We obtain the local well-posedness of a moving boundary problem that describes the swelling of a pocket of water within an infinitely thin elongated pore (i.e. on $ [a, +\infty), \ a>0 $). Our result involves fine a priori estimates of the moving boundary evolution, Banach fixed point arguments as well as an application of the general theory of evolution equations governed by subdifferentials.
Citation: Kota Kumazaki, Adrian Muntean. Local weak solvability of a moving boundary problem describing swelling along a halfline[J]. Networks and Heterogeneous Media, 2019, 14(3): 445-469. doi: 10.3934/nhm.2019018
We obtain the local well-posedness of a moving boundary problem that describes the swelling of a pocket of water within an infinitely thin elongated pore (i.e. on $ [a, +\infty), \ a>0 $). Our result involves fine a priori estimates of the moving boundary evolution, Banach fixed point arguments as well as an application of the general theory of evolution equations governed by subdifferentials.