In this paper, we discuss the total variation bound for the solution of scalar conservation laws with discontinuous
flux. We prove the smoothing effect of the equation forcing the solution
near the interface for initial data without the assumption on the uniform convexity of the fluxes made as in [1,21].
The proof relies on the method of characteristics and the explicit formulas.
Citation: Shyam Sundar Ghoshal. BV regularity near the interface for nonuniform convex discontinuous flux[J]. Networks and Heterogeneous Media, 2016, 11(2): 331-348. doi: 10.3934/nhm.2016.11.331
Related Papers:
[1]
Shyam Sundar Ghoshal .
BV regularity near the interface for nonuniform convex discontinuous flux. Networks and Heterogeneous Media, 2016, 11(2): 331-348.
doi: 10.3934/nhm.2016.11.331
[2]
Shyam Sundar Ghoshal, John D. Towers, Ganesh Vaidya .
BV regularity of the adapted entropy solutions for conservation laws with infinitely many spatial discontinuities. Networks and Heterogeneous Media, 2024, 19(1): 196-213.
doi: 10.3934/nhm.2024009
[3]
Raimund Bürger, Christophe Chalons, Rafael Ordoñez, Luis Miguel Villada .
A multiclass Lighthill-Whitham-Richards traffic model with a discontinuous velocity function. Networks and Heterogeneous Media, 2021, 16(2): 187-219.
doi: 10.3934/nhm.2021004
[4]
Felisia Angela Chiarello, Giuseppe Maria Coclite .
Nonlocal scalar conservation laws with discontinuous flux. Networks and Heterogeneous Media, 2023, 18(1): 380-398.
doi: 10.3934/nhm.2023015
[5]
. Adimurthi, Siddhartha Mishra, G.D. Veerappa Gowda .
Existence and stability of entropy solutions for a conservation law with discontinuous non-convex fluxes. Networks and Heterogeneous Media, 2007, 2(1): 127-157.
doi: 10.3934/nhm.2007.2.127
[6]
Anya Désilles, Hélène Frankowska .
Explicit construction of solutions to the Burgers equation with discontinuous initial-boundary conditions. Networks and Heterogeneous Media, 2013, 8(3): 727-744.
doi: 10.3934/nhm.2013.8.727
[7]
Mauro Garavello, Roberto Natalini, Benedetto Piccoli, Andrea Terracina .
Conservation laws with discontinuous flux. Networks and Heterogeneous Media, 2007, 2(1): 159-179.
doi: 10.3934/nhm.2007.2.159
[8]
Darko Mitrovic .
Existence and stability of a multidimensional scalar conservation law with discontinuous flux. Networks and Heterogeneous Media, 2010, 5(1): 163-188.
doi: 10.3934/nhm.2010.5.163
[9]
Raimund Bürger, Stefan Diehl, María Carmen Martí .
A conservation law with multiply discontinuous flux modelling a flotation column. Networks and Heterogeneous Media, 2018, 13(2): 339-371.
doi: 10.3934/nhm.2018015
[10]
Maria Laura Delle Monache, Paola Goatin .
Stability estimates for scalar conservation laws with moving flux constraints. Networks and Heterogeneous Media, 2017, 12(2): 245-258.
doi: 10.3934/nhm.2017010
Abstract
In this paper, we discuss the total variation bound for the solution of scalar conservation laws with discontinuous
flux. We prove the smoothing effect of the equation forcing the solution
near the interface for initial data without the assumption on the uniform convexity of the fluxes made as in [1,21].
The proof relies on the method of characteristics and the explicit formulas.
References
[1]
Adimurthi, R. Dutta, S. S. Ghoshal and G. D. Veerappa Gowda, Existence and nonexistence of TV bounds for scalar conservation laws with discontinuous flux, Comm. Pure Appl. Math., 64 (2011), 84-115. doi: 10.1002/cpa.20346
[2]
Adimurthi, S. S. Ghoshal and G. D. Veerappa Gowda, Finer regularity of an entropy solution for - scalar conservation laws with non uniform convex flux, Rend. Sem. Mat. Univ. Padova, 132 (2014), 1-24. doi: 10.4171/RSMUP/132-1
[3]
Adimurthi, S. S. Ghoshal and G. D. Veerappa Gowda, Structure of an entropy solution of a scalar conservation law with strict convex flux, J. Hyperbolic Differ. Equ., 9 (2012), 571-611. doi: 10.1142/S0219891612500191
[4]
Adimurthi and G. D. Veerappa Gowda, Conservation laws with discontinuous flux, J. Math. Kyoto Univ., 43 (2003), 27-70.
[5]
Adimurthi, J. Jaffre and G. D. Veerappa Gowda, Godunov type methods for scalar conservation laws with flux function discontinuous in the space variable, SIAM J. Numer. Anal., 42 (2004), 179-208. doi: 10.1137/S003614290139562X
[6]
Adimurthi, S. Mishra and G. D. Veerappa Gowda, Optimal entropy solutions for conservation laws with discontinuous flux-functions, J. Hyperbolic Differ. Equ., 2 (2005), 783-837. doi: 10.1142/S0219891605000622
[7]
Adimurthi, S. Mishra and G. D. Veerappa Gowda, Explicit Hopf-Lax type formulas for Hamilton-Jacobi equations and conservation laws with discontinuous coefficients, J. Differential Equations, 241 (2007), 1-31. doi: 10.1016/j.jde.2007.05.039
[8]
Adimurthi, S. Mishra and G. D. Veerappa Gowda, Convergence of Godunov type methods for a conservation law with a spatially varying discontinuous flux function, Math. Comp., 76 (2007), 1219-1242. doi: 10.1090/S0025-5718-07-01960-6
[9]
B. Andreianov, K. H. Karlsen and N. H. Risebro, A theory of - dissipative solvers for scalar conservation laws with discontinuous flux, Arch. Ration. Mech. Anal., 201 (2011), 27-86. doi: 10.1007/s00205-010-0389-4
[10]
B. Andreianov and C. Cances, The Godunov scheme for scalar conservation laws with discontinuous bell-shaped flux functions, Appl. Math. Lett., 25 (2012), 1844-1848. doi: 10.1016/j.aml.2012.02.044
[11]
R. Bürger, A. García, K. H. Karlsen and J. D. Towers, A family of numerical schemes for kinematic flows with discontinuous flux, J. Engrg. Math., 60 (2008), 387-425. doi: 10.1007/s10665-007-9148-4
[12]
R. Bürger, K. H. Karlsen, N. H. Risebro and J. D. Towers, Well-posedness in and convergence of a difference scheme for continuous sedimentation in ideal clarifier thickener units, Numer. Math., 97 (2004), 25-65. doi: 10.1007/s00211-003-0503-8
[13]
R. Bürger, K. H. Karlsen, C. Klingenberg and N. H. Risebro, A front tracking approach to a model of continuous sedimentation in ideal clarifier-thickener units, Nonlin. Anal. Real World Appl., 4 (2003), 457-481. doi: 10.1016/S1468-1218(02)00071-8
[14]
R. Bürger, K. H. Karlsen and N. H. Risebro, A relaxation scheme for continuous sedimentation in ideal clarifier-thickner units, Comput. Math. Applic., 50 (2005), 993-1009. doi: 10.1016/j.camwa.2005.08.019
[15]
R. Bürger, K. H. Karlsen, N. H. Risebro and J. D. Towers, Monotone difference approximations for the simulation of clarifier-thickener units, Comput. Visual. Sci., 6 (2004), 83-91. doi: 10.1007/s00791-003-0112-1
[16]
R. Bürger, K. H. Karlsen and J. D. Towers, A mathematical model of continuous sedimentation of flocculated suspensions in clarifier-thickener units, SIAM J. Appl. Math., 65 (2005), 882-940. doi: 10.1137/04060620X
[17]
S. Diehl, Dynamic and steady-state behaviour of continuous sedimentation, SIAM J. Appl. Math., 57 (1997), 991-1018. doi: 10.1137/S0036139995290101
[18]
S. Diehl, Operating charts for continuous sedimentation II: Step responses, J. Engrg. Math., 53 (2005), 139-185. doi: 10.1007/s10665-005-6430-1
[19]
T. Gimse and N. H. Risebro, Solution of the Cauchy problem for a conservation law with a discontinuous flux function, SIAM J. Math. Anal., 23 (1992), 635-648. doi: 10.1137/0523032
[20]
T. Gimse and N. H. Risebro, Riemann problems with discontinuous flux function, Proc. 3rd Internat. Conf. Hyperbolic Problems, Studentlitteratur, Uppsala, (1991), 488-502.
[21]
S. S. Ghoshal, Optimal results on TV bounds for scalar conservation laws with discontinuous flux, J. Differential Equations, 258 (2015), 980-1014. doi: 10.1016/j.jde.2014.10.014
[22]
S. S. Ghoshal, Finer Analysis of Characteristic Curve and its Application to Exact, Optimal Controllability, Structure of the Entropy Solution of a Scalar Conservation Law with Convex Flux, Ph.D thesis, TIFR, Centre for Applicable Mathematics, 2012.
[23]
K. T. Joseph and G. D. Veerappa Gowda, Explicit formula for solution of convex conservation laws with boundary condition, Duke Math. J., 62 (1991), 401-416. doi: 10.1215/S0012-7094-91-06216-2
[24]
E. Kaasschieter, Solving the Buckley-Leverret equation with gravity in a heterogeneous porous media, Comput. Geosci., 3 (1999), 23-48. doi: 10.1023/A:1011574824970
[25]
K. H. Karlsen, N. H. Risebro and J. D. Towers, On a Nonlinear Degenerate Parabolic Transport Diffusion Equation with Discontinuous Coefficient, Electron. J. Differential Equations, 2002.
[26]
C. Klingenberg and N. H. Risebro, Convex conservation laws with discontinuous coefficients, existence, uniqueness and asymptotic behavior, Comm. Partial Differential Equations, 20 (1995), 1959-1990. doi: 10.1080/03605309508821159
[27]
S. N. Kružkov, First order quasilinear equations with several independent variables. (Russian), Mat. Sb., 81 (1970), 228-255. English transl. in Math. USSR Sb., 10 (1970), 217-243.
[28]
P. D. Lax, Hyperbolic systems of conservation laws II, Comm. Pure Appl. Math., 10 (1957), 537-566. doi: 10.1002/cpa.3160100406
[29]
S. Mochon, An analysis for the traffic on highways with changing surface conditions, Math. Model., 9 (1987), 1-11. doi: 10.1016/0270-0255(87)90068-6
[30]
D. N. Ostrov, Solutions of Hamilton-Jacobi equations and conservation laws with discontinuous space-time dependence, J. Differential Equations, 182 (2002), 51-77. doi: 10.1006/jdeq.2001.4088
[31]
D. Serre, Systémes De Lois De Conservation. I., Hyperbolicité, Entropies, Ondes de Choc, Diderot Editeur, Paris, 1996.
[32]
J. D. Towers, Convergence of a difference scheme for conservation laws with a discontinuous flux, SIAM J. Numer. Anal., 38 (2000), 681-698. doi: 10.1137/S0036142999363668
This article has been cited by:
1.
Shyam Sundar Ghoshal, John D. Towers, Ganesh Vaidya,
A Godunov type scheme and error estimates for scalar conservation laws with Panov-type discontinuous flux,
2022,
151,
0029-599X,
601,
10.1007/s00211-022-01297-w
2.
Shyam Sundar Ghoshal, John D. Towers, Ganesh Vaidya,
Convergence of a Godunov scheme for degenerate conservation laws with BV spatial flux and a study of Panov-type fluxes,
2022,
19,
0219-8916,
365,
10.1142/S0219891622500102
3.
Shyam Sundar Ghoshal, Animesh Jana,
Nonexistence of the Regularizing Effect for Scalar Conservation Laws in Several Space Dimensions for Fluxes,
2021,
53,
0036-1410,
1908,
10.1137/20M1371531
4.
Shyam Sundar Ghoshal, Animesh Jana, John D. Towers,
Convergence of a Godunov scheme to an Audusse–Perthame adapted entropy solution for conservation laws with BV spatial flux,
2020,
146,
0029-599X,
629,
10.1007/s00211-020-01150-y
5.
Shyam Sundar Ghoshal, Stéphane Junca, Akash Parmar,
Fractional regularity for conservation laws with discontinuous flux,
2024,
75,
14681218,
103960,
10.1016/j.nonrwa.2023.103960
6.
Shyam Sundar Ghoshal, John D. Towers, Ganesh Vaidya,
BV regularity of the adapted entropy solutions for conservation laws with infinitely many spatial discontinuities,
2024,
19,
1556-1801,
196,
10.3934/nhm.2024009
7.
S. S. Ghoshal, S. Junca, A. Parmar,
Higher Regularity for Entropy Solutions of Conservation Laws with Geometrically Constrained Discontinuous Flux,
2024,
56,
0036-1410,
6121,
10.1137/23M1604199