Compliance estimates for two-dimensional problems with Dirichlet region of prescribed length

  • Received: 01 July 2011
  • Primary: 74P05, 35B45; Secondary: 49J45.

  • In this paper we prove some lower bounds for the compliance functional, in terms of the $1$-dimensional Hausdorff measure of the Dirichlet region and the number of its connected components. When the measure of the Dirichlet region is large, these estimates are asymptotically optimal and yield a proof of a conjecture by Buttazzo and Santambrogio.

    Citation: Paolo Tilli. Compliance estimates for two-dimensionalproblems with Dirichlet region of prescribed length[J]. Networks and Heterogeneous Media, 2012, 7(1): 127-136. doi: 10.3934/nhm.2012.7.127

    Related Papers:

    [1] Paolo Tilli . Compliance estimates for two-dimensional problems with Dirichlet region of prescribed length. Networks and Heterogeneous Media, 2012, 7(1): 127-136. doi: 10.3934/nhm.2012.7.127
    [2] Giuseppe Buttazzo, Filippo Santambrogio . Asymptotical compliance optimization for connected networks. Networks and Heterogeneous Media, 2007, 2(4): 761-777. doi: 10.3934/nhm.2007.2.761
    [3] Al-hassem Nayam . Asymptotics of an optimal compliance-network problem. Networks and Heterogeneous Media, 2013, 8(2): 573-589. doi: 10.3934/nhm.2013.8.573
    [4] Al-hassem Nayam . Constant in two-dimensional $p$-compliance-network problem. Networks and Heterogeneous Media, 2014, 9(1): 161-168. doi: 10.3934/nhm.2014.9.161
    [5] Diogo A. Gomes, Gabriel E. Pires, Héctor Sánchez-Morgado . A-priori estimates for stationary mean-field games. Networks and Heterogeneous Media, 2012, 7(2): 303-314. doi: 10.3934/nhm.2012.7.303
    [6] Grigory Panasenko, Ruxandra Stavre . Asymptotic analysis of the Stokes flow with variable viscosity in a thin elastic channel. Networks and Heterogeneous Media, 2010, 5(4): 783-812. doi: 10.3934/nhm.2010.5.783
    [7] Patrick Henning, Mario Ohlberger . The heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift. Networks and Heterogeneous Media, 2010, 5(4): 711-744. doi: 10.3934/nhm.2010.5.711
    [8] Delio Mugnolo . Gaussian estimates for a heat equation on a network. Networks and Heterogeneous Media, 2007, 2(1): 55-79. doi: 10.3934/nhm.2007.2.55
    [9] Kota Kumazaki, Adrian Muntean . Local weak solvability of a moving boundary problem describing swelling along a halfline. Networks and Heterogeneous Media, 2019, 14(3): 445-469. doi: 10.3934/nhm.2019018
    [10] Yangyang Qiao, Huanyao Wen, Steinar Evje . Compressible and viscous two-phase flow in porous media based on mixture theory formulation. Networks and Heterogeneous Media, 2019, 14(3): 489-536. doi: 10.3934/nhm.2019020
  • In this paper we prove some lower bounds for the compliance functional, in terms of the $1$-dimensional Hausdorff measure of the Dirichlet region and the number of its connected components. When the measure of the Dirichlet region is large, these estimates are asymptotically optimal and yield a proof of a conjecture by Buttazzo and Santambrogio.


    [1] G. Buttazzo and F. Santambrogio, Asymptotical compliance optimization for connected networks, Netw. Heterog. Media, 2 (2007), 761-777. doi: 10.3934/nhm.2007.2.761
    [2] L. C. Evans and R. Gariepy, "Measure Theory and Fine Properties of Functions," Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992.
    [3] S. Mosconi and P. Tilli, $\Gamma$-convergence for the irrigation problem, J. Convex Anal., 12 (2005), 145-158.
    [4] P. Tilli, Some explicit examples of minimizers for the irrigation problem, J. Convex Anal., 17 (2010), 583-595.
    [5] W. P. Ziemer, "Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation," Graduate Texts in Mathematics, 120, Springer-Verlag, New York, 1989.
  • This article has been cited by:

    1. Al-hassem Nayam, Constant in two-dimensional $p$-compliance-network problem, 2014, 9, 1556-181X, 161, 10.3934/nhm.2014.9.161
    2. Antoine Lemenant, A selective review on Mumford–Shah minimizers, 2016, 9, 1972-6724, 69, 10.1007/s40574-016-0056-2
    3. Antonin Chambolle, Jimmy Lamboley, Antoine Lemenant, Eugene Stepanov, Regularity for the Optimal Compliance Problem with Length Penalization, 2017, 49, 0036-1410, 1166, 10.1137/16M1070578
    4. Paolo Tilli, Davide Zucco, Where Best to Place a Dirichlet Condition in an Anisotropic Membrane?, 2015, 47, 0036-1410, 2699, 10.1137/140999402
    5. Paolo Tilli, Davide Zucco, Asymptotics of the First Laplace Eigenvalue with Dirichlet Regions of Prescribed Length, 2013, 45, 0036-1410, 3266, 10.1137/130916825
    6. Davide Zucco, Dirichlet conditions in Poincaré–Sobolev inequalities: the sub-homogeneous case, 2019, 58, 0944-2669, 10.1007/s00526-019-1547-7
  • Reader Comments
  • © 2012 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2921) PDF downloads(53) Cited by(6)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog