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Abstract. We consider two compressible immiscible fluids in one space di-
mension and in the isentropic approximation. The first fluid is surrounded and

in contact with the second one. As the sound speed of the first fluid diverges

to infinity, we present the proof of rigorous convergence for the fully non–linear
compressible to incompressible limit of the coupled dynamics of the two fluids.

A linear example is considered in detail, where fully explicit computations are

possible.

1. Introduction. The compressible to incompressible limit is widely studied in the
literature, see for instance the well known results [7, 8, 9, 10], the more recent [12],
the review [11] and the references therein. The usual setting considers regular
solutions, whose existence is proved only for a finite time, to the compressible
equations in 2 or 3 space dimensions. As the Mach number vanishes, these solutions
are proved to converge to the solutions of the incompressible Euler equations.

Consider for instance the isentropic Euler equations in the three dimensional
space: {

∂tρ+∇ · (ρu) = 0

∂t (ρu) +∇ · (ρu⊗ u) +∇P (ρ) = 0 ,

P (ρ) > 0 , P
′
(ρ) > 0,

(t, x) ∈ [0,+∞[× R3.

For smooth solutions, this system is equivalent to{
∂tρ+ u · ∇ρ+ ρ∇ · u = 0

∂tu+ u · ∇u+ 1
ρ ∇P (ρ) = 0 .

The Mach number is the ratio between the speed of the particles and the sound
speed and it can be introduced into the equations in at least two different ways [11].

First, following [9], since the incompressible limit can be understood as the limit
as the Mach number tends to zero, one begins by rescaling the fluid velocity u→ κu
where κ is a small parameter that eventually converges to zero. In order to capture
the motion of the particles traveling with a small speed of order of κ one needs a

2010 Mathematics Subject Classification. Primary: 35L65, 35Q35; Secondary: 35Q31.
Key words and phrases. Incompressible limit, compressible Euler equations, hyperbolic con-

servation laws.

313

http://dx.doi.org/10.3934/nhm.2016.11.313


314 RINALDO M. COLOMBO AND GRAZIANO GUERRA

space–time rescaling, x
t → κ x

t which allows to obtain the system, in the rescaled
variables, ∂tρ+ u · ∇ρ+ ρ∇ · u = 0

∂tu+ u · ∇u+ 1
ρ

1
κ2∇P (ρ) = 0 .

Alternatively, the same system is considered in [8], but motivated by the following
approach, see [8, 10]. Consider fluids having equations of states Pκ(ρ), parametrized

by κ, such that the speed of sound
√
P ′κ(ρ)→ +∞ as κ→ 0:∂tρ+ u · ∇ρ+ ρ∇ · u = 0

∂tu+ u · ∇u+ 1
ρ∇Pκ (ρ) = 0.

The two approaches coincide if the one parameter family of pressure laws Pκ (ρ)
satisfies

P
′
κ (ρ) =

1

κ2
P
′
(ρ) , (1)

where P (ρ) is a given fixed pressure law.
In the incompressible limit, the density is constant in time and space. Therefore,

it is convenient to use the pressure instead of the density as unknown function.

Since P
′
κ (ρ) > 0, we can take the inverse function Rκ (p) =

(
Pκ
)−1

(p) and rewrite
the system in the unknown p:

R′
κ(p)

Rκ(p) [∂tp+ u · ∇p] +∇ · u = 0

∂tu+ u · ∇u+ 1
Rκ(p)∇p = 0 .

As κ → 0, P ′κ (ρ) → +∞, therefore R′κ (p) → 0, and Rκ (p) → ρ̄, where ρ̄ is the
constant density at the incompressible limit. Formally, we get the incompressible
equations ∇ · u = 0

∂tu+ u · ∇u+ 1
ρ̄∇p = 0 .

In [7, 8] this limit is proved to hold for smooth solutions and small times. The heart
of the matter is finding energy estimates independent of the small parameter κ.

Here, we want to recover similar convergence results, in a 1D setting, but within
the framework of weak entropy solutions, proved to exist for all times. In particular,
convergence is proved globally in time and solutions are assumed merely BV in the
space variable.

2. Two immiscible fluids. In a 1D setting, an incompressible fluid behaves like
a solid since its speed is constant in space. Therefore, we consider two compressible
immiscible fluids and let one of the two become incompressible. Hence, we deal with
a free boundary problem, with the boundary between the fluids converging to a solid
wall. Below, we consider a volume of a compressible inviscid fluid, say the liquid,
that fills the segment [a(t), b(t)] and which is surrounded by another compressible
fluid, say the gas, filling the rest of the real line (see Figure 1). We assume that
the gas follows a fixed pressure law P (ρ), while for the liquid we assume a one

parameter family of pressure laws Pκ (ρ) such that P
′
κ (ρ) → +∞ as κ → 0. The

total mass of the liquid is fixed:
∫ b(t)
a(t)

ρ (t, x) dx = m. Since the two fluids are
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x
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Figure 1. The two immiscible fluids: the liquid is in the middle,
while the gas is on the two sides.

immiscible, Lagrangian coordinates are a natural choice:

z (t, x) =

∫ x

a(t)

ρ (t, ξ) dξ, τ =
1

ρ
, P (τ) = P

(
1

τ

)
, (2)

with τ being the specific volume. In these coordinates, the liquid occupies the fixed
region [0,m] (see Figure 2).

P (τ) P (τ)Pκ(τ)

0 m

z

Figure 2. In Lagrangian coordinates, the boundaries separating
the two fluids are fixed.

On P (τ) and Pκ (τ) we assume the usual hypotheses and the incompressible
limit assumption:

P (τ) , Pκ (τ) > 0; P ′ (τ) , P ′κ (τ) < 0; P ′′ (τ) , P ′′κ (τ) > 0; P ′κ (τ)
κ→0−−−→ −∞ . (3)

In the isentropic approximation, the dynamics of the two fluids is described by the
p-system {

τt − vz = 0

vt + Pκ (z, τ)z = 0,
Pκ (z, τ) =

{
Pκ (τ) for z ∈ ]0,m[

P (τ) for z 6∈ ]0,m[ ,
(4)

v(t, z) being the speed of the fluids at the time t and at the Lagrangian coordinate
z.

The Rankine–Hugoniot conditions for (4) applied at z = 0 and z = m imply the
following interface conditions for a.e. t ≥ 0:{

v (t, 0−) = v (t, 0+)

P (τ (t, 0−)) = Pκ (τ (t, 0+)) ,

{
v (t,m−) = v (t,m+)

Pκ (τ (t,m−)) = P (τ (t,m+)) .

Remark that the pressure and the velocity have to be continuous across the inter-
faces. Hence, the pressure is a natural choice for the unknown, rather than the
specific volume. Therefore, we introduce the inverse of the pressure laws:

T (p) = P−1 (p) , Tκ(p) = P−1
κ (p) , T ′κ (p)

κ→0−−−→ 0 (5)

and rewrite system (4) with (p, v) as unknowns{
Tκ (z, p)t − vz = 0

vt + pz = 0 ,
Tκ (z, p) =

{
Tκ (p) for z ∈ ]0,m[

T (p) for z 6∈ ]0,m[ .
(6)
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The conditions at the interfaces become continuity requirements on the unknown
functions:{

v (t, 0−) = v (t, 0+)

p (t, 0−) = p (t, 0+)

{
v (t,m−) = v (t,m+)

p (t,m−) = p (t,m+)
for a.e. t ≥ 0 . (7)

This choice significantly simplifies the study of the Riemann problem at the inter-
faces.

Particular care is due to select the one parameter family of pressure laws, the
main constraint being the validity of (1) for all κ. Indeed, (1) ensures that we recover
the same equations obtained through scaling and studied in [7, 8]. The family
Pκ (ρ) = 1

κ2P (ρ) chosen in [7] diverges to +∞ as κ → 0. This is not a problem if
one studies only one fluid as in [7] because the pressure enters the equations only
through its derivative. In our case, the value of the pressure is very relevant, since
it enters the interface conditions. Therefore, we cannot allow the pressure to grow
nonphysically to +∞. So we fix the density ρ̄ of the incompressible fluid in the limit
and impose that the pressure at that particular density ρ̄ is a constant, independent
of κ:

Pκ(ρ̄) = p̄, for all κ ∈ [0, 1[ . (8)

For simplicity, we choose both for the gas and for the liquid the same pressure law
P = P (ρ). For instance, an admissible choice is the usual γ–law P (ρ) = k ργ with
γ ≥ 1, γ = 1 corresponding to the case of an isothermal gas.

Conditions (1) and (8) imply the following expression for Pκ (ρ), with P (ρ̄) = p̄:

Pκ (ρ) = p̄+
1

κ2

[
P (ρ)− p̄

]
,

which, with the substitution ρ = 1
τ , becomes: Pκ (τ) = p̄ + 1

κ2 [P (τ)− p̄] . Finally,

in term of the inverse functions (5), Tκ = P−1
κ , T = P−1:

Tκ (p) = T
(
p̄+ κ2 (p− p̄)

)
, lim

κ→0
Tκ (p) = T (p̄) =

1

ρ̄
=̇τ̄ . (9)

In [5], the following linear approximation of (9) is used:

T
(
p̄+ κ2 (p− p̄)

)
≈ T (p̄) + κ2T ′ (p̄) (p− p̄) = τ̄ + κ2T ′ (p̄) (p− p̄) , (10)

so that the liquid phase turns out to be governed by a linear system. This approx-
imation makes all the estimates simpler. Here we follow [4] and study the Cauchy
problem for the fully non linear system:{

Tκ (z, p)t − vz = 0

vt + pz = 0,
Tκ (z, p) =

{
T
(
p̄+ κ2 (p− p̄)

)
for z ∈ ]0,m[

T (p) for z 6∈ ]0,m[
(11)

where T = T (p) is the inverse function of a pressure law, see (5), and satisfy (3).

3. Existence results for small fixed κ > 0. Colombo and Schleper in [6, Theo-
rem 2.5] proved that for any fixed small κ > 0, there exists a Lipschitz semigroup of
solutions to (11), but their estimates are not uniform with respect to κ. Therefore,
as κ → 0 the Lipschitz constant of the semigroup could blow up and its domain
could shrink and become trivial. Here, we provide a full set of new estimates either
uniform in κ, or with the dependence on κ made explicit. To this aim, we substan-
tially improve the wave front tracking construction in [3, 6], devising and exploiting
a different parametrization of the Lax curves. Hence, throughout the following, by
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O(1) we denote a quantity that depends only on the pressure law T in (11) and on
uniform bounds on the initial data.

3.1. Lax curves. We collect below a few facts about the p-system in Lagrangian
coordinates. In the gas phase, the Lax curves in the (p, v) plane, expressed with
the velocity as a function of the pressure, are given by

V1 (p; po, vo) =

{
vo −

∫ p
po

√
−T ′(ξ) dξ for p ≤ po ,

vo −
√

(T (p)− T (po)) (po − p) for p ≥ po ,

V2 (p; po, vo) =

{
vo −

√
(T (p)− T (po)) (po − p) for p ≤ po ,

vo +
∫ p
po

√
−T ′(ξ) dξ for p ≥ po ,

with the characteristics speeds given by

λ1(p) = −
√
−P ′ (T (p)) = −

√
− 1

T ′(p)
, λ2(p) =

√
− 1

T ′(p)
.

similarly, in the liquid phase we have:

V1,κ (p; po, vo) =

{
vo −

∫ p
po

√
−T ′κ(ξ) dξ for p ≤ po ,

vo −
√

(Tκ(p)− Tκ(po)) (po − p) for p ≥ po ,

V2,κ (p; po, vo) =

{
vo −

√
(Tκ(p)− Tκ(po)) (po − p) for p ≤ po ,

vo +
∫ p
po

√
−T ′κ(ξ) dξ for p ≥ po ,

(12)

λ1,κ(p) = −

√
− 1

T ′κ(p)

κ→0−−−→ −∞ , λ2,κ(p) =

√
− 1

T ′κ(p)

κ→0−−−→ +∞ .

In Figure 3, Lax curves in the (p, v) plane for decreasing values of κ are drawn. As
κ vanishes, the Lax curves tend to straight lines and their slopes converge to zero:

d

dp
V1,κ (p; po, vo)

∣∣∣
p=po

= −
√
−T ′κ(po)

κ→0−−−→ 0 ,

d

dp
V2,κ (p; po, vo)

∣∣∣
p=po

=
√
−T ′κ(po)

κ→0−−−→ 0 .

Observe that Tκ(p)
κ→0−−−→ τ̄ , where τ̄ is the constant specific volume in the incom-

pressible limit, see (9). Since at the interfaces the pressure and the velocity are
continuous, it turns out that a useful way to measure the waves’ strengths is the
pressure difference. Therefore, we systematically use below the parametrization
σi → Vi(po + σi; po, vo) and σi → Vi,κ(po + σi; po, vo) of the i–Lax curve. The size
of the wave, σi, is the pressure difference. We call strength of the wave, |σi|, the
absolute value of the size σi. Differently from the usual habit [3], we have that

i = 1 i = 2
σ1 < 0 ⇒ rarefaction σ2 < 0 ⇒ shock
σ1 > 0 ⇒ shock σ2 > 0 ⇒ rarefaction
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p

Rκ1 Rκ2
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Rκ1 Rκ2

Sκ2 Sκ1
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Sκ2
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p

Rκ1 Rκ2

Sκ2 Sκ1

Figure 3. Lax curves (12) in the (p, v) plane for a non linear
pressure law (9). As κ decreases, the Lax curves tend to horizontal
straight lines.

3.2. Wave front tracking. The existence of solutions is shown through a wave
front tracking algorithm [3, Chapter 7]: fix ε > 0 and approximate the initial datum
uo = (po, vo) by a sequence uεo of piecewise constant initial data with a finite number
of discontinuities such that{

uεo(z) = uo(0+) for all z ∈ [−2ε2, 2ε2] ,

uεo(z) = uo(m−) for all z ∈ [m− 2ε2,m+ 2ε2] ,

‖uεo − uo‖L1 ≤ ε , TV (pεo) ≤ TV (po) ,

TV (vεo,R\]0,m[) ≤ TV (vo,R\]0,m[) , TV (vεo, ]0,m[) ≤ TV (vo, ]0,m[) .

At each point of jump in the approximate initial datum, we solve the corresponding
Riemann problem. As usual, see [3, Chapter 4], we approximate each rarefaction
wave by a rarefaction fan consisting of ε-wavelets, each traveling with the character-
istic speed of the state to its left. On the other hand, each shock wave is assigned
its exact Rankine-Hugoniot speed. Similarly to what happens in the usual case,
all the above Riemann problems have approximate solutions as long as TV(uo) is
sufficiently small. We introduce two strips around the two interfaces z = 0 and
z = m, where all 1-waves have speed −1 and all 2-waves have speed 1:

I−ε = [−ε2, ε2]× R+ and I+
ε = [m− ε2,m+ ε2]× R+ .

This, together with [1, Lemma 2.5], allows us to avoid the introduction of non-
physical waves, significantly simplifying the whole procedure. Hence, assign to all
1-waves entering I−ε ∪ I+

ε speed −1, while all 2-waves entering I−ε ∪ I+
ε are given

speed +1, see Figure 4. Remark that the actual values attained by the approximate
solution are not changed, only the wave speeds are modified. When exiting these
strips, every wave is given back its correct speed. By this trick, no interaction
among waves of the same family may take place in either of the two strips. This
construction can be extended up to the first time t1 at which two waves interact, or a
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I−ε I+
ε

0 m

Liquid phase

z

I−ε I+
ε

0 m

Liquid phase

z

Figure 4. Modification to the usual wave front tracking algo-
rithm: waves in the strips I−ε and I+

ε are assign speed 1, if be-
longing to the first family, and −1, if of the second family.

wave hit one of the interfaces. At time t1, the so constructed approximate solutions
are piecewise constant with a finite number of discontinuities. Any such interaction
gives rise to a new Riemann problem solved as at time t = 0 if the interaction is
in the interior of the two phases or as described in the following Lemma, proved
in [4], whenever the interaction is along the left interface. A similar Lemma holds
for interactions along the right interface.

Lemma 3.1. Fix a state p̄o > 0. There exits positive δ̄ such that for all κ ∈ ]0, 1]
and for any couple of states (pl, vl), (pr, vr) with

∣∣pl − p̄o∣∣ + |pr − p̄o| < δ̄ and∣∣vr − vl∣∣ < δ̄, there exists a unique state (pm, vm) satisfying

V1(pm; pl, vl) = vm and V2,κ(pr; pm, vm) = vr .

Moreover, |vm − vr| = O(1) κ δ̄.

Any rarefaction wave, once arisen, is not further split even if its strength exceeds
the threshold ε after subsequent interactions, with other waves or with the phase
boundaries. The new rarefaction waves that may arise at the interfaces are split, if
their strength exceeds ε, when they exit the strips I±ε , since inside the strips they
all travel with the same speed. We can thus iterate the previous construction at
any subsequent interaction, provided suitable upper bounds on the total variation
of the approximate solutions are available. As it is usual in this context, see [3,
Chapter 7], we may assume that no more than 2 waves interact at any interaction
point. A uniform bound on the total variation is obtained through a Glimm func-
tional, as described in the following paragraph. Then, a bound on the total number
of interaction points can be found through [1, Lemma 2.5], see [4] for details. Here,
the strips I±ε play a key role.

Specific to the present construction is our choice to measure waves’ sizes through
the pressure variation σ between the two states on the sides of a wave.

3.3. A Glimm functional. The necessary uniform bounds on the total variation
of the approximate solutions are obtained following the classical techniques based on
a Glimm functional. If xα(t), α = 1, . . . , N are the locations of the discontinuities
in the wave front tracking approximate solution at time t and σα(t) is the size of the
corresponding waves, we introduce, for any time t at which there are no interactions,
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the potentials

VGin =
∑
α∈Gin

|σα| VGout =
∑

α∈Gout

|σα| VL =
∑
α∈L

|σα|

QG =
∑

(α,β)∈AG

|σα σβ | QL =
∑

(α,β)∈AL

|σα σβ |

Υ = Kin VGin + VGout +KL VL +HG QG + κ2HLQL ,

(13)

where Kin,KL, HG and HL are constants independent of κ to be precisely defined
below. Above, we denoted
Gin 2-waves supported in ]−∞, 0[ and 1-waves supported in ]m,+∞[.
Gout 1-waves supported in ]−∞, 0[ and 2-waves supported in ]m,+∞[.
L all waves supported in the liquid phase ]0,m[.
AG pairs of approaching waves supported in the gas phase.
AL pairs of approaching waves supported in the liquid phase.

Here, we define as approaching two waves both supported in the same phase ]−∞, 0[,
[0,m] or ]m,+∞[, either of the same family and when one of the two is a shock, or
of different families with the one of the first family on the right. In [4], the following
Lemma is proved.

Lemma 3.2. There exist weights Kin,KL, HG and HL and a positive δ̄, all in-
dependent of κ ∈ ]0, 1[, such that for all piecewise constant initial data uo with
Υ(0+) < δ̄, the function t → Υ (t) is non increasing. Moreover, calling σα, σβ the
sizes of two waves interacting at a point (t̄, z̄), with σα coming from the left, the
following estimates hold:

z̄ ∈ Gin ∪ Gout ∆Υ(t̄) ≤ −|σα σβ |
z̄ = 0 ∆Υ(t̄) ≤ −|σα| − κ |σβ |
z̄ ∈ L ∆Υ(t̄) ≤ −κ2 |σa σβ |
z̄ = m ∆Υ(t̄) ≤ −κ |σα| − |σβ | .

(14)

Here, we give the main ideas in the proof of Lemma 3.2 and refer to [4] for the
technical details.

First, we consider a wave hitting the interface from the liquid (see Figure 5, left).
Since Rκ2 and Sκ1 have slopes of order of κ, and since we measure the waves’ sizes
through the pressure difference, we have (see Figure 5, right) for a suitable c > 0,∣∣σ+

1

∣∣ ≤ O(1) κ
∣∣σ−1 ∣∣ and

∣∣σ+
2

∣∣ ≤ (1− c κ)
∣∣σ−1 ∣∣ , (15)

uniformly in κ. By (15),

∆VL ≤ −c κ
∣∣σ−1 ∣∣ , ∆VGout ≤ O(1)κ

∣∣σ−1 ∣∣ , ∆VGin = 0

∆QG ≤ O(1)κδ
∣∣σ−1 ∣∣ , ∆QL ≤ δ

∣∣σ−1 ∣∣ ,
where δ is an upper bound on Υ. Therefore, if we choose KL sufficiently large,
we can compensate the increase in the other terms, provided δ is sufficiently small
(see [4] for details). Observe that, due to (15), all the quantities that increase along
this kind of interaction, increase by a quantity of order κ

∣∣σ−1 ∣∣ (thanks also to the

coefficient κ2 in front of the potential QL). This is a crucial point in our estimates
since we eventually let κ tend to zero.

Consider now the case of a wave hitting the interface from the gas (see Figure 6).
Since the difference in the pressure along the wave Sκ2 is bounded by a constant
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σ−1

σ+
2

σ+
1

Sκ1

S1

Rκ2

Sκ1 S1

Rκ2v

p

(p1, v1)

(p0, v0)

(p0, v0)(p0, v0)

(p2, v2)

(p2, v2) (p2, v2)

(p1, v1)

LiquidGas

Figure 5. A shock wave hits the interface from the liquid phase.
Left, in the (t, z) plane and, right, the corresponding Lax curves in
the (p, v) plane.

uniform in κ, depending only on
∣∣σ−2 ∣∣ and the slopes of the curves S1 and S2, the

uniform estimate ∣∣σ+
1

∣∣ ≤ ∣∣σ+
2

∣∣ ≤ O(1)
∣∣σ−2 ∣∣ (16)

holds. By (16),

∆VL ≤ O(1)
∣∣σ−2 ∣∣ , ∆VGout ≤ O(1)

∣∣σ−2 ∣∣ , ∆VGin ≤ −
∣∣σ−2 ∣∣

∆QG ≤ O(1) δ
∣∣σ−2 ∣∣ , ∆QL ≤ O(1) δ

∣∣σ−2 ∣∣ ,
If we choose a suitably large constant Kin, we can use the decrease in VGin to
compensate the increase in the other terms, provided δ is sufficiently small (see [4]
for details).

σ−2

σ+
2

σ+
1

S2

Sκ2

S1

Sκ2
S2 S1

v

p
(p1, v1) (p1, v1)

(p0, v0)

(p0, v0)

(p1, v1)

(p2, v2) (p2, v2)

(p2, v2)

LiquidGas

Figure 6. A shock wave hits the interface from the gas



322 RINALDO M. COLOMBO AND GRAZIANO GUERRA

When two waves interacts in the gas (see Figure 7) one has the usual interaction
estimates:∣∣σ+

1 − σ
−
1

∣∣+
∣∣σ+

2 − σ
−
2

∣∣ ≤ O(1)
∣∣σ−1 σ−2 ∣∣ (Figure 7, left),∣∣σ+

1

∣∣+
∣∣σ+

2 − (σ′ + σ′′)
∣∣ ≤ O(1) |σ′σ′′| (Figure 7, middle),∣∣σ+

1 − (σ′ + σ′′)
∣∣+
∣∣σ+

2

∣∣ ≤ O(1) |σ′σ′′| (Figure 7, right),
(17)

Therefore, as usual [3], choosing HG sufficiently large we can compensate the in-

σ−2 σ−1

σ+
2σ+

1

(po, vo)

σ′ σ′′

σ+
2σ+

1

(po, vo)

σ′ σ′′

σ+
2σ+

1

(po, vo)

Figure 7. Left, an interaction between waves of different families.
Middle, an interaction between waves of the second family. Right,
an interaction between waves of the first family.

crease in the linear potential VG .
Finally, when two waves interacts in the liquid (see Figure 7), in [4] the following

refined interaction estimates are proved:∣∣σ+
1 − σ

−
1

∣∣+
∣∣σ+

2 − σ
−
2

∣∣ ≤ O(1)κ2
∣∣σ−1 σ−2 ∣∣ (Figure 7, left),∣∣σ+

1

∣∣+
∣∣σ+

2 − (σ′ + σ′′)
∣∣ ≤ O(1)κ2|σ′σ′′| (Figure 7, middle),∣∣σ+

1 − (σ′ + σ′′)
∣∣+
∣∣σ+

2

∣∣ ≤ O(1)κ2|σ′σ′′| (Figure 7, right).
(18)

As the systems tends to be incompressible, i.e., κ → 0, the system also gets more
and more similar to a linear one. This heuristically justifies the presence of κ2

in (18). Therefore, at these interactions, the small term κ2HLQL in Υ is sufficient
to compensate the increase in KLVL, provided HL is sufficiently large.

3.4. Initial data. To ensure that the value of the functional at t = 0+ is sufficiently
small in order that all the above interaction estimates hold true, we need some
conditions on the total variation of the initial data. The standard estimates on the
solution of the Riemann problem (see [3]) imply that, in the gas, it is sufficient that
the initial data have sufficiently small total variation. On the other hand, in the
liquid, the estimates on the Riemann problem depend on the small parameter κ, as
shown in Figure 8. Indeed, in the liquid region, the Lax curves have a slope of the
order of κ, hence a jump ∆v in the initial velocity, generates waves of the order of
1
κ . With reference to Figure 8, we have |σ1| + |σ2| = O(1)

[
|pr − pl|+ 1

κ |vr − vl|
]
.

This estimate suggests the introduction of the weighted total variation

WTVκ (p, v) = TV (p,R) + TV (v,R \ ]0,m[) +
1

κ
TV (v, ]0,m[) .

It is not difficult to see [4] that, if the initial piecewise constant approximate data
uεo satisfies WTVκ (uεo) ≤ δ, then Υ(0+) ≤ O(1) δ. Hence for δ sufficiently small,
the wave front tracking procedure defines an approximate solution for all times.
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z

t

(pl, vl) (pr, vr)

(pm, vm)
(pm, vm)

v

σ2σ1

σ2σ1

Sε1

Sε2

p

(pr, vr)

(pl, vl)

Figure 8. Riemann problem in the liquid. Left, in the (t, z) plane
and, right, in the (p, v) plane.

The following theorem is proved in [4]. Observe that, in the liquid region, waves
travel with a speed of the order of 1

κ .

Theorem 3.3. Given a positive constant c > 0, there exist δ,∆, L > 0 independent
of κ such that if WTVκ (pκo , v

κ
o ) < δ and pκo ≥ c hold, then the wave front tracking

approximate solution uκ,ε to the Cauchy problem for (11) with uκo = (pκo , v
κ
o ) as

initial data can be constructed for all times t ≥ 0. Moreover, if we recover the
specific volume as τκ,ε (t, z) = Tκ (z, pκ,ε (t, z)), the following estimates hold:

For any t, t1, t2 ≥ 0

WTVκ ((pκ,ε, vκ,ε)(t, ·)) ≤ ∆,

TV (pκ,ε(t, ·), ]0,m[) ≤ ∆,
∫m

0
|pκ,ε(t2, z)− pκ,ε(t1, z)| dz ≤ 1

κL |t2 − t1| ,

TV (vκ,ε(t, ·), ]0,m[) ≤ κ∆,
∫m

0
|vκ,ε(t2, z)− vκ,ε(t1, z)| dz ≤ L |t2 − t1| ,

TV (τκ,ε(t, ·), ]0,m[)) ≤κ2∆,
∫m

0
|τκ,ε(t2, z)− τκ,ε(t1, z)| dz ≤ κL |t2 − t1| ,

TV (pκ,ε(t, ·),R \ ]0,m[)≤ ∆,
∫
R\]0,m[

|pκ,ε(t2, z)− pκ,ε(t1, z)| dz ≤ L |t2 − t1| ,

TV (vκ,ε(t, ·),R \ ]0,m[)≤ ∆,
∫
R\]0,m[

|vκ,ε(t2, z)− vκ,ε(t1, z)| dz ≤ L |t2 − t1| ,

TV (τκ,ε(t, ·),R\]0,m[) ≤ ∆,
∫
R\]0,m[

|τκ,ε(t2, z)− τκ,ε(t1, z)| dz≤ L |t2 − t1| .

(19)
For any z, z1, z2 ∈]0,m[

TV (pκ,ε(·, z),R+)≤ ∆
κ ,

∫ +∞
0
|pκ,ε(t, z2)− pκ,ε(t, z1)| dt ≤ L |z2 − z1| ,

TV (vκ,ε(·, z),R+)≤ ∆,
∫ +∞

0
|vκ,ε(t, z2)− vκ,ε(t, z1)| dt≤ κL |z2 − z1| ,

TV (τκ,ε(·, z),R+)≤κ∆,
∫ +∞

0
|τκ,ε(t, z2)− τκ,ε(t, z1)| dt≤κ2L |z2 − z1| .

(20)

For any z, z1, z2 ∈ R\]0,m[

TV (pκ,ε(·, z),R+)≤∆,
∫ +∞

0
|pκ,ε(t, z2)− pκ,ε(t, z1)| dt ≤L |z2 − z1| ,

TV (vκ,ε(·, z),R+)≤∆,
∫ +∞

0
|vκ,ε(t, z2)− vκ,ε(t, z1)| dt≤L |z2 − z1| ,

TV (τκ,ε(·, z),R+)≤∆,
∫ +∞

0
|τκ,ε(t, z2)− τκ,ε(t, z1)| dt≤L |z2 − z1| .

(21)
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Since all the estimates in Theorem 3.3 do not depend on the parameter ε, the
following theorem is a straightforward application of Helly’s Compactness Theorem,
see [3, Section 7.4]. See also [3, Chapter 7] for the definition of entropy solutions.

Theorem 3.4. Given a positive constant c > 0, there exist δ,∆, L > 0 independent
of κ such that if WTVκ (pκo , v

κ
o ) < δ and pκo ≥ c, then the Cauchy problem for (11)

with uκo = (pκo , v
κ
o ) as initial data has an entropy solution uκ = (pκ, vκ) defined

for all times t ≥ 0. Moreover, if we recover the specific volume as τκ (t, z) =
Tκ (z, pκ (t, z)), the estimates (19), (20), (21) in Theorem 3.3 hold with (pκ, vκ, τκ)
in place of their wave front tracking approximations.

4. A linear example. In the linear case, explicit computations are possible and
useful to gain a better insight in the limiting procedure. Set m = 1 and choose the
following linear pressure laws:

Tκ(p) = τ̄ − κ2(p− p̄) and T (p) = τ̄ − (p− p̄),

so that our system (7)–(11) becomes{
−κ2∂tp− ∂zv = 0

∂tv + ∂zp = 0,
z ∈ ]0, 1[ ,

{
−∂tp− ∂zv = 0

∂tv + ∂zp = 0,
z ∈ R \ [0, 1],{

p(t, 0−) = p(t, 0+), p(t, 1−) = p(t, 1+), for a.e. t ≥ 0,

v(t, 0−) = v(t, 0+), v(t, 1−) = v(t, 1+), for a.e. t ≥ 0.

(22)

All waves in the liquid travel with speed ± 1
κ while all waves in the gas travel with

speed ±1. Fix constant states po, vo > 0 and consider the following initial datum
for t = −1:

(p, v) (−1, z) =

{
(po + vo, vo) for z ≤ −1

(po, 0) for z > −1.
(23)

The two states (po + vo, vo) and (po, 0) in the gas are separated by a wave of the
second family. This wave hits the left interface at time t = 0. The resulting wave
front pattern can be explicitly computed by induction, see Figure 9 and (24). For
i = 0, 1, 2, 3, . . . we have:

pl0 = po + vo, v
l
0 = vo; pr0 = po, v

r
0 = 0

pli+1 =
vli − vri + pli + κpri

1 + κ
,

vli+1 =
κvli + vri + κ

(
pli − pri

)
1 + κ

,


pri+1 =

vli+1 − vri + κpli+1 + pri
1 + κ

,

vri+1 =
vli+1 + κvri + κ

(
pli+1 − pri

)
1 + κ

.

(24)

Here, as κ tends to zero (see Figure 10):

• The speed of the waves in the liquid increases towards +∞, therefore they
bounce back and forth between the interfaces at an increasing rate.

• The waves refracted from the liquid into the gas have sizes of order κ, but
as κ tends to zero, their number increases, so that their total size does not
vanish.

• The waves in the liquid that bounce back and forth have a non vanishing size,
therefore the total variation in time of the liquid pressure at a fixed z blows
up.
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“liquid”
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r
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r
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(
pl2, v

l
2

)

Figure 9. Initial wave front tracking pattern for the system (22)
with initial data (23)

• Since, in the liquid, along a wave in the (p, v) plane we have |∆v| = κ |∆p|, the
size of any single jump in the velocity vanishes. Therefore, the total variation
in time of the velocity at any fixed z ∈ [0,m] stays bounded, even if the
number of jumps diverges to +∞. On the other hand, the total variation in
space of the velocity in the liquid phase at any t > 0 vanishes.

• For κ small, the first discontinuity hits the left interface at time t = 0. A
big wave is reflected back. Two wave fans composed of many very small
waves arise from the interfaces into the gas. In the liquid, the pressure widely
oscillates.

4.1. Passing to the limit. In the present linear case, the solution to (22)-(23) can
be explicitly computed as follows. The states (pli, v

l
i) and (pri , v

r
i ) in the solution (24)

to (22) are depicted in Figure 9 and can be written as Ui+1 = Aκ Ui where

Ui =


pli
vli
pri
vri

 , Aκ =
1

1 + κ


1 1 κ −1
κ κ −κ 1
2κ

1+κ
2κ

1+κ
1+κ2

1+κ − 2κ
1+κ

2κ
1+κ

2κ
1+κ − 2κ

1+κ
1+κ2

1+κ

 and U0 =


p0 + v0

v0

p0

0

 .
Note that Aκ = Rκ DκR

−1
κ , where

Rκ =


1 1 0 1
−1 0 1 −1
− 1−κ

1+κ 1 0 0

− 1−κ
1+κ 0 1 0

 and Dκ =


(

1−κ
1+κ

)2

0 0 0

0 1 0 0
0 0 1 0
0 0 0 0


hence

Ui = (Aκ)i U0 = Rκ (Dκ)
i
R−1
κ Uo .

It is therefore possible to compute explicitly the limit as κ → 0 of the solution
to (22)–(23). Indeed, the wave speed in the liquid is 1/κ and, as Figure 9 shows,

uκ(t, 0−) = (pli, v
l
i) + o(κ)

uκ(t, 1+) = (pri , v
r
i ) + o(κ)

as κ→ 0 , where i =

[
t

2κ

]
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Figure 10. Wave patterns of the solution to (22) with initial
data (23), in the (t, z) plane, for decreasing values of κ.

and [ξ] denotes the integer part of ξ. Moreover, define

Dt = lim
κ→0

D[t/(2κ)]
κ =


e−2t 0 0 0

0 1 0 0
0 0 1 0
0 0 0 0

 and R0 = lim
κ→0

Rκ =


1 1 0 1
−1 0 1 −1
−1 1 0 0
−1 0 1 0


leading to

lim
κ→0

[
uκ(t, 0−)
uκ(t, 1+)

]
= lim

κ→0
U[t/(2κ)]

= lim
κ→0

(Aκ)[t/(2κ)] Uo

= lim
κ→0

Rκ (Dκ)
[t/(2κ)]

R−1
κ Uo

= R0 Dt R−1
0 Uo

=


(1 + e−2t)vo + po
(1− e−2t)vo
(1− e−2t)vo + po
(1− e−2t)vo

 (25)

As proved in Theorem 5.1, the same result can be obtained passing first in (22)–
(23) to the limit κ → 0 and then solving the resulting problem. Indeed, (22)–(23)
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as κ→ 0 becomes a coupled system of ODE–PDE, see [2]:{
−∂tp− ∂zv = 0

∂tv + ∂zp = 0,
z ∈ R \ [0, 1],

{
v̇l = p(t, 0−)− p(t, 1+)

∂zp = −v̇l z ∈]0, 1[,
v(t, z) = vl(t) for 0 < z < 1, t ≥ 0,

p(t, 0−) = p(t, 0+), p(t, 1−) = p(t, 1+), for a.e. t ≥ 0,

v(t, 0−) = v(t, 0+), v(t, 1−) = v(t, 1+), for a.e. t ≥ 0.

(26)

Its solution is given by (see also Figure 11, left):

p(t, z) =



po + vo for z < − |t|
po for z > t+ χ[0,+∞[(t)

po + vo ·
(
1 + e−2(z+t)

)
for − t < z < 0

po + vo ·
(
1− e−2(−z+t+1)

)
for 1 < z < t+ 1

po + vo + vo · (1− 2z) e−2t for 0 < z < 1,

v(t, z) =



vo for z < − |t|
0 for z > t+ χ[0,+∞[(t)

vo ·
(
1− e−2(z+t)

)
for − t < z < 0

vo ·
(
1− e−2(−z+t+1)

)
for 1 < z < t+ 1

vo ·
(
1− e−2t

)
for 0 < z < 1,

which is consistent with (25).

In Eulerian coordinate, the displacement of the interfaces a(t) and b(t) can be
obtained through the integration of the speed. Assume that the liquid phase is
initially located to the right of the origin, so that a(t) = 0 for t ≤ 0. Then,

a(t) =

∫ t

0

vl(ξ) dξ =

∫ t

0

vo ·
(
1− e−2ξ

)
dξ = vo ·

(
t− 1

2

(
1− e−2t

))
b(t) = a(t) + 1 = vo ·

(
t− 1

2

(
1− e−2t

))
+ 1.

The structure of the exact solution to (22)–(23) in Eulerian coordinate follows
from (2) and is depicted in Figure 11, right. When the discontinuity hits the liquid
at t = 0 a big wave (which would be a shock in the non linear case) is reflected
backward. This causes a difference in the pressure between the two sides of the
liquid. Hence, the liquid accelerates, moving to the right. A wave fan (which would
be a rarefaction wave in the non linear case) propagates backward while another
wave fan (a compression wave in the non linear case) is generated by the movement
of the liquid and moves to the right.

In the non linear case, this structure is qualitatively similar, see [6]. However, a
rigorous treatment is technically far more intricate. Due to the interactions among
the non linear waves on the two sides of the liquid, new waves are generated and
interact again with the interfaces.

In the next section, the rigorous compressible to incompressible limit for the fully
non linear case is presented.

5. The general incompressible limit. Choose an initial data with constant
speed in the region ]0,m[. Then, the weighted total variation remains small, uni-
formly with respect to the parameter κ. Indeed, let c > 0 be a positive lower bound
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(po + vo, vo) z

Lagrangian coordinates

(po, 0) (po, 0)

(po + vo, vo)

(po, 0)

x

Eulerian coordinates

Figure 11. Solution for the limit system (26) with initial data
(23) in Lagrangian and Eulerian coordinates

for the initial pressure and fix an initial data (po, vo) such that

TV (po) + TV (vo) ≤ δ, po ≥ c,
vo(z) = ṽ for all z ∈ ]0,m[ .

Then, one has WTVκ (po, vo) ≤ δ for all κ ∈ ]0, 1[. The following theorem is proved
in [4], using the uniform (with respect to κ) estimate in Theorem 3.4.

Theorem 5.1. Given a positive constant c, there exists a positive δ such that,
for any ṽ and any initial data (po, vo) satisfying TV (po) + TV (vo) ≤ δ, po ≥ c,
vo(z) = ṽ for all z ∈ ]0,m[, there exists, for any κ ∈ ]0, 1[, an entropy solution
uκo = (pκo , v

κ
o ) to the Cauchy problem for (11) with initial datum (po, vo). Define the

specific volume as τκ (t, z) = Tκ (z, pκ (t, z)), then as κ→ 0, up to subsequences, we
have the following convergence results.

For all t ≥ 0,

τκ (t, ·)→ τ̄
vκ(t, ·)→ vl(t)

in L1 (]0,m[) and
τκ (t, ·)→ τ∗(t, ·)
vκ(t, ·)→ v∗(t, ·)
pκ(t, ·)→ p∗(t, ·)

in L1 (R \ [0,m]) .

For all z ∈ R \ [0,m]

τκ (·, z)→ τ∗ (·, z)
vκ (·, z)→ v∗ (·, z)
pκ (·, z)→ p∗(·, z)

in L1(R+) .

For all z ∈ ]0,m[

τκ (·, z)→ τ̄
vκ (·, z)→ vl (·)

in L1(R+) and pκ(·, ·) ∗⇀ pl(·, ·) in L∞
(
]0,m[× R+

)
.

The limit functions p∗, v∗, τ∗ satisfy the Lipschitz conditions (21) and, together
with vl, they are entropy solutions [2] to{

∂tT (p∗)− ∂zv∗ = 0

∂tv
∗ + ∂zp

∗ = 0,

{
p∗(0, z) = po(z)

v∗(0, z) = vo(z)

t ≥ 0
z ∈ R \ [0,m] ,

m
d

dt
vl(t) = p∗ (t, 0−)− p∗ (t, 0+) , vl(0) = ṽ, a.e. t ≥ 0 ,

vl(t) = v∗ (t, 0−) = v∗(t,m+), a.e. t ≥ 0 .

(27)
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Moreover,

pl(t, z) =
(

1− z

m

)
p∗(t, 0−) +

z

m
p∗(t, 0+) a.e. t ≥ 0, z ∈ [0,m] .

Remark 1. System (27) is a coupled system of PDE and ODE whose well posedness
was proved in [2].

Observe that from the Eulerian coordinates’ point of view, the locations of the
boundaries of the liquid phase can be recovered through a time integration, as in
the linear example. We fix the initial location of the left interface at a given point
x = ao. In Theorem 5.1 the initial pressure is chosen independent of κ. The initial
specific volume in the liquid is then τκo (z) = T

(
p̄+ κ2 (po(z)− p̄)

)
, which depends

on κ. The total mass m of the liquid is fixed. Hence, the initial location of the right
interface also depends on κ and we call it x = bκo . Since τκo (z) → τ̄ as κ → 0, we
have bκo → bo = ao +mτ̄ . Note however that in the particular case of the constant
initial pressure po = p̄ in the liquid, bκo turns out to be independent of κ.

Let aκ(t) and bκ(t) be the locations of the interfaces (in Eulerian coordinates)
at time t for positive κ, while a(t) and b(t) are the corresponding limits as κ → 0.
Then, if vκ is the velocity in Lagrangian coordinates, we have:

aκ(t) = ao +

∫ t

0

vκ (ξ, 0−) dξ a(t) = ao +

∫ t

0

vl (ξ) dξ

bκ(t) = bκo +

∫ t

0

vκ (ξ,m+) dξ b(t) = bo +

∫ t

0

vl (ξ) dξ .

(28)

Using Theorem 5.1 in the explicit expressions of the locations of the interfaces (28),
one can see that the boundaries of the two phases are Lipschitz continuous functions
and moreover aκ → a, bκ → b uniformly on bounded time intervals, as κ→ 0.
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