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Abstract. In this paper, we discuss the total variation bound for the solution
of scalar conservation laws with discontinuous flux. We prove the smoothing

effect of the equation forcing the BVloc solution near the interface for L∞ initial

data without the assumption on the uniform convexity of the fluxes made as
in [1, 21]. The proof relies on the method of characteristics and the explicit

formulas.

1. Introduction. Let us consider the following conservation laws with discontin-
uous flux,

ut + F (x, u) = 0
u(x, 0) = u0(x),

(1)

the flux F is given by, F (x, u) = H(x)f(u) + (1 − H(x))g(u), H is the Heaviside
function. Throughout this paper we assume the fluxes f, g to be C2(R), strictly
convex, superlinear growth (see definition 2.7) and u0 ∈ L∞. We denote by f−1

+ , g−1
+

to be the inverses of the increasing part of f , g respectively and similarly f−1
− , g−1

− ,
the inverses of the decreasing part of f, g respectively. Let θf , θg be the unique
minimums of the fluxes f and g respectively. By uniform convexity of the fluxes f, g,
we mean f, g ∈ C2 and there exists a positive constant α such that f ′′ > α, g′′ > α.

The first order partial differential equation of type (1) has many applications
namely, modeling gravity, continuous sedimentation in a clarifier-thickener unit,
petroleum industry, traffic flow on a highway, semiconductor industry. For more
details, one can see [13, 14, 15, 16, 17, 18, 24, 29] and the references therein.

It is well known that even if the flux and the initial data are sufficiently smooth
the global classical solution of scalar conservation laws, does not exist always, which
allows to define the weak notion of the solution. In general, there might be infinitely
many weak solutions even for smooth flux. Moreover, the well-posedness theory for
the Cauchy problem for scalar conservation laws with Lipschitz flux function was
completely settled by Kruzkov [27].

In past few decades, the Cauchy problem for conservation laws with discontinuous
flux of the type (1) has been well studied, it has been tackled in several ways. For
convergence analysis of several important numerical schemes we refer to [5, 6, 8,
10, 11, 12, 14, 15, 32]. The solution of (1) can be achieved by vanishing viscosity
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limit [25, 9], front tracking ([13, 19, 20, 26]). On the other hand, one can obtain
the solution of (1) also via Hamilton-Jacobi equation [4, 7, 30], which is the one we
exploit in the present paper. Consider the following Hamilton-Jacobi equation

vt + g(vx) = 0 if x < 0, t > 0,
vt + f(vx) = 0 if x > 0, t > 0,
v(x, 0) = v0 if x ∈ R.

(2)

In [7], they dealt with the Hamilton-Jacobi equation (2) and proved the existence
of the global Lipschitz solution of (2). Then u = vx, solves the discontinuous
conservation laws (1) with the initial data v0x

= u0. Also they proved the existence
of infinitely many stable semigroups of entropy solutions based on (A,B) interface
entropy condition (see definition 2.4). For any such choice of A,B, they have
given an explicit representation of the entropy solution for the conservation law
(1). Throughout our paper we use the (A,B) entropy solution (see definition 2.5)
obtained as in [4, 7].

Despite the fact that the subject is well studied, the total variation bound near
the interface remained unsolved for quite a long time. In [11], they observed that
the solution stays in BV, away from the interface x = 0. Recently, in [1, 21] the
question regarding the total variation bound near interface has been answered. In
general, BV regularity of the solution is an extremely important phenomenon in the
theory of conservation laws. For the case when f = g (not necessarily convex), total
variation diminishing (TVD) property holds, that is to say, TV (u(·, t)) ≤ TV (u0(·)),
for all t > 0. Definitely, one cannot expect to have similar property in the case when
f 6= g, because of the fact that constant initial data may lead to a non constant
solution.

The first breakthrough results regarding the total variation bound have been
obtained in [1]. First it was observed in [1] that the critical points plays a key role
for the existence and nonexistence of total variation bound. It has been shown in
[1] that if the connections (A,B) avoid the critical points (θg, θf ) and u0 ∈ BV ,
then the BV regularity holds. They observed in [1] that u0 ∈ BV is not enough, one
needs to assume also f−1

+ g(u0), g−1
− f(u0) ∈ BV in order to prove that the solution is

BV near the interface. Also they have constructed a counter example by rarefaction
waves and shock waves separated by constant states near the interface to prove that
total variation of the solution at time t = 1 may blow up even if u0 ∈ BV. Hence
the assumption f−1

+ g(u0), g−1
− f(u0) ∈ BV are important.

Later on in [21], it has been proved that if the connections (A,B) avoid the
critical points (θg, θf ) and f ′′, g′′ ≥ α > 0, then u ∈ BV for u0 ∈ L∞. Also a very
strong and surprising result has been obtained in [21] that if the lower heights of
both the fluxes are same that is if f(θf ) = g(θg), then the solution stays in BV
near the interface, even if the fluxes are not uniformly convex or even if u0 /∈ BV.
On the other hand, if f(θf ) 6= g(θg), then the results does not hold in general (for
instance the counter example in [1] at t = 1). If f(θf ) 6= g(θg), then one needs to
put an extra assumption that Supp u0 is compact, then the result holds true for
uniformly convex flux, but for large time. One can not avoid to assume that the
initial data u0 is compactly supported due to the counter example (in [21]), which
shows that even for uniformly convex fluxes, u(x, Tn) /∈ BV while u0 ∈ BV , for all
n and lim

n→∞
Tn =∞.

When f = g, we have the following Lax-Oleinik formula:
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Theorem 1.1. (Lax-Oleinik formula) Let the initial data u0 ∈ L∞(R). If the flux
f is C2, uniformly convex and of super linear growth. Then there exists a function
y(x, t) such that

1. x 7→ y(x, t) is non decreasing.
2. For a.e. (x, t) ∈ R× (0,∞), the solution u of (1) is given by

u(x, t) = (f ′)−1

(
x− y(x, t)

t

)
. (3)

An immediate observation from theorem 1.1 is the following:
If f ′′ ≥ α > 0 and then for all t > 0, x 7→ u(x, t) is in BVloc(R), even if u0 /∈ BV.

When the flux is not uniformly convex, in the case f = g, BV regularity does not
hold for u0 ∈ L∞, even for large time (one can see a counter example in [2], though
f ′(u) ∈ BVloc). For finer properties of characteristics in the case f = g, we refer to
[2, 3, 22, 23, 28, 31].

When f 6= g, Lax-Oleinik type formula still holds:

Theorem 1.2. (Adimurthi, Gowda [4], [7]) Let u0 ∈ L∞(R), then there exists an
entropy solution u of (1) with u ∈ L∞(R). Also there exist Lipschitz continuous
functions R(t) ≥ 0, L(t) ≤ 0. and monotone functions y±(x, t), t±(x, t) such that

For a fixed t > 0,

• t ≥ t+(x, t) ≥ 0 is a non-increasing function of x in [0, R(t)),
• y+(x, t) ≥ 0 is a non-decreasing function of x in [R(t),∞),
• t ≥ t−(x, t) ≥ 0 is a non-decreasing function of x in (L(t), 0],
• y+(x, t) ≤ 0 is a non-decreasing function of x in (−∞, L(t)).

u(x, t) =

 (f ′)−1
(
x−y+(x,t)

t

)
if x ≥ R(t),

(f ′)−1
(

x
t−t+(x,t)

)
if 0 ≤ x < R(t).

(4)

u(x, t) =

 (g′)−1
(
x−y−(x,t)

t

)
if x ≤ L(t),

(g′)−1
(

x
t−t−(x,t)

)
if L(t) < x < 0.

(5)

One can ask the similar question as above that under which assumptions on
f, g, u0 can one expect to have u ∈ BVloc(−∞, L(t)), u ∈ BVloc(L(t), 0), u ∈
BVloc(0, R(t)), u ∈ BVloc(R(t),∞)? In this present article we prove that u ∈
BVloc(L(t), 0), u ∈ BVloc(0, R(t)) with nonuniform convex flux and u0 ∈ L∞. that is
to say we relax f ′′, g′′ ≥ α > 0 and avoid u0 ∈ BV to prove the existence of the BV
regularity near the interface. For the case when the connections avoid the critical
points, we prove that the solution stays in BV near the interface, even if the flux is
not uniformly convex (e.g. f(u) = u4, g(u) = u6 + 1) and even if the initial data is
highly oscillatory (u0 ∈ L∞). Also we prove that if one allows the connection to be
the critical points, then similar results hold true without uniform convexity of fluxes
and only with u0 ∈ L∞, but for large time. The result in this paper is very surpris-
ing because, even if f = g, but not uniformly convex then in general there does not
exist any region where the solution stays BV for L∞ initial data, in other words,
for f = g and nonuniform convex fluxes one can always choose some u0 ∈ L∞ such
that u(·, t) /∈ BV (K), where K is an interval in R and t > 0 (one can see the details
in [2]). This happens due to the lack of Lipschitz continuity of (f ′)−1. Here in this
article we prove that near the interface i.e, in the region (L(t), 0) ∪ (0, R(t)), either
the solution does not oscillates too much or (f ′)−1, (g′)−1 are Lipschitz continuous.
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Note that for x ∈ (L(t), 0) ∪ (0, R(t)), the characteristic passing through the point
(x, t), bended before time t if and only if f 6= g. The paper present a special case
in which one can prove BV regularity for the solution near the interface (starting
from L∞ data) without enforcing the assumption on uniform convexity of the flux.
However, the price to pay in order to relax the hypothesis on uniform convexity is
not negligible. Our proof relies on the explicit Lax-Oleinik type formulas obtained
in [4, 7] and the finer analysis of the characteristics curves [4, 7, 3].

In order to make the present article self contained, we describe enough prerequi-
sites in section 2 before presenting the main results in section 3.

2. Preliminaries. We recall some definitions and known results from [1, 3, 4, 7,
21].

Definition 2.1. Weak solution of (1): u is said to be weak solution of (1) if u ∈
L∞loc(R×R+) and it satisfies the following integral equality, for all φ ∈ C∞0 (R× R+)

∞∫
0

∞∫
−∞

(
u
∂φ

∂t
+ (H(x)f(u) + (1−H(x)g(u))

∂φ

∂x

)
dxdt+

∞∫
−∞

u0(x)φ(x, 0)dx = 0.

(6)
It is immediate to check that u satisfies (6) if and only if u satisfies the following in
weak sense

ut + g(u)x = 0 if x < 0, t > 0,
ut + f(u)x = 0 if x > 0, t > 0,
u(x, 0) = u0 if x ∈ R.

(7)

Rankine-Hugoniot condition at interface: Let us denote u(0+, t) = lim
x→0+

u(x,

t) and u(0−, t) = lim
x→0−

u(x, t). Then at x = 0, u satisfies the following R-H condi-

tion

f(u(0+, t)) = g(u(0−, t)), a.e. t > 0. (8)

Definition 2.2. Interior entropy condition: A weak solution u of (7) is said to
satisfy the interior entropy condition if

∂φ1(u)
∂t + ∂ψ1(u)

∂x ≤ 0 for x > 0, t > 0,
∂φ2(u)
∂t + ∂ψ2(u)

∂x ≤ 0 for x < 0, t > 0,
(9)

in the sense of distributions, where (φi, ψi) are the convex entropy pairs such that
(ψ′1(u), ψ′2(u)) = (φ′1(u)f ′(u), φ′2(u)g′(u)).

Definition 2.3. ((A,B) Connection): Let (A,B) ∈ R2, is called a connection if
it satisfies the following
(i) g(A) = f(B).
(ii) g′(A) ≤ 0, f ′(B) ≥ 0.

Definition 2.4. (A,B) Interface entropy condition: Let u ∈ L∞loc(R× R+)
such that u(0±, t) exist a.e. t > 0. Define IAB(t) by

(g(u(0−, t))−g(A))sign(u(0−, t)−A)−(f(u(0+, t))−f(B))sign(u(0+, t)−B). (10)

Then u is said to satisfy (A,B) Interface entropy condition if for a.e. t > 0,

IAB(t) ≥ 0. (11)
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When A = θg or B = θf , then (11) reduces to

meas
{
t : f ′(u(0+, t)) > 0, g′(u(0−, t)) < 0

}
= 0. (12)

Definition 2.5. (A,B) Interface entropy solution: u ∈ L∞loc(R× R+) is said
to be the (A,B) Interface entropy solution of (1), if it satisfy (6), (9) and (11).

Definition 2.6. Control curve: Let 0 ≤ t and γ ∈ C([0, t],R). Then γ is called
a control curve if the following holds.

(i). γ(t) = x.
(ii). γ consists of at most three linear curves and each segment lies completely in

either x ≥ 0 or x ≤ 0 .
(iii). Let 0 = t3 ≤ t2 ≤ t1 ≤ t0 = t be such that for i = 1, 2, 3, γi = γ|[ti,ti−1]

be the linear parts of γ. If γ consists of three linear curves then γ2 = 0 and
γ1, γ3 > 0 or γ1, γ3 < 0.

(x,t)

(x,t)

(x,t)

(x,t)

(x,t)

(x,t)

(c)(b)(a)

x

t

(d) (e) (f)

Figure 1. Control curves: fig (a), (b), (c) are positive control
curves and fig (d), (e), (f) are negative control curves respectively.

Let us denote the set of control curves by Γ(x, t).
Positive control curve: Let x ≥ 0 then define the positive control curve Γ+(x, t)

by

Γ+(x, t) = {γ ∈ Γ(x, t) : γ ≥ 0}.
Negative control curve: Let x ≤ 0 then define the negative control curve Γ−(x, t)
by

Γ−(x, t) = {γ ∈ Γ(x, t) : γ ≤ 0}.
Define Γ̄± by

Γ̄±(x, t) =
{
γ ∈ Γ±(x, t) : {s : γ(s) 6= 0} = the interval (t1, t), for some t1 ≤ t

}
.
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For simplicity, whenever we write the general flux h, it means that it is either f
or g respectively in suitable sense.

Definition 2.7. Convexity, super linear growth, Legendre transformation
and some useful facts: Let the flux h be a C2 function and strictly convex, i.e.,
∀ a, b ∈ R, and ∀ r ∈ [0, 1], the following holds

h(ra+ (1− r)b) < rh(a) + (1− r)h(b).

Also assume that the flux h satisfy superlinear growth property, i.e.,

lim
|u|→∞

h(u)

|u|
=∞.

Then one can define the Legendre transform h∗ associated to h by

h∗(p) = sup
q
{pq − h(q)}.

It is easy to check that h∗ enjoys the following properties

1. h∗ is C1 and strictly convex.
2. h∗ has the superlinear growth property.
3. h∗′ = (h′)−1.
4. h = h∗∗.
5. h∗(h′(p)) = ph′(p)− h(p).

6. h(h∗
′
(p)) = ph∗

′
(p)− h∗(p).

7. In addition, if h′′ > α > 0, for some α, then (h′)−1 is Lipschitz continuous
with Lipschitz constant bounded by 1

α .

Definition 2.8. Cost functional: Let v0 be the initial data for (2) and let h be
the flux, then define the cost functionals as follows

J(γ, v0, h) = v0(γ(0)) +

t∫
0

h∗(γ′(θ))dθ, (13)

J+(γ, v0, h) = v0(γ(0)) +

∫
{t : γ(t)>0}

h∗(γ′(θ))dθ, (14)

J−(γ, v0, h) = v0(γ(0)) +

∫
{t : γ(t)<0}

h∗(γ′(θ))dθ. (15)

Let v0 ∈ C1(R \ {0}) ∪ Lip(R) and v0(0) = 0. Define the following auxiliary
functions b± by

b+(t) := b+(t, v0, f) := inf
{γ∈Γ+(0,t)}

J(γ, v0, f) (16)

b−(t) := b−(t, v0, g) := sup
{γ∈Γ−(0,t)}

J(γ, v0, g). (17)

Definition 2.9. Characteristics and other related functions: Let us define
the set of characteristics ch± by

ch±(t) = {γ ∈ Γ±(0, t) : b±(t) = J(γ, u0, h)}. (18)
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Define y±, t± by

y+(t, u0, h) = inf{γ(0) : γ ∈ ch+(t)},
y−(t, u0, h) = sup{γ(0) : γ ∈ ch−(t)},
y+(x, t) = min{γ(0) : γ ∈ ch+(t)},
y−(x, t) = max{γ(0) : γ ∈ ch−(t)},
t+(x, t) = max{t1(γ) : γ ∈ ch+(t)},
t−(x, t) = min{t1(γ) : γ ∈ ch−(t)},
R(t) = min{x : t+(x, t) = 0},
L(t) = max{x : t−(x, t) = 0},

(19)

where t 7→ y−(t, u0, h), t 7→ y+(t, u0, h) are non-increasing and non-decreasing
functions respectively. For a fix t > 0, x 7→ y±(x, t), t−(x, t) are non-decreasing
functions and x 7→ t+(x, t) is non-increasing function. The functions t 7→ R(t), t 7→
L(t) are Lipschitz continuous functions and there exists some constant C > 0, such
that Ct ≥ R(t) ≥ 0, −Ct ≤ L(t) ≤ 0.

Definition 2.10. Boundary data: Let us define the boundary data λ± by:

λ+(t) =

{
f−1
− (−b′+(t)) if − b′+(t) > max(−b′−(t), f(B))
f−1

+ (max(−b′−(t), f(B))) if − b′+(t) ≤ max(−b′−(t), f(B))
(20)

λ−(t) =

{
g−1

+ (−b′−(t)) if − b′−(t) ≥ max(−b′+(t), g(A))
g−1
− (max(−b′+(t), g(A))) if − b′−(t) < max(−b′+(t), g(A)).

(21)

Definition 2.11. Value functions: Let us define the value functions v± by:

v−(x, t) = sup
γ∈Γ−(x,t)

[
J−(γ, v0, g)−

∫
γ=0

g(λ−(θ))dθ

]
if x ≤ 0, (22)

v+(x, t) = sup
γ∈Γ+(x,t)

[
J+(γ, v0, f)−

∫
γ=0

f(λ+(θ))dθ

]
if x ≥ 0. (23)

Theorem 2.12. (Adimurthi et. al. [7]) Let the fluxes f, g be strictly convex, smooth
and of superlinear growth. Then

1. f(λ+(t)) = g(λ−(t)).
2. The value functions v± are Lipschitz continuous and v+(0, t) = v−(0, t), for

all t > 0. v+, v− are the solution of (2).
3. Define the following Lipschitz continuous function v by

v(x, t) =

{
v−(x, t) if x < 0, t > 0,
v+(x, t) if x > 0, t > 0.

(24)

Then u = vx is the weak entropy solution of (1) and satisfies the interface
entropy condition (11) and the interior entropy condition (9).

Some useful formulas: The case when A = θg or B = θf . At the points of
differentiability of t±, y±, we have

u(x, t) =



(f ′)−1
(
x−y+(x,t)

t

)
= u0(y+(x, t)) if 0 ≤ R(t) < x <∞,

(f ′)−1
(

x
t−t+(x,t)

)
if 0 ≤ x < R(t)

= u(0+, t+(x, t))
= f−1

+ g(u(0−, t+(x, t)))

= f−1
+ g(g′)−1

(
−y−(0−,t+(x,t))

t+(x,t)

)
= f−1

+ g(u0(y−(0−, t+(x, t)))).

(25)
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u(x, t) =



(g′)−1
(
x−y−(x,t)

t

)
= u0(y−(x, t)) if −∞ < x ≤ L(t) ≤ 0,

(g′)−1
(

x
t−t−(x,t)

)
if L(t) < x < 0,

= u(0−, t−(x, t))
= g−1
− f(u(0+, t−(x, t)))

= g−1
− f(f ′)−1

(
−y+(0+,t−(x,t))

t−(x,t)

)
= g−1
− f(u0(y+(0+, t−(x, t)))).

(26)

The case when A 6= θg and B 6= θf . At the points of differentiability of t±, y±,
we have

u(x, t) =



(f ′)−1
(
x−y+(x,t)

t

)
= u0(y+(x, t) if 0 ≤ R(t) < x <∞,

(f ′)−1
(

x
t−t+(x,t)

)
if 0 ≤ x < R(t)

= u(0−, t+(x, t))
= λ+(t+(x, t))
= f−1

+ (max(−b′−(t+(x, t)), f(B))).

(27)

u(x, t) =



(g′)−1
(
x−y−(x,t)

t

)
= u0(y−(x, t)) if −∞ < x ≤ L(t) ≤ 0,

(g′)−1
(

x
t−t−(x,t)

)
if L(t) < x < 0,

= u(0−, t−(x, t))
= λ−(t−(x, t))
= g−1
− (max(−b′+(t−(x, t)), g(A))),

(28)

where b′± satisfies the following

b′−(t) =

 −g
(

(g′)−1

(
−y−(t, u0, g)

t

))
if y−(t, u0, g) < 0,

−g(θg) if y−(t, u0, g) = 0,
(29)

b′+(t) =

 −f
(

(f ′)−1

(
−y+(t, u0, g)

t

))
if y+(t, u0, f) > 0,

−f(θf ) if y+(t, u0, f) = 0.
(30)

Theorem 2.13. (Adimurthi et.al [1]). Let u0 ∈ L∞(R) and u be the solution of
(1). Let t > 0, ε > 0,M > ε, I(M, ε) = {x : ε ≤ |x| ≤M}. Then

(1). Suppose there exists an α > 0 such that f ′′ ≥ α, g′′ ≥ α, then there exist
C = C(ε,M, α) such that

TV
(
u(·, t), I(M, ε)

)
≤ C(ε,M, t).

(2). Suppose u0 ∈ BV, and T > 0. Then there exists C(ε, T ) such that for all
0 < t ≤ T

TV
(
u(·, t), |x| > ε

)
≤ C(ε, t)TV(u0) + 4||u0||∞.

(3). Let u0 ∈ BV, T > 0 and A 6= θg and B 6= θf . Then there exists C > 0 such
that for all 0 < t ≤ T ,

TV
(
u(·, t)

)
≤ C TV(u0) + 6||u0||∞.

(4). Let u0, f
−1
+ (g(u0)), g−1

− (f(u0)) ∈ BV, T > 0 and A = θg. Then for all
0 < t ≤ T ,

TV
(
u(·, t)

)
≤ TV(u0) + max

(
TV (f−1

+ (g(u0))),TV(g−1
− (f(u0)))

)
+ 6||u0||∞.
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(5). For a certain choice of fluxes f and g there exists u0 ∈ BV ∩ L∞ such that
TV(u(·, 1)) =∞ if A = θg or B = θf .

Theorem 2.14. (Ghoshal [21]). Let u0 ∈ L∞(R) and u be a solution of (1). Let
t > 0, ε > 0, M > ε and

I(M) = {x : |x| < M},
I(R1(t)) = {x > 0 : x < R1(t)}, I(L1(t)) = {x < 0 : x > L1(t)}.

(i). Let f(θf ) 6= g(θg) and f ′′ ≥ α, g′′ ≥ α, for some α > 0, also assuming the
fact that Supp u0 ⊂ [−K,K], for some K > 0, then there exists a T0 > 0 such
that for all t > T0,

TV (u(· , t), I(M)) ≤ C(M, t). (31)

As a consequence we have, for all t > T0,

TV (u(· , t),R) ≤ C(t), (32)

where C(t), C(M, t) > 0 are some constants.
(ii). Let f(θf ) = g(θg) then for all t > 0,

TV (u(· , t), I(R1(t)) ∪ I(L1(t))) ≤ C(t). (33)

In addition if f ′′ ≥ α, g′′ ≥ α, for some α > 0, then for all t > 0,

TV (u(· , t), I(M)) ≤ C(M, t). (34)

As a consequence, if Supp u0 ⊂ [−K,K], for some K > 0, then for all t > 0,

TV (u(· , t),R) ≤ C(t). (35)

(iii). Let f(θf ) = g(θg) and u0 ∈ BV (R) then for all t > 0,

TV (u(· , t)) ≤ C(t)(TV (u0) + 1) + 4‖u0‖∞. (36)

(iv). Let A 6= θg and B 6= θf . If f ′′, g′′ ≥ α > 0, u0 ∈ L∞(R) then for all t > 0,

TV (u(· , t), I(ε) ∪ I(M, ε)) ≤ C1(ε) + C2(ε,M, t). (37)

As a consequence, if u0 ∈ BV (R) then for all t > 0,

TV (u(· , t)) ≤ C(ε, t)(TV (u0) + 1) + 4‖u0‖∞. (38)

Counter example (Ghoshal [21]): Let f(u) = (u−1)2−1, g(u) = u2. Then there
exists an initial data u0 ∈ BV and a sequence Tn, such that lim

n→∞
Tn =∞ and

TV (u(· , Tn)) =∞, for all n. (39)

3. Main results. In the following Theorems we have relaxed the assumptions of
uniform convexity of the fluxes made in [1, 21] and allowed u0 ∈ L∞. Let us denote
I(R(t)) = {x > 0 : x < R(t)}, I(L(t)) = {x < 0 : x > L(t)}.

Hypothesis on the fluxes f , g: Let the fluxes satisfy the following
H1. f, g be C2, strictly convex and of superlinear growth (see definition 2.7).
H2. Either f ′′ > α > 0, for some α or the zero of f ′ and f ′′ are the same, i.e., if
there exists p ∈ R such that f ′′(p) = 0, then f ′(p) = 0.
H3. Either g′′ > α > 0, for some α or the zero of g′ and g′′ are the same.

Theorem 3.1. Let u0 ∈ L∞. Let the fluxes satisfy H1, H2 and H3 as above.
Let the connection satisfies A 6= θg, B 6= θf , then

TV (u(· , t), I(R(t)) ∪ I(L(t))) ≤ C(t). (40)
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Theorem 3.2. Let u0 ∈ L∞. Let the fluxes satisfy H1, H2 and H3 as above. Let
the connection satisfies A = θg or B = θf . If f(θf ) 6= g(θg), f(θf ) 6= g(0), f(0) 6=
g(θg), f(0) 6= g(0) and Supp u0 ⊂ [−M,M ], for some M > 0, then there exists
T > 0 such that for all t > T,

TV (u(· , t), I(R(t)) ∪ I(L(t))) ≤ C(t). (41)

Proof. (Proof of Theorem 3.1). We consider the following three cases.
Case 1: R(t) > 0, L(t) = 0.
Case 2: R(t) = 0, L(t) < 0.
Case 3: R(t) > 0, L(t) < 0.

Case 1. Since the characteristics speed is positive, for x ∈ (0, R(t)), we have

u(x, t) =(f ′)−1

(
x

t− t+(x, t)

)
(42)

=λ+(t+(x, t)) (43)

=f−1
+ (max(−b′−(t+(x, t)), f(B))). (44)

Now b′− satisfies the following relations

b′−(t+(x, t)) =

 −g
(

(g′)−1

(
−y−(t+(x, t), u0, g)

t+(x, t)

))
if y−(t+(x, t), u0, g) < 0,

−g(θg) if y−(t+(x, t), u0, g) = 0,
(45)

where t 7→ y−(t, u0, g) is a non-increasing function.
Let us define ε(t) = sup{x > 0 : y−(t+(x, t), u0, g) < 0}. If ε(t) = 0, then from

(43), (44) and (45), we have u(x, t) = f−1
+ (max(g(θg), f(B))) = constant, for all

x ∈ (0, R(t)), hence in u ∈ BV (0, R(t)). Now we assume that ε(t) > 0. Due to the
monotonicity of y−, for all x ∈ (0, ε(t))

y−(t+(0+, t), u0, g) ≤ y−(t+(x, t), t), u0, g) ≤ y−(t+(ε(t), t), u0, g) < 0. (46)

First we prove the result in (0, ε(t)) then in (ε(t), R(t)). From the monotonicity of
y−, t+, we conclude

−y−(t+(0+, t), u0, g)

t+(ε(t), t)
≥ −y−(t+(x, t), u0, g)

t+(ε(t), t)

≥ −y−(t+(x, t), u0, g)

t+(x, t)

≥ −y−(t+(ε(t), t), u0, g)

t+(x, t)

≥ −y−(t+(ε(t), t), u0, g)

t
> 0.

(47)

From (47),
−y−(t+(x, t), u0, g)

t+(x, t)
is away from 0, hence

(g′)−1 is Lipschitz continuous in

(
−y−(t+(ε(t), t), u0, g)

t
,
−y−(t+(0+, t), u0, g)

t+(ε(t), t)

)
.

(48)
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Let us choose a partition {xi}Ni=1 in (0, ε(t)). In view of the fact that t+, y− are
monotone and using (46), (47) to obtain

N∑
i=1

∣∣∣∣−y−(t+(xi+1, t), u0, g)

t+(xi+1, t)
+
y−(t+(xi, t), u0, g)

t+(xi, t)

∣∣∣∣
≤

N∑
i=1

|y−(t+(xi+1, t), u0, g)||t+(xi, t)− t+(xi+1, t)|
|t+(xi, t)t+(xi+1, t)|

+

N∑
i=1

|t+(xi+1, t)||y−(t+(xi+1, t), u0, g)− y−(t+(xi, t), u0, g)|
|t+(xi, t)t+(xi+1, t)|

≤ |y−(t+(0+, t), u0, g)||t− t+(ε(t), t)|
|t+(ε(t), t)|2

+
t|y−(t+(0+, t), u0, g)|

|t+(ε(t), t)|2

≤ 2t|y−(t+(0+, t), u0, g)|
|t+(ε(t), t)|2

.

(49)

Since B 6= θf , we conclude f+(λ+(t+(x, t))) = (max(−b′−(t+(x, t)), f(B))) ≥ f(B)
> f(θf ), therefore

f−1
+ is Lipschitz continuous in the interval

(
f(B), sup

x∈(0,R(t))

−b′−(t+(x, t))
)
. (50)

Since f, g ∈ C2 using (42), (43), (44), (50), (49), we get

N∑
i=1

|u(xi+1, t)− u(xi, t)|

=

N∑
i=1

∣∣f−1
+ (max(−b′−(t+(xi+1, t)), f(B)))− f−1

+ (max(−b′−(t+(xi, t)), f(B)))
∣∣

≤ C(t)

N∑
i=1

∣∣max(−b′−(t+(xi+1, t)), f(B))−max(−b′−(t+(xi, t)), f(B))
∣∣

≤ C(t)

N∑
i=1

∣∣b′−(t+(xi+1, t))− b′−(t+(xi, t))
∣∣

= C(t)

N∑
i=1

∣∣∣∣−y−(t+(xi+1, t), u0, g)

t+(xi+1, t)
+
y−(t+(xi, t), u0, g)

t+(xi, t)

∣∣∣∣
≤ C(t)

2t|y−(t+(0+, t), u0, g)|
|t+(ε(t), t)|2

.

(51)

Hence u ∈ BV (0, ε(t)). Next, we prove the results in (ε(t), R(t)). Due to the
monotonicity of t+, for x ∈ (ε(t), R(t)), we have

t+(ε(t), t) ≥ t+(x, t) ≥ t+(R(t)−, t)
t− t+(ε(t), t) ≤ t− t+(x, t) ≤ t− t+(R(t)−, t) < t,

(52)

hence for some C > 0,

0 <
ε(t)

t
≤ ε(t)

t− t+(R(t)−, t)
≤ x

t− t+(x, t)
≤ R(t)

t− t+(x, t)
≤ R(t)

t− t+(ε(t), t)

≤ Ct

t− t+(ε(t), t)
.

(53)
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Whence from (53),
x

t− t+(x, t)
is away from 0, which allows

(f ′)−1 is Lipschitz continuous in

[
ε(t)

t
,

Ct

t− t+(ε(t), t)

]
(54)

and the Lipschitz constant depends on t. Let us choose a partition {xi}Ni=1 in
(ε(t), R(t)). Because of the monotonicity of t+, (52) and (53) we observe

N∑
i=1

∣∣∣∣ xi+1

t− t+(xi+1, t)
− xi
t− t+(xi, t)

∣∣∣∣
≤

N∑
i=1

t|xi+1 − xi|+ |xi+1t+(xi, t)− xit+(xi+1, t)|
(t− t+(xi+1, t))(t− t+(xi, t))

≤
N∑
i=1

t|xi+1 − xi|+ |xi+1t+(xi, t)− xit+(xi+1, t)|
(t− t+(ε(t), t))2

≤
N∑
i=1

t|xi+1 − xi|+ |xi+1||t+(xi, t)− t+(xi+1, t)|+ t+(xi+1, t)|xi+1 − xi|
(t− t+(ε(t), t))2

≤ 3R(t)t

(t− t+(ε(t), t))2

≤ 3Ct2

(t− t+(ε(t), t))2
.

(55)

(42), (54) and (55) yields

N∑
i=1

|u(xi+1, t)− u(xi, t)|

=

N∑
i=1

∣∣∣∣(f ′)−1

(
xi+1

t− t+(xi+1, t)

)
− (f ′)−1

(
xi

t− t+(xi, t)

)∣∣∣∣
≤

N∑
i=1

C(t)

∣∣∣∣ xi+1

t− t+(xi+1, t)
− xi
t− t+(xi, t)

∣∣∣∣
≤ 3CC(t)t2

(t− t+(ε(t), t))2
.

(56)

Hence for the Case 1, u(·, t) ∈ BV (0, R(t)).

Case 2 and Case 3. When L(t) < 0, one can prove the result exactly as R(t) > 0.
Therefore both the cases follows exactly like as Case 1. Hence the Theorem.

Proof. (Proof of Theorem 3.2). Let us assume that g(θg) > f(θf ). Denote 0 < δ1 =
g(θg)− f(θf ). We have to consider the following three cases.
Case 1: R(t) > 0, L(t) = 0.
Case 2: R(t) = 0, L(t) < 0.
Case 3: R(t) > 0, L(t) < 0.

Case 1. In this case,

u(x, t) = (f ′)−1

(
x

t− t+(x, t)

)
for x ∈ (0, R(t)). (57)

Let ε(t) > 0 be a small number such that ε(t) < R(t). First we prove the result
in (0, ε(t)) then in (ε(t), R(t)). Suppose there exist constants T0 > 0, C > 0 such
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that

|t+(x, t)| < C, for t > T0, x ∈ (0, R(t)). (58)

Since for t > T0, ε(t), t+(x, t) are bounded, hence from (57), (58) and the fact that
the characteristics speed is positive for x ∈ (0, R(t)) there exists a small δ2 > 0,
such that

u(x, t) ∈ [θf , θf + δ2], for t > T0, x ∈ (0, ε(t)). (59)

One can re-choose T0 large, δ2 > 0 small such that f(θf + δ2) < g(θg) and (59) still
holds. From (59), it is clear that for t > T0,

u(0+, t) ∈ [θf , θf + δ] and so f(u(0+, t)) ∈ [f(θf ), g(θg)) (60)

Therefore from (60), it is easy to see that R-H condition f(u(0+, t) = g(u(0−, t))
does not hold for t > T0, which is a contradiction. Hence (58) is false and so for
x ∈ (0, ε(t)),

lim
t→∞

t+(x, t) =∞. (61)

From the R-H condition and the explicit formulas we have

f(u(x, t)) = f(u(0+, t+(x, t))) = g(u(0−, t+(x, t))) (62)

= g

(
(g′)
−1
(
−y−(0−, t+(x, t))

t+(x, t)

))
(63)

= g(u0(y−(0−, t+(x, t)))). (64)

Now if for some x0 ∈ (0, ε(t)), y−(0−, t+(x, t)) < −M, then by the monotonicity
of y−, y−(0−, t+(x, t)) < −M for all x ∈ (0, x0). Since Supp u0 ⊂ [−M,M ] and (64),
we obtain u(x, t) = f−1g(0). Hence choosing ε(t) = x0, one has u(·, t) ∈ BV (0, ε(t)).

Let us assume the case when

y−(0−, t+(x, t)) ∈ [−M, 0] for all x ∈ (0, ε(t)). (65)

Using (61), (63) and (65), it is immediate that −y−(0−, t+(x, t))

t+(x, t)
→ 0 as t → ∞.

In view of the fact that the characteristic speed in positive in (0, R(t)), there exists
a small δ3 > 0 and a large T0 (re-choosing the previous one), such that for all
x ∈ (0, ε(t)), t > T0

g

(
(g′)
−1
(
−y−(0−, t+(x, t))

t+(x, t)

))
∈ [g(θg), g(θg) + δ3]. (66)

Thanks to g(θg) > f(θf ) and (66), we get

f−1 is Lipschitz continuous in [g(θg), g(θg) + δ3] (67)

and the Lipschitz constant depends on t. Since y+, t+ are monotone functions we
have the following relations

t+(ε(t), t) ≤ t+(x, t) < t, for all x ∈ (0, ε(t)) (68)

−M ≤ y−(0−, t+(x, t)) ≤ y−(0−, t+(ε(t), t)) ≤ 0, for all x ∈ (0, ε(t)) (69)

0 < −y−(0−, t+(ε(t), t))

t
< −y−(0−, t+(ε(t), t))

t+(x, t)
(70)

≤ −y−(0−, t+(x, t))

t+(x, t)
≤ −y−(0−, t+(x, t))

t+(ε(t), t)
≤ M

t+(ε(t), t)
, (71)

for all x ∈ (0, ε(t)).
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Therefore from (71), it is clear that for a fixed t > T0, −y−(0−, t+(x, t))

t+(x, t)
is away

from 0, hence

(g′)−1 is Lipschitz continuous in

(
−y−(0−, t+(ε(t), t))

t
,

M

t+(ε(t), t)

)
(72)

and the Lipschitz constant depends on t. Let us choose a partition {xi}Ni=1 in
(0, ε(t)). In view of the fact that t+, y− are monotone and using (68), (69), (71), to
obtain

N∑
i=1

∣∣∣∣−y−(0−, t+(xi+1, t))

t+(xi+1, t)
+
y−(0−, t+(xi, t))

t+(xi, t)

∣∣∣∣
≤

N∑
i=1

|y−(0−, t+(xi+1, t))||t+(xi, t)− t+(xi+1, t)|
|t+(xi, t)t+(xi+1, t)|

+

N∑
i=1

|t+(xi+1, t)||y−(0−, t+(xi+1, t))− y−(0−, t+(xi, t))|
|t+(xi, t)t+(xi+1, t)|

≤ M |t− t+(ε(t), t)|
|t+(ε(t), t)|2

+
Mt

|t+(ε(t), t)|2

≤ 2Mt

|t+(ε(t), t)|2

(73)

As a results of (62), (63), (67), (72) and (73), we get

N∑
i=1

|u(xi+1, t)− u(xi, t)|

=
N∑
i=1

∣∣∣f−1g
(

(g′)
−1
(
−y−(0−,t+(xi+1,t))

t+(xi+1,t)

))
− f−1g

(
(g′)
−1
(
−y−(0−,t+(xi,t))

t+(xi,t)

))∣∣∣
≤ C1(t)

N∑
i=1

∣∣∣g ((g′)
−1
(
−y−(0−,t+(xi+1,t))

t+(xi+1,t)

))
− g

(
(g′)
−1
(
−y−(0−,t+(xi,t))

t+(xi,t)

))∣∣∣
≤ C2C1(t)

N∑
i=1

∣∣∣(g′)−1
(
−y−(0−,t+(xi+1,t))

t+(xi+1,t)

)
− (g′)−1

(
−y−(0−,t+(xi,t))

t+(xi,t)

)∣∣∣
≤ C3(t)C2C1(t)

N∑
i=1

∣∣∣(−y−(0−,t+(xi+1,t))
t+(xi+1,t)

)
−
(
−y−(0−,t+(xi,t))

t+(xi,t)

)∣∣∣
≤ C3(t)C2C1(t) 2M |t−t+(ε(t),t)|

|t+(ε(t),t)|2 .

(74)
Hence u ∈ BV (0, ε(t)). Next, we prove the results in (ε(t), R(t)). Due to the
monotonicity of t+, for x ∈ (ε(t), R(t)), we have

t+(ε(t), t) ≥ t+(x, t) ≥ t+(R(t)−, t)
t− t+(ε(t), t) ≤ t− t+(x, t) ≤ t− t+(R(t)−, t) < t.

(75)

Whence

0 <
ε(t)

t
<

x

t− t+(x, t)
<

C4t

t− t+(ε(t), t)
, (76)

for some constant C4 > 0. For a fix t > T0, it is clear from (76) that
x

t− t+(x, t)
is

away from 0, which allows

(f ′)−1 is Lipschitz continuous in

[
ε(t)

t
,

C4t

t− t+(ε(t), t)

]
(77)
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and the Lipschitz constant depends on t. Let us choose a partition {xi}Ni=1 in
(ε(t), R(t)). Because of the monotonicity of t+, (75) and (76) we observe

N∑
i=1

∣∣∣∣ xi+1

t− t+(xi+1, t)
− xi
t− t+(xi, t)

∣∣∣∣
≤

N∑
i=1

t|xi+1 − xi|+ |xi+1t+(xi, t)− xit+(xi+1, t)|
(t− t+(ε(t), t))2

≤
N∑
i=1

t|xi+1 − xi|+ |xi+1||t+(xi, t)− t+(xi+1, t)|+ t+(xi+1, t)|xi+1 − xi|
(t− t+(ε(t), t))2

≤ 3R(t)t

(t− t+(ε(t), t))2

≤ 3C4t
2

(t− t+(ε(t), t))2

(78)

(57), (77) and (78) yields

N∑
i=1

|u(xi+1, t)− u(xi, t)|

=

N∑
i=1

∣∣∣∣(f ′)−1

(
xi+1

t− t+(xi+1, t)

)
− (f ′)−1

(
xi

t− t+(xi, t)

)∣∣∣∣
≤

N∑
i=1

C5(t)

∣∣∣∣ xi+1

t− t+(xi+1, t)
− xi
t− t+(xi, t)

∣∣∣∣
≤ 3CC5(t)t2

(t− t+(ε(t), t))2
.

(79)

Hence for the Case 1, u(·, t) ∈ BV (0, R(t)).

Case 2. For x ∈ (L(t), 0), we have the following

u(x, t) = (g′)
−1
(

x

t− t−(x, t)

)
(80)

= u(0−, t−(x, t)) (81)

= g−1f

(
(f ′)−1

(
−y+(0+, t−(x, t))

t−(x, t)

))
(82)

= g−1f ((u0(y+(x, t))) . (83)

We consider the following four subcases.

Subcase I. For all x ∈ (L(t), 0), and for all t > T0, y+(0+, t−(x, t)) ≤M , t−(x, t) <
C, for some constant C > 0.

Subcase II. For some x0 ∈ (L(t), 0), y+(0+, t−(x0, t)) > M and for all t > T0,for
all x ∈ (L(t), 0), t−(x, t) < C, for some constant C > 0.

Subcase III. For some x0 ∈ (L(t), 0), for all t > T0, y+(0+, t−(x0, t)) > M and
for x ∈ (L(t), 0), lim

t→∞
t−(0−, t) =∞

Subcase IV. For all x ∈ (L(t), 0), for all t > T0, y+(0+, t−(x, t)) ≤ M and
lim
t→∞

t−(0−, t) =∞.
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Subcase I. Since t−(x, t) < C, whence for t > T0, we obtain

u(0−, t) = lim
x→0−

u(x, t) = lim
x→0−

(g′)
−1
(

x

t− t−(x, t)

)
= (g′)

−1
(0) = θg. (84)

In this Case 2, R(t) = 0. For x > 0, we have u(x, t) = (f ′)
−1
(
x− y+(x, t)

t

)
.

If y+(0+, t) > M then due to the compact support of u0, and monotonicity of
y+,

u(0+, t) = lim
x→0+

u(x, t) = lim
x→0+

0 = 0. (85)

As a result of R-H condition, (84) and (85), we obtain f(0) = g(θg), which contra-
dicts the assumption f(0) 6= g(θg).

If y+(0+, t) < M , then there exists a large T0 > 0 and a small δ > 0 such that
for x ∈ (0, ε(t))

u(0+, t) ∈ [θf − δ, θf ]. (86)

Since δ > 0 is small and g(θg) > f(θf ), (86) violets the R-H condition f(u(0+, t)) =
g(u(0−, t)). Therefore the Subcase I, can never occur.

SubCase II. Since for some x0 ∈ (L(t), 0), y+(0+, t−(x0, t)) > M . From the
monotonicity of y+ and Supp u0 ⊂ [−M,M ], we deduce u(x, t) = g−1f(0), for
x ∈ (x0, 0), therefore u ∈ BV (x0, 0). Then one can repeat the same argument as in
(79) to prove u ∈ BV (L(t), x0).

Subcase III. Follows as in Subcase II.

Subcase IV. Since y+(0+, t−(x, t)) ≤M , for x ∈ (L(t), 0), therefore from (82) and
similarly as in (86), it contradicts the R-H condition. Therefore the Subcase IV,
can never occur.

This proves Case 2.

Case 3. This case is not allowed due to the interface entropy condition (12).
Similarly one can repeat the arguments above for the case when f(θf ) > g(θg).
Hence the Theorem.
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