > µ∗, and vanishing happens when µ ∈ (0, µ∗]. The general formula for R∗ is
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Figure 3.8. Shown in dotted line are snapshots of the graphs of
the semi-wave Uk0(h(t) − r) with k0 = 1.01 and h(t) as in Figure
3.7 (with umax = 10), at t = 0, 0.64, 8.0 and 20.0. In solid line are
the snapshots of u(t, r) as in Figure 3.6 (D) (with different scales
for clear comparison), at the same time moments t = 0, 0.64, 8.0
and 20.0.

Figure 3.9. Evolution of h(t) (position of the front) for the 1-
d problem (1.3), with parameters set to: a = 1, b = 1, d = 1,
umax = 1, h0 = 1 and four values of µ, showing the existence of a
threshold value µ∗ between 1.25 and 1.26.

given by

R∗ = (λ1)1/2(d/a)1/2,

where λ1 is the first eigenvalue of the Laplacian operator −∆ over the unit ball
in RN with Dirichlet boundary conditions. Now N = 2 and so λ1 = j20,1, where
j0,1 = 2.4048... is the first zero of the Bessel function of order zero. Thus with the
above choice of parameters, we have R∗ = 2.4048..., and h0 = 0.3 < R∗. Figure 3.12
below shows the graphs of h(t) for a suitable sequence of µ values, which suggest
that µ∗ for (1.5) in this setting is between 8.2 and 8.3.

3.4. Strategies for spreading or vanishing. Depending on circumstances,
spreading or vanishing may be favored for a new species. If all the parameters
are the same, what shape of the initial distribution of the species better serves the
spreading of the species? We now look at how the shape of u0 affects the threshold
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Figure 3.10. Evolution of h′(t) (speed of the front) for the 1-
d problem (1.3), with parameters set to: a = 1, b = 1, d = 1,
umax = 1, h0 = 1 and four values of µ, indicating the existence of
a threshold value µ∗ between 1.25 and 1.26..

Figure 3.11. Evolution of spreading radius h(t) for the 1-d prob-
lem (1.3), with parameters set to: a = 1, b = 1, d = 1, h0 = 1,
µ = 1.3 and four values of α = umax, indicating the existence of a
threshold value α∗ between 1.0 and 1.1.

value µ∗. Note that the shape of u0 matters for deciding spreading or vanishing
only if h0 is below the threshold value R∗.

Here we only consider the case (1.5) in space dimension 2. We take a = b = d = 1,
h0 = 0.3 < R∗, and 2

u0(r) = umax exp

(
− (r − r̄)2

2σ2

)
, σ = 1/8.

2This u0(r) does not satisfy u′
0(0) = u0(h0) = 0. However, as before, in the numerical simula-

tions, u0(r) is first extended to be 0 for r ≥ h0, and then a discretization of the extended function

is used. Therefore the assumption u0(h0) = 0 in (1.4) is not violated in the numerical simulations.

Moreover, one could modify u0(r) locally near r = 0 to make it satisfy u′
0(0) = 0. But such local

modification makes no difference to the descretized version of the function used in the simulation.
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Figure 3.12. Evolution of spreading radius h(t) for the 2-d prob-
lem (1.5), with parameters set to: a = 1, b = 1, d = 1, umax = 1,
h0 = 0.3 and six values of µ, suggesting the existence of a threshold
value µ∗ lying between 8.2 and 8.3.

A sequence of values for the pair (umax, r̄) are taken so that the total initial popu-
lation ∫

|x|<h0

u0(|x|)dx = 2π

∫ h0

0

u0(r)rdr

is kept the same (≈ 2π · 0.032078); see Figure 3.13.

Figure 3.13. Initial population u0(r) (discretized) for the 2-d
problem (1.5), with h0 = 0.3 and five sets of values for (umax, r̄).

The estimated values of µ∗ for these different set of values of (umax, r̄) are given
in Table 3.14.

This table suggests that the threshold value µ∗ decreases as the maximum point
r̄ of u0(r) is shifted towards h0, and thus the chance of spreading of the species is
increased under such a change of u0.

3.5. The value of h∞ when it is finite. When h∞ is finite, Theorem 3 of sec-
tion 1.4 implies that h0 < h∞ ≤ R∗. However, whether and how h∞ varies with
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r 0 1
4h0

1
2h0

3
4h0

9
10h0

umax 2.175 1.226 0.887 0.829 0.907
estimated µ∗ 14.0 11.0 8.5 6.25 5.75

Table 3.14. Numerically estimated values of µ∗ as u0 in (1.5) varies.

the parameters in the model is unclear from the theoretical result. We now use
numerical simulation to check how h∞ changes as µ is varied below the threshold
µ∗. Figure 3.15 shows the behavior of h(t) for (1.5) with a = b = d = 1, h0 = 0.3,

u0(r) = 2.175 exp
(
− r2

2σ2

)
, σ = 1/8, for a sequence of suitable values of µ, which

indicates that h∞ can take various values in (h0, R
∗).

Figure 3.15. Evolution of spreading radius h(t) for the 2-d prob-
lem (1.5) for some values of µ, with other parameters set to: a = 1,
b = 1, d = 1, umax = 2.175 and h0 = 0.3.

3.6. Numerical algorithms. The numerical analysis for (1.3) and (1.5) was per-
formed with Scilab, the free software for numerical computation (http://www.scilab.-
org). Our algorithm is a modification of the standard finite-difference method for
reaction-diffusion equations over a fixed interval with suitable boundary conditions.
The modification is due to the moving boundary nature of our problem. We first
choose grid points to divide a large interval [0, H] into small intervals of equal length
dx, and extend the initial function u0(r) from [0, h0] to [0, H] by the value 0 to ob-
tain u(t0, ·) with t0 = 0. We then redefine the grid point xi which is closest to h0
by xi = h0. We next calculate u(t, x) for the time step t = t1 according to the
reaction-diffusion equation for u over the space interval [0, h0] with the boundary
conditions ur = 0 at r = 0, and u = 0 at r = h0. We then use the free boundary
condition h′(t) = −µur(t, h(t)) to determine the next position of the free boundary,
denoted by h1, namely

h1 = h0 + (dt)ur(t1, h0),

where dt = t1− 0(= tk+1− tk) is the size of time step, and the value of ur(t1, h0) is
calculated from u(t1, ·) obtained in the previous step. (It turns out that the value
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of ur(t1, h0) should be calculated with great care to avoid unwanted oscillations in
the simulation; in our calculation u(t1, ·) is first suitably smoothed over several grid
intervals to the left of r = h0 before ur(t1, h0) is evaluated.) With the new boundary
position h1 determined, we repeat the above procedure (starting by making h1 a
grid point) until the moving boundary is close to the predetermined value H, or a
suitable time step tm.
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