A coupling between a non--linear 1D compressible--incompressible limit and the 1D $p$--system in the non smooth case

  • Received: 01 April 2015
  • Primary: 35L65, 35Q35; Secondary: 35Q31.

  • We consider two compressible immiscible fluids in one space dimension and in the isentropic approximation. The first fluid is surrounded and in contact with the second one. As the sound speed of the first fluid diverges to infinity, we present the proof of rigorous convergence for the fully non--linear compressible to incompressible limit of the coupled dynamics of the two fluids. A linear example is considered in detail, where fully explicit computations are possible.

    Citation: Rinaldo M. Colombo, Graziano Guerra. A coupling between a non--linear 1D compressible--incompressible limit and the 1D $p$--system in the non smooth case[J]. Networks and Heterogeneous Media, 2016, 11(2): 313-330. doi: 10.3934/nhm.2016.11.313

    Related Papers:

  • We consider two compressible immiscible fluids in one space dimension and in the isentropic approximation. The first fluid is surrounded and in contact with the second one. As the sound speed of the first fluid diverges to infinity, we present the proof of rigorous convergence for the fully non--linear compressible to incompressible limit of the coupled dynamics of the two fluids. A linear example is considered in detail, where fully explicit computations are possible.


    加载中
    [1] D. Amadori and G. Guerra, Global BV solutions and relaxation limit for a system of conservation laws, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 1-26. doi: 10.1017/S0308210500000767
    [2] R. Borsche, R. M. Colombo and M. Garavello, Mixed systems: ODEs - balance laws, J. Differential Equations, 252 (2012), 2311-2338. doi: 10.1016/j.jde.2011.08.051
    [3] A. Bressan, Hyperbolic Systems of Conservation Laws, vol. 20 of Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2000, The one-dimensional Cauchy problem.
    [4] R. M. Colombo and G. Guerra, Bv solutions to 1d isentropic euler equations in the zero mach number limit, J. Hyperbolic Differ. Equ., 2016, to appear.
    [5] R. M. Colombo, G. Guerra and V. Schleper, The compressible to incompressible limit of one dimensional euler equations: The non smooth case, Arch. Ration. Mech. Anal., 219 (2016), 701-718. doi: 10.1007/s00205-015-0904-8
    [6] R. M. Colombo and V. Schleper, Two-phase flows: Non-smooth well posedness and the compressible to incompressible limit, Nonlinear Anal. Real World Appl., 13 (2012), 2195-2213. doi: 10.1016/j.nonrwa.2012.01.015
    [7] S. Klainerman and A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Comm. Pure Appl. Math., 34 (1981), 481-524. doi: 10.1002/cpa.3160340405
    [8] S. Klainerman and A. Majda, Compressible and incompressible fluids, Comm. Pure Appl. Math., 35 (1982), 629-651. doi: 10.1002/cpa.3160350503
    [9] G. Métivier and S. Schochet, The incompressible limit of the non-isentropic Euler equations, Arch. Ration. Mech. Anal., 158 (2001), 61-90. doi: 10.1007/PL00004241
    [10] S. Schochet, The compressible Euler equations in a bounded domain: Existence of solutions and the incompressible limit, Comm. Math. Phys., 104 (1986), 49-75. doi: 10.1007/BF01210792
    [11] S. Schochet, The mathematical theory of low Mach number flows, M2AN Math. Model. Numer. Anal., 39 (2005), 441-458. doi: 10.1051/m2an:2005017
    [12] J. Xu and W.-A. Yong, A note on incompressible limit for compressible Euler equations, Math. Methods Appl. Sci., 34 (2011), 831-838. doi: 10.1002/mma.1405
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4036) PDF downloads(132) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog