Citation: Shyam Sundar Ghoshal. BV regularity near the interface for nonuniform convex discontinuous flux[J]. Networks and Heterogeneous Media, 2016, 11(2): 331-348. doi: 10.3934/nhm.2016.11.331
[1] | Adimurthi, R. Dutta, S. S. Ghoshal and G. D. Veerappa Gowda, Existence and nonexistence of TV bounds for scalar conservation laws with discontinuous flux, Comm. Pure Appl. Math., 64 (2011), 84-115. doi: 10.1002/cpa.20346 |
[2] | Adimurthi, S. S. Ghoshal and G. D. Veerappa Gowda, Finer regularity of an entropy solution for $1$-$d$ scalar conservation laws with non uniform convex flux, Rend. Sem. Mat. Univ. Padova, 132 (2014), 1-24. doi: 10.4171/RSMUP/132-1 |
[3] | Adimurthi, S. S. Ghoshal and G. D. Veerappa Gowda, Structure of an entropy solution of a scalar conservation law with strict convex flux, J. Hyperbolic Differ. Equ., 9 (2012), 571-611. doi: 10.1142/S0219891612500191 |
[4] | Adimurthi and G. D. Veerappa Gowda, Conservation laws with discontinuous flux, J. Math. Kyoto Univ., 43 (2003), 27-70. |
[5] | Adimurthi, J. Jaffre and G. D. Veerappa Gowda, Godunov type methods for scalar conservation laws with flux function discontinuous in the space variable, SIAM J. Numer. Anal., 42 (2004), 179-208. doi: 10.1137/S003614290139562X |
[6] | Adimurthi, S. Mishra and G. D. Veerappa Gowda, Optimal entropy solutions for conservation laws with discontinuous flux-functions, J. Hyperbolic Differ. Equ., 2 (2005), 783-837. doi: 10.1142/S0219891605000622 |
[7] | Adimurthi, S. Mishra and G. D. Veerappa Gowda, Explicit Hopf-Lax type formulas for Hamilton-Jacobi equations and conservation laws with discontinuous coefficients, J. Differential Equations, 241 (2007), 1-31. doi: 10.1016/j.jde.2007.05.039 |
[8] | Adimurthi, S. Mishra and G. D. Veerappa Gowda, Convergence of Godunov type methods for a conservation law with a spatially varying discontinuous flux function, Math. Comp., 76 (2007), 1219-1242. doi: 10.1090/S0025-5718-07-01960-6 |
[9] | B. Andreianov, K. H. Karlsen and N. H. Risebro, A theory of $L^1$ - dissipative solvers for scalar conservation laws with discontinuous flux, Arch. Ration. Mech. Anal., 201 (2011), 27-86. doi: 10.1007/s00205-010-0389-4 |
[10] | B. Andreianov and C. Cances, The Godunov scheme for scalar conservation laws with discontinuous bell-shaped flux functions, Appl. Math. Lett., 25 (2012), 1844-1848. doi: 10.1016/j.aml.2012.02.044 |
[11] | R. Bürger, A. García, K. H. Karlsen and J. D. Towers, A family of numerical schemes for kinematic flows with discontinuous flux, J. Engrg. Math., 60 (2008), 387-425. doi: 10.1007/s10665-007-9148-4 |
[12] | R. Bürger, K. H. Karlsen, N. H. Risebro and J. D. Towers, Well-posedness in $BV_t$ and convergence of a difference scheme for continuous sedimentation in ideal clarifier thickener units, Numer. Math., 97 (2004), 25-65. doi: 10.1007/s00211-003-0503-8 |
[13] | R. Bürger, K. H. Karlsen, C. Klingenberg and N. H. Risebro, A front tracking approach to a model of continuous sedimentation in ideal clarifier-thickener units, Nonlin. Anal. Real World Appl., 4 (2003), 457-481. doi: 10.1016/S1468-1218(02)00071-8 |
[14] | R. Bürger, K. H. Karlsen and N. H. Risebro, A relaxation scheme for continuous sedimentation in ideal clarifier-thickner units, Comput. Math. Applic., 50 (2005), 993-1009. doi: 10.1016/j.camwa.2005.08.019 |
[15] | R. Bürger, K. H. Karlsen, N. H. Risebro and J. D. Towers, Monotone difference approximations for the simulation of clarifier-thickener units, Comput. Visual. Sci., 6 (2004), 83-91. doi: 10.1007/s00791-003-0112-1 |
[16] | R. Bürger, K. H. Karlsen and J. D. Towers, A mathematical model of continuous sedimentation of flocculated suspensions in clarifier-thickener units, SIAM J. Appl. Math., 65 (2005), 882-940. doi: 10.1137/04060620X |
[17] | S. Diehl, Dynamic and steady-state behaviour of continuous sedimentation, SIAM J. Appl. Math., 57 (1997), 991-1018. doi: 10.1137/S0036139995290101 |
[18] | S. Diehl, Operating charts for continuous sedimentation II: Step responses, J. Engrg. Math., 53 (2005), 139-185. doi: 10.1007/s10665-005-6430-1 |
[19] | T. Gimse and N. H. Risebro, Solution of the Cauchy problem for a conservation law with a discontinuous flux function, SIAM J. Math. Anal., 23 (1992), 635-648. doi: 10.1137/0523032 |
[20] | T. Gimse and N. H. Risebro, Riemann problems with discontinuous flux function, Proc. 3rd Internat. Conf. Hyperbolic Problems, Studentlitteratur, Uppsala, (1991), 488-502. |
[21] | S. S. Ghoshal, Optimal results on TV bounds for scalar conservation laws with discontinuous flux, J. Differential Equations, 258 (2015), 980-1014. doi: 10.1016/j.jde.2014.10.014 |
[22] | S. S. Ghoshal, Finer Analysis of Characteristic Curve and its Application to Exact, Optimal Controllability, Structure of the Entropy Solution of a Scalar Conservation Law with Convex Flux, Ph.D thesis, TIFR, Centre for Applicable Mathematics, 2012. |
[23] | K. T. Joseph and G. D. Veerappa Gowda, Explicit formula for solution of convex conservation laws with boundary condition, Duke Math. J., 62 (1991), 401-416. doi: 10.1215/S0012-7094-91-06216-2 |
[24] | E. Kaasschieter, Solving the Buckley-Leverret equation with gravity in a heterogeneous porous media, Comput. Geosci., 3 (1999), 23-48. doi: 10.1023/A:1011574824970 |
[25] | K. H. Karlsen, N. H. Risebro and J. D. Towers, On a Nonlinear Degenerate Parabolic Transport Diffusion Equation with Discontinuous Coefficient, Electron. J. Differential Equations, 2002. |
[26] | C. Klingenberg and N. H. Risebro, Convex conservation laws with discontinuous coefficients, existence, uniqueness and asymptotic behavior, Comm. Partial Differential Equations, 20 (1995), 1959-1990. doi: 10.1080/03605309508821159 |
[27] | S. N. Kružkov, First order quasilinear equations with several independent variables. (Russian), Mat. Sb., 81 (1970), 228-255. English transl. in Math. USSR Sb., 10 (1970), 217-243. |
[28] | P. D. Lax, Hyperbolic systems of conservation laws II, Comm. Pure Appl. Math., 10 (1957), 537-566. doi: 10.1002/cpa.3160100406 |
[29] | S. Mochon, An analysis for the traffic on highways with changing surface conditions, Math. Model., 9 (1987), 1-11. doi: 10.1016/0270-0255(87)90068-6 |
[30] | D. N. Ostrov, Solutions of Hamilton-Jacobi equations and conservation laws with discontinuous space-time dependence, J. Differential Equations, 182 (2002), 51-77. doi: 10.1006/jdeq.2001.4088 |
[31] | D. Serre, Systémes De Lois De Conservation. I., Hyperbolicité, Entropies, Ondes de Choc, Diderot Editeur, Paris, 1996. |
[32] | J. D. Towers, Convergence of a difference scheme for conservation laws with a discontinuous flux, SIAM J. Numer. Anal., 38 (2000), 681-698. doi: 10.1137/S0036142999363668 |