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Abstract. We obtain the local well-posedness of a moving boundary prob-

lem that describes the swelling of a pocket of water within an infinitely thin
elongated pore (i.e. on [a,+∞), a > 0). Our result involves fine a priori

estimates of the moving boundary evolution, Banach fixed point arguments as

well as an application of the general theory of evolution equations governed by
subdifferentials.

1. Introduction. We wish to understand which effect the water-triggered micro-
swelling of pores can have at observable scales of concrete-based materials. Such
topic is especially relevant in cold regions, where buildings exposed to extremely low
temperatures undergo freezing and build microscopic ice lenses that ultimately lead
to the mechanical damage of the material; see, for instance, [19]. One way to tackle
this issue from a theoretical point of view is to get a better picture of the transport of
moisture. Our long-term goal is to build a macro-micro model for moisture transport
suitable for cementitious mixtures, where at the macroscopic scale the transport of
moisture follows a porous-media-like equation, while at the microscopic scale the
moisture is involved in an adsorption-desorption process leading to a strong local
swelling of the pores. Such a perspective would lead to a system of partial differential
equations with distributed microstructures, see [8, 10] for related settings. In this
paper, we propose a one-dimensional microscopic problem posed on a halfline with
a moving boundary at one of the ends. The moving boundary conditions encode
the swelling mechanism, while a diffusion equation is responsible to providing water
content for the swelling to take place.

Since we are interested in how far the water content can actually push the a
priori unknown moving boundary of swelling, we assume that pore depth is infinite
although the actual physical length is finite. Our target here is to show the well-
posedness of the pore-level model.
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Let us now describe briefly the setting of our equations. The timespan is [0, T ]
while the pore is [a,+∞), with a, T ∈ (0,+∞). The variables are t ∈ [0, T ] and
z ∈ [a,+∞). The boundary z = a denotes the edge of the pore in contact with
wetness. The interval [a, s(t)] indicates the region of diffusion of the water content
u(t, z), where s(t) is the moving interface of the water region. The function u(t, z)
acts in the non-cylindrical region Qs(T ) defined by

Qs(T ) := {(t, z)|0 < t < T, a < z < s(t)}.

Our free boundary problem, which we denote by (P)u0,s0,h, reads:
Find the pair (u(t, z), s(t)) satisfying

ut − kuzz = 0 for (t, z) ∈ Qs(T ), (1.1)

− kuz(t, a) = β(h(t)−Hu(t, a)) for t ∈ (0, T ), (1.2)

− kuz(t, s(t)) = u(t, s(t))st(t) for t ∈ (0, T ), (1.3)

st(t) = a0(u(t, s(t))− ϕ(s(t))) for t ∈ (0, T ), (1.4)

s(0) = s0, u(0, z) = u0(z) for z ∈ [a, s0]. (1.5)

Here k is a diffusion constant, β is a given adsorption function on R that is equal to 0
for negative input and takes a positive value for positive input, h is a given moisture
threshold function on [0, T ], H and a0 are further given (positive) constants, ϕ is
our swelling function defined on R, while s0 and u0 are the initial data.

From the physical perspective, (1.1) is the diffusion equation displacing u in the
unknown region [a, s]; the boundary condition (1.2), imposed at z = a, implies that
the moisture content h inflows if h is present at z = a in a larger amount than u.
The boundary condition (1.3) at z = s(t) describes the mass conservation at the
moving boundary. Indeed, if the flux uz(t, a) at z = a is active on the time interval
[t, t+ ∆t] for t > 0, namely, st(t) > 0, then, it holds that∫ s(t)

a

u(t, z)dz − kuz(t, a)∆t =

∫ s(t+∆t)

a

u(t+ ∆t, z)dz.

Hence, by dividing ∆t in both side and letting ∆t→ 0 we formally obtain that

− kuz(t, a) =

∫ s(t)

a

ut(t, z)dz + stu(t, s(t)).

By ut = kuzz in (1.1), we derive that

−kuz(t, a) =

∫ s(t)

a

kuzz(t, z)dz + stu(t, s(t))

= kuz(t, s(t))− kuz(t, a) + stu(t, s(t)).

This formal argument motivates the structure of the moving boundary condition
(1.3). The ordinary differential equation (1.4) describes the growth rate of the free
boundary s and it is determined by the balance between the water content u(t, s(t))
at z = s(t) and the swelling expression ϕ(s(t)). It is worth mentioning at this stage
that the function ϕ(s(t)) limits the growth of the moving boundary.

From the mathematical point of view, our free boundary problem resembles re-
motely the classical one phase Stefan problem and its variations for handling su-
perheating, phase transitions, evaporation; compare [9, 16, 17, 20] and references
cited therein. Our work contributes to the existing mathematical modeling work of
swelling by Fasano and collaborators (see [6, 7], e.g.) as well as other authors cf.
e.g. [21]. The main difference between these papers and our formulation lies in the
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choice of the boundary conditions (1.2) and (1.3). Most of the cited settings impose
an homogeneous Dirichlet boundary condition at one of the boundaries, while we
impose flux boundary conditions at both boundaries. Relation (1.2) will be used in
a forthcoming work to connect the microscopic moving boundary discussed here to
a macroscopic transport equation.

It is worth mentioning that the literature contains already a number of free
boundary problems posed for the corrosion of porous materials. We review here the
closest contributions to our setting. For instance, we refer to Muntean and Böhm
[14] who proposed a well-posed free boundary problem as mathematical model for
the concrete carbonation process in one space dimension; Aiki and Muntean [3, 4, 5]
proved the existence and uniqueness of a solution for a simplified Muntean-Böhm-
model and obtained the large-time behavior of the free boundary as t→∞. Also,
in [1, 18], Sato et al. proposed a free boundary problem as a mathematical model
of single pore adsorption, a setting very close to ours, and showed the existence of a
solution locally in time; Aiki and Murase guaranteed in [3] the existence of a solution
globally in time and established the large time behaviour of this solution. Recently,
based on the results of Sato et al. [18] and Aiki and Murase [2], Kumazaki et al.
proposed in [12] a multiscale model of moisture transport with adsorption, coupling
in a particular fashion a macroscopic diffusion equation with the microscopic picture
of the model proposed by Sato et al. in [18] and ensured the local existence of a
solution of this two-scale problem. We refer the reader to [8, 10, 15] and references
cited therein for comprehensive descriptions of modeling, mathematical analysis
and numerical approximation of reaction-diffusion systems posed on multiple space
scales in the absence of free or moving boundaries.

It is worth mentioning that the main reason why we are handling the one-
dimensional case only is that we do not know how the sharp interface moves in
higher dimensions; hence, we are unable to write down the proper boundary con-
ditions to close the model formulation. A similar issue is present in the case of
the concrete carbonation problem mentioned above or in settings involving freely
moving redox fronts in porous materials. To be more precise, it is not at all clear
how the sharp interface behaves close to corners, e.g.

The paper is organized as follows: In Section 2, we state the used notation and
assumptions as well as our main theorem concerning the existence and uniqueness of
a solution for the moving boundary problem. In Section 3, we consider an auxiliary
problem focused on finding u for given s and prove the existence of a solution of this
problem by relying on the abstract theory of evolution equations governed by time-
dependent subdifferentials. By using the result of Section 4, we finally prove our
main theorem by suitably applying Banach’s fixed point theorem and the maximum
principle.

2. Notation and assumptions. In this framework, we use the following basic
notations. We denote by | · |X the norm for a Banach space X. The norm and the
inner product of a Hilbert space H are denoted by | · |H and (·, ·)H , respectively.
Particularly, for Ω ⊂ R, we use the standard notation of the usual Hilbert spaces
L2(Ω), H1(Ω) and H2(Ω).

Throughout this paper, we assume the following restrictions on the model pa-
rameters and functions:

(A1) a, a0, H, k and T are positive constants.
(A2) h ∈W 1,2(0, T ) ∩ L∞(0, T ) with h ≥ 0 on (0, T ).
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(A3) β ∈ C1(R)∩W 1,∞(R) such that β = 0 on (−∞, 0], and there exists rβ > 0
such that β′ > 0 on (0, rβ) and β ≡ k0 on [rβ ,+∞), where k0 is a positive constant.
Also, we put cβ = k0 + supr∈Rβ

′(r).
(A4) ϕ ∈ C1(R) ∩ W 1,∞(R) such that ϕ = 0 on (−∞, 0], and there exists

rϕ > 0 such that ϕ′ > 0 on (0, rϕ) and ϕ ≡ c0 on [rϕ,+∞), where 0 < c0 ≤
min{2ϕ(a), |h|L∞(0,T )H

−1}. Also, we put cϕ = supr∈Rϕ(r) + supr∈Rϕ
′(r).

(A5) s0 > a and u0 ∈ H1(a, s0) such that ϕ(a) ≤ u0(z) ≤ |h|L∞(0,T )H
−1 on

[a, s0].
For T > 0, let s be a function on [0, T ] and u be a function on Qs(T ) := {(t, z)|0 ≤

t ≤ T, a < s(t)}.
Next, we define our concept of solution to (P)u0,s0,h on [0, T ] in the following

way:

Definition 2.1. We call that pair (s, u) a solution to (P)u0,s0,h on [0, T ] if the
following conditions (S1)-(S6) hold:

(S1) s, st ∈ L∞(0, T ), a < s on [0, T ], u ∈ L∞(Qs(T )), ut, uzz ∈ L2(Qs(T )) and
t ∈ [0, T ]→ |uz(t, ·)|L2(a,s(t)) is bounded;

(S2) ut − kuzz = 0 on Qs(T );
(S3) −kuz(t, a) = β(h(t)−Hu(t, a)) for a.e. t ∈ [0, T ];
(S4) −kuz(t, s(t)) = u(t, s(t))st(t) for a.e. t ∈ [0, T ];
(S5) st(t) = a0(u(t, s(t))− ϕ(s(t))) for a.e. t ∈ [0, T ];
(S6) s(0) = s0 and u(0, z) = u0(z) for z ∈ [a, s0].

The main result of this paper is concerned with the existence and uniqueness of
a locally in time solution in the sense of Definition 2.1 to the problem (P)u0,s0,h.
This result is stated in the next Theorem.

Theorem 2.2. Let T > 0. If (A1)-(A5) hold, then there exists T ∗ < T such that
(P)u0,s0,h has a unique solution (s, u) on [0, T ∗] satisfying ϕ(a) ≤ u ≤ |h|L∞(0,T )H

−1

on Qs(T
∗).

To be able to prove Theorem 2.2, we transform (P)u0,s0,h, initially posed in a non-
cylindrical domain, to a cylindrical domain. Let T > 0. For given s ∈ W 1,2(0, T )
with a < s(t) on [0, T ], we introduce the following new function obtained by the
indicated change of variables, ”freezing” the moving domain:

ũ(t, y) = u(t, (1− y)a+ ys(t)) for (t, y) ∈ Q(T ) := (0, T )× (0, 1).

Such a change of variable fixing the moving a priori unknown sharp interface is
sometimes referred as Landau transformation. By using the function ũ, (P)u0,s0h

becomes the following problem (P)ũ0,s0,h:

ũt(t, y)− k

(s(t)− a)2
ũyy(t, y) =

yst(t)

s(t)− a
ũy(t, y) for (t, y) ∈ Q(T ), (2.1)

− k

s(t)− a
ũy(t, 0) = β(h(t)−Hũ(t, 0)) for t ∈ (0, T ), (2.2)

− k

s(t)− a
ũy(t, 1) = ũ(t, 1)st(t) for t ∈ (0, T ), (2.3)

st(t) = a0(ũ(t, 1)− ϕ(s(t))) for t ∈ (0, T ), (2.4)

s(0) = s0, (2.5)

ũ(0, y) = u0(1− y)a+ ys(0))(:= ũ0(y)) for y ∈ [0, 1]. (2.6)
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Definition 2.3. For T > 0, let s be functions on [0, T ] and ũ be a function on
Q(T ), respectively. We call that a pair (s, ũ) is a solution of (P)ũ0,s0,h on [0, T ] if
the conditions (S’1)-(S’2) hold:

(S’1) s, st ∈ L∞(0, T ), a < s on [0, T ], ũ ∈ W 1,2(Q(T )) ∩ L∞(0, T ;H1(0, 1)) ∩
L2(0, T ;H2(0, 1)) ∩ L∞(Q(T )).

(S’2) (2.1)–(2.6) hold.

To prove the existence of a solution of (P)ũ0,s0,h, we consider now the following
problem (P)σũ0,s0,h

:

ũt(t, y)− k

(s(t)− a)2
ũyy(t, y) =

yst(t)

s(t)− a
ũy(t, y) for (t, y) ∈ Q(T ),

− k

s(t)− a
ũy(t, 0) = β(h(t)−Hũ(t, 0)) for t ∈ (0, T ),

− k

s(t)− a
ũy(t, 1) = σ(ũ(t, 1))st(t) for t ∈ (0, T ),

st(t) = a0(σ(ũ(t, 1))− ϕ(s(t))) for t ∈ (0, T ),

s(0) = s0, ũ(0, y) = ũ0(y) for y ∈ [0, 1],

where σ is a lower cut-off function on R given by

σ(r) =

{
r if r > ϕ(a),

ϕ(a) if r ≤ ϕ(a).

The definition of a solution of (P)σũ0,s0,h
is Definition 2.3 replaced ũ(t, 1) by

σ(ũ(t, 1)). Now, we state the existence and uniqueness of a solution of (P)σũ0,s0,h
.

Theorem 2.4. Let T > 0. If (A1)-(A5) hold, then there exists T ∗ < T such that
(P)σũ0,s0,h

has a unique solution (s, ũ) on [0, T ∗].

By Theorem 2.4, we see that for a solution (s, ũ) of (P)σũ0,s0,h
on [0, T ∗], a pair

of the function (s, u) with the variable

u(t, z) := ũ

(
t,

z − a
s(t)− a

)
for z ∈ [a, s(t)] (2.7)

is a solution of (P)σu0,s0,h
:= (P)u0,s0,h replaced u(t, s(t)) by σ(u(t, s(t))) on [0, T ∗].

Finally, by proving that (s, u) satisfies ϕ(a) ≤ u ≤ |h|L∞(0,T )H
−1 on Qs(T

∗), the
pair (s, u) is the desired solution satisfying Theorem 2.2. Therefore, in the rest of
the paper, we focus on proving Theorem 2.4 and the boundedness of a solution of
(P)u0,s0,h.

Remark 1. Theorem 2.2 is proven here by Banach’s fixed point theorem, and hence,
the existence and uniqueness of a locally in time solution is a direct consequence.
To reach a globally in time solution of (P)u0,s0,h, we attempted to extend the
existing locally in time solution to (P)σũ0,s0,h

. However, as seen (P)σũ0,s0,h
, if the

free boundary s equals to a, then degeneracies occur (i.e. there is no domain to
find a solution). Therefore, we have to ensure that s is strictly grater than a at the
maximal existence time. Since the free boundary s is not always monotone with
respect to time t, it is not easy to prove such a strict lower bound on the sharp
interface position. In the forthcoming paper [13], we will show the existence and
uniqueness of a globally in time solution of (P)u0,s0,h.
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Remark 2. It is worth noting the similarities and differences between our setting
and the one in Ref. [18]. In both works the mathematical approach in handling the
well-posedness of the FBP is similar in spirit, i.e. in both cases the free boundary
is fixed by Landau-like transformations and weak solutions are searched by using
Banach’s fixed point argument. However, differences exist and are major. In our
work, we require flux boundary conditions at both sides of the one-dimensional
interval, thus very different ad hoc estimates have now to be built to ensure a weak
maximum principle. As mentioned in the introduction, our motivation to work
with our ”flux” formulation of the FBP is mainly because we wish to couple our
FBP to another PDE posed at a second (macro) spatial scale in an eventually fixed
domain, the FBP staying then at a micro spatial level. The structure of the flux
boundary conditions is motivated by what we expect from the way the mathematical
theory of homogenization applies to such reaction-diffusion set-up with one slowly
moving free boundary. These are prerequisites needed to build so-called distributed-
microstructure (or two-scale, or micro-macro) models for swelling.

3. Auxiliary Problem. In this section, for T > 0, L > a and given s ∈W 1,2(0, T )
with a < s < L on [0, T ], we devote our attention to show the existence of a solution
to the following auxiliary problem (AP)σũ0,s,h

:

ũt(t, y)− k

(s(t)− a)2
ũyy(t, y) =

yst(t)

s(t)− a
ũy(t, y) for (t, y) ∈ Q(T ), (3.1)

− k

s(t)− a
ũy(t, 0) = β(h(t)−Hũ(t, 0)) for t ∈ (0, T ), (3.2)

− k

s(t)− a
ũy(t, 1) = a0σ(ũ(t, 1))(σ(ũ(t, 1))− ϕ(s(t))) for t ∈ (0, T ), (3.3)

ũ(0, y) = ũ0(y) for y ∈ [0, 1], (3.4)

In the proof of the existence of solutions, we use the abstract theory of evolution
equations in Hilbert spaces governed by time-dependent subdifferentials which is
characterized by the following form (cf. [11] and references cited therein):

ut(t) + ∂ϕt(u(t)) 3 l(t) in H for t ∈ [0, T ],

where ϕt is a proper, lower semi-continuous, convex function on Hilbert spaces H
for t ∈ [0, T ], and ∂ϕt is the subdifferential of ϕt defined by

∂ϕt(u) := {z∗ ∈ H |(z∗, v − u)H ≤ ϕt(v)− ϕt(u) for v ∈ H},

and l is a given H-valued function on [0, T ]. For (AP)σũ0,s,h
, we set ϕt on H =

L2(0, 1) suitably such that its subdifferential realizes the second term in the left hand

side of (3.1) with the boundary conditions (3.2) and (3.3), and consider yst(t)
s(t)−a ũy(t)

as l(t). To guarantee that l ∈ L2(Q(T )), we first deal with the case that s ∈
W 1,∞(0, T ) (Lemmas 3.1, 3.2 and 3.3).

For s ∈ W 1,2(0, T ), we take a sequence {sn} ⊂ W 1,∞(0, T ) such that sn → s in
W 1,2(0, T ) as n →∞, and prove that (AP)σũ0,s,h

has a solution ũ on [0, T ] by the
limiting process with respect to n using some energy estimates of ũn independent
of n, where ũn is a solution on [0, T ] of (AP)σũ0,sn,h

for each n (Lemma 3.4).

First of all, to solve (AP)σũ0,s,h
, for given s ∈ W 1,∞(0, T ) with a < s < L and

f ∈W 1,2(Q(T )) ∩ L2(0, T ;H1(0, 1)), we consider the problem (AP)σũ0,f,s,h
:



A MOVING BOUNDARY PROBLEM FOR SWELLING 451

ũt(t, z)−
k

(s(t)− a)2
ũyy(t, z) =

yst(t)

s(t)− a
fy(t, z) for (t, z) ∈ Q(T ),

− k

s(t)− a
ũy(t, 0) = β(h(t)−Hũ(t, 0)) for t ∈ (0, T ),

− k

s(t)− a
ũy(t, 1) = a0σ(ũ(t, 1))(σ(ũ(t, 1))− ϕ(s(t))) for t ∈ (0, T ),

ũ(0, y) = ũ0(y) for y ∈ [0, 1].

Now, we define a family {ψt}t∈[0,T ] of time-dependent functionals ψt : L2(0, 1)→
R ∪ {+∞} for t ∈ [0, T ] as follows:

ψt(u) :=



k

2(s(t)− a)2

∫ 1

0

|uy(y)|2dy +
1

s(t)− a

∫ u(1)

0

a0σ(ξ)(σ(ξ)− ϕ(s(t)))dξ

− 1

s(t)− a

∫ u(0)

0

β(h(t)−Hξ)dξ if u ∈ D(ψt),

+∞ if otherwise,

where D(ψt) = {z ∈ H1(0, 1)|z ≥ 0 on [0, 1]} for t ∈ [0, T ]. What concerns the
function ψt, we prove a number of structural properties (as they are stated in the
following Lemmas).

Lemma 3.1. Let s ∈W 1,2(0, T ) with a < s(t) < L on [0, T ]. Assuming (A1)-(A5),
then the following statements hold:

(1) There exists positive constant C0 and C1 such that the following inequalities
hold:

(i) |u(0)|2 ≤ C0ψ
t(u) + C1 for u ∈ D(ψt)

(ii) |u(1)|2 ≤ C0ψ
t(u) + C1 for u ∈ D(ψt)

(iii)
k

2(s(t)− a)2
|uy|2L2(0,1) ≤ C0ψ

t(u) + C1 for u ∈ D(ψt)

(2) For t ∈ [0, T ], the functional ψt is proper, lower semi-continuous, and convex
on L2(0, 1).

Proof. First, we note that for t ∈ [0, T ] if u ∈ D(ψt) then, u(0) and u(1) are non
negative. Let t ∈ [0, T ] and u ∈ D(ψt). Then, if u(1) > ϕ(a), then∫ u(1)

0

a0σ(ξ)(σ(ξ)− ϕ(s(t)))dξ

=

∫ ϕ(a)

0

a0σ(ξ)(σ(ξ)− ϕ(s(t)))dξ +

∫ u(1)

ϕ(a)

a0σ(ξ)(σ(ξ)− ϕ(s(t)))dξ

=

∫ ϕ(a)

0

a0ϕ(a)(ϕ(a)− ϕ(s(t)))dξ +

∫ u(1)

ϕ(a)

a0ξ(ξ − ϕ(s(t)))dξ

=a0ϕ
2(a)(ϕ(a)− ϕ(s(t)))

+ a0
u3(1)

3
− a0ϕ(s(t))

u2(1)

2
−
(
a0
ϕ3(a)

3
− a0ϕ(s(t))

ϕ2(a)

2

)
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=a0
u3(1)

3
− a0ϕ(s(t))

u2(1)

2
+

(
a0

2ϕ3(a)

3
− a0ϕ(s(t))

ϕ2(a)

2

)
≥a0

3
u3(1)(1− 2η3/2)− a0

3

(
cϕ
2η

)3

+

(
a0

2ϕ3(a)

3
− a0

ϕ2(a)cϕ
2

)
, (3.5)

where η is arbitrary positive constant. By taking η suitably in (3.5) and putting
δs ≤ s(t)− a for t ∈ [0, T ], we see that there exists c0 = c0(η), c1 = c1(η) such that

1

s(t)− a

∫ u(1)

0

a0σ(ξ)(σ(ξ)− ϕ(s(t)))dξ

≥ 1

s(t)− a

(
a0

3
u3(1)(1− 2η3/2)−

(
a0

3

(
cϕ
2η

)3

+ a0
ϕ2(a)cϕ

2

))
≥ c0
L− a

u3(1)− c1
δs
≥ c0ϕ(a)

L− a
u2(1)− c1

δs
. (3.6)

In the case u(1) ≤ ϕ(a), then σ(u(1)) = ϕ(a) so that we have the similarly
inequality (3.6). Also, we have that

−1

s(t)− a

∫ u(0)

0

β(h(t)−Hξ)dξ ≥ −cβ
s(t)− a

u(0) =
−cβ

s(t)− a

(
u(1)−

∫ 1

0

uy(y)dy

)
≥ − c0ϕ(a)

2(L− a)
u2(1)− L− a

2c0ϕ(a)

(
cβ
δs

)2

− k

4(s(t)− a)2

∫ 1

0

|uy(y)|2dy −
c2β
k

≥ − c0ϕ(a)

2(L− a)
u2(1)− k

4(s(t)− a)2

∫ 1

0

|uy(y)|2dy −

(
L− a

2c0ϕ(a)

(
cβ
δs

)2

+
c2β
k

)
,

(3.7)

where cβ is the same constant as in (A3). By adding (3.6) and (3.7), it yields

ψt(u) ≥ k

4(s(t)− a)2

∫ 1

0

|uy(y)|2dy

+
c0ϕ(a)

2(L− a)
u2(1)− c1

δs
−

(
L− a

2c0ϕ(a)

(
cβ
δs

)2

+
c2β
k

)
. (3.8)

Also, it holds that

|u(0)|2 =

∣∣∣∣∫ 1

0

uy(y)dy + u(1)

∣∣∣∣2 ≤ 2

(∫ 1

0

|uy(y)|2dy + |u(1)|2
)

≤ 2

(
2(L− a)2

k

k

2(s(t)− a)2

∫ 1

0

|uy(y)|2dy + |u(1)|2
)
.

Therefore, by (3.8) and the estimate of u(0) we see that the statement (1) of Lemma
3.1 holds.

We now prove statement (2). For r ∈ R, put

g1(s(t), r) =
1

s(t)− a

∫ r

0

a0σ(ξ)(σ(ξ)− ϕ(s(t)))dξ,

g2(s(t), h(t), r) = − 1

s(t)− a

∫ r

0

β(h(t)−Hξ)dξ.

Then, by a < s(t), β′ ≥ 0 in (A3) and (A4) we see that r 7→ a0σ(r)(σ(r)− ϕ(s(t)))
and r 7→ −β(h(t) − Hr) are also monotone increasing. This means that ψt is
convex on L2(0, 1). Also, the lower semi-continuity of ψt is enough to prove that



A MOVING BOUNDARY PROBLEM FOR SWELLING 453

the level set of ψt is closed in L2(0, 1). This is easy to prove by using Lemma 3.1
and the Sobolev’s embedding H1(0, 1) ↪→ C([0, 1]) in one dimensional case. Thus,
we see that for t ≥ 0, ψt is a proper, lower semi-continuous, convex function on
L2(0, 1).

By Lemma 3.1 we obtain the following existence result concerning the solutions
to problem (AP)σũ0,f,s,h

.

Lemma 3.2. Let T > 0 and L > a. If (A1)-(A5) hold, then, for given s ∈
W 1,2(0, T ) with a < s < L on [0, T ] and f ∈ W 1,2(Q(T )) ∩ L∞(0, T ;H1(0, 1)), the
problem (AP)σũ0,s,f,h

admits a unique solution ũ on [0, T ] such that ũ ∈W 1,2(Q(T ))∩
L∞(0, T ;H1(0, 1)). Moreover, the function t → ψt(ũ(t)) is absolutely continuous
on [0, T ].

Proof. By Lemma 3.1, for t ∈ [0, T ] ψt is a proper lower semi-continuous convex
function on L2(0, 1). By the definition of the subdifferential in the first of section
3, we see that for t ∈ [0, T ], z∗ ∈ ∂ψt(u) is characterized by

z∗ = − k

(s(t)− a)2
uyy on (0, 1),

− k

s(t)− a
uz(0) = β(h(t)−Hu(0)),

− k

s(t)− a
uz(1) = a0σ(u(1))(σ(u(1))− ϕ(s(t))).

Also, there exists a positive constant C such that for each t1, t2 ∈ [0, T ] with t1 ≤ t2,
and for any u ∈ D(ψt1), there exists ū ∈ D(ψt2) such that

|ū− u|L2(0,1) ≤ |s(t1)− s(t2)|(1 + |ϕt1(u)|1/2), (3.9)

|ψt2(ū)− ψt1(u)| ≤ C(|s(t1)− s(t2)|+ |h(t1)− h(t2)|)(1 + |ψt1(u)|). (3.10)

Indeed, by taking ū := u it is easy to prove that (3.9) and (3.10) holds. Now, we
consider the following Cauchy problem (CP):{

ũt + ∂ψt(ũ(t)) = yst(t)
s(t)−afy(t) in L2(0, 1)

ũ(0, y) = ũ0(y) for y ∈ [0, 1].

Here, we notice that since f ∈ L2(0, T ;H1(0, 1)) and s ∈W 1,2(0, T ) then
yfy(t)st(t)
s(t)−a ∈

L2(0, T ;L2(0, 1)). Then, by the general theory of evolution equations governed by
time dependent subdifferentials (see [11] and references cited therein), we conclude
that (CP) has a solution ũ on [0, T ] such that ũ ∈W 1,2(Q(T )), ψt(ũ(t)) ∈ L∞(0, T )
and t→ ψt(ũ(t)) is absolutely continuous on [0, T ]. This implies that ũ is a unique
solution of (AP)σũ0,f,s,h

on [0, T ].

Lemma 3.3. Let T > 0, L > a and s ∈ W 1,∞(0, T ) with a < s < L on [0, T ].
If (A1)-(A5) hold, then, (AP)σũ0,s,h

has a unique solution ũ on [0, T ] such that

ũ ∈W 1,2(Q(T )) ∩ L∞(0, T ;H1(0, 1)).

Proof. By Lemma 3.2, we can define the solution operator ΓT (f) = ũ, where ũ is
a unique solution of (AP)σũ0,f,s,h

for given f ∈ W 1,2(Q(T )) ∩ L∞(0, T ;H1(0, 1)).

Now, for i = 1, 2 we put Γ(fi) = ũi and f = f1 − f2 and ũ = ũ1 − ũ2. Then, we
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have

1

2

d

dt
|ũ|2L2(0,1) −

∫ 1

0

k

(s(t)− a)2
ũyyũdy =

∫ 1

0

yst
s(t)− a

fyũdy. (3.11)

Using the structure of the boundary conditions, we obtain

−
∫ 1

0

k

(s(t)− a)2
ũyyũdy

=
k

(s(t)− a)2

(
−ũy(t, 1)ũ(t, 1) + ũy(t, 0)ũ(t, 0) +

∫ 1

0

|ũy(t)|2dy
)

=
a0

s(t)− a
×(

σ(ũ1(t, 1))(σ(ũ1(t, 1))− ϕ(s(t)))− σ(ũ2(t, 1))(σ(ũ2(t, 1))− ϕ(s(t)))

)
ũ(t, 1)

− 1

s(t)− a

(
β(h(t)−Hũ1(t, 0))− β(h(t)−Hũ2(t, 0))

)
ũ(t, 0)

+
k

(s(t)− a)2

∫ 1

0

|ũy(t)|2dy

≥ − a0

s(t)− a
ϕ(s(t))|ũ(t, 1)|2 − cβH

s(t)− a
|ũ(t, 0)|2 +

k

(s(t)− a)2

∫ 1

0

|ũy(t)|2dy.

Combining this inequality with (3.11), it follows that

1

2

d

dt
|ũ(t)|2L2(0,1) +

k

(s(t)− a)2

∫ 1

0

|ũy(t)|2dy

≤
∫ 1

0

yst(t)

s(t)− a
fy(t)ũ(t)dy +

a0

s(t)− a
ϕ(s(t))|ũ(t, 1)|2 +

cβH

s(t)− a
|ũ(t, 0)|2. (3.12)

Here, we use the Sobolev’s embedding theorem in one dimensional case:

|u(y)|2 ≤ Ce|u|H1(0,1)|u|L2(0,1) for u ∈ H1(0, 1) and y ∈ [0, 1], (3.13)

where Ce is a positive constant in Sobolev’s embedding. By using (3.13), we have

1

2

d

dt
|ũ(t)|2L2(0,1) +

k

(s(t)− a)2

∫ 1

0

|uy(t)|2dy

≤
∫ 1

0

yst(t)

s(t)− a
fy(t)ũ(t)dy + Ce

(
a0cϕ

s(t)− a
+

cβH

s(t)− a

)
|ũ(t)|H1(0,1)|ũ(t)|L2(0,1).

(3.14)

Taking C2 = Ce(a0cϕ + cβH) and using Young’s inequality leads to∫ 1

0

yst(t)

s(t)− a
fy(t)ũ(t)dy

≤|st|L∞(0,T )|ũ(t)|L2(0,1)

(∫ 1

0

1

(s(t)− a)2
|fy(t)|2dy

)1/2

,

C2

s(t)− a
|ũ|H1(0,1)|ũ|L2(0,1) ≤

C2

s(t)− a
(|ũy|L2(0,1)|ũ|L2(0,1) + |ũ|2L2(0,1))

≤ k

2(s(t)− a)2
|ũy|2L2(0,1) +

(
C2

2

2k
+

C2

s(t)− a

)
|ũ|2L2(0,1).
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Now, we put δs such that s(t)− a ≥ δs for t ∈ [0, T ]. By (3.14), we obtain

1

2

d

dt
|ũ(t)|2L2(0,1) +

k

2(s(t)− a)2

∫ 1

0

|ũy(t)|2dy

≤
|fy(t)|2L2(0,1)

2
+

(
|st|2L∞(0,T )

2δ2
s

+
C2

2

2k
+
C2

δs

)
|ũ(t)|2L2(0,1). (3.15)

Now, by setting

I(t) :=
1

2
|ũ(t)|2L2(0,1) +

k

2(L− a)2

∫ t

0

|ũy(τ)|2L2(0,1)dτ

for t ∈ [0, T ], we have

d

dt
I(t) ≤

|fy(t)|2L2(0,1)

2
+

(
|st|2L∞(0,T )

2δ2
s

+
C2

2

2k
+
C2

δs

)
I(t). (3.16)

Denote by C3 the coefficient of I(t) arising in the right-hand side. Using Gronwall’s
inequality to (3.16) gives

I(t) ≤
(

1

2

∫ t

0

|fy(τ)|2L2(0,1)dτ

)
eC3T for t ∈ [0, T ].

This implies that that there exists a small T1 ≤ T such that ΓT1
is a contraction

mapping on W 1,2(Q(T )) ∩ L∞(0, T ;H1(0, 1)). Therefore, by Banach’s fixed point
theorem we can find ũ ∈W 1,2(Q(T ))∩L∞(0, T ;H1(0, 1)) such that ΓT1

(ũ) = ũ. In
other words, we can find a solution ũ of (AP)σũ0,s,h

on [0, T1]. Since T1 is independent
of the choice of initial value, by repeating the argument of the local existence result,
we can extend the solution ũ beyond T1. This argument completes the proof of the
Lemma.

As next step, for given s ∈ W 1,2(0, T ) with a < s < L on [0, T ], we construct a
solution to problem (AP)σũ0,s,h

.

Lemma 3.4. Let T > 0 and L > a. If (A1)-(A5) hold, then, for given s ∈
W 1,2(0, T ) with a < s < L on [0, T ], the problem (AP)σũ0,s,h

has a unique solution

ũ on [0, T ].

Proof. We choose a sequence {sn} ⊂ W 1,∞(0, T ) and a < δ < L satisfying sn(t)−
a ≥ δ on [0, T ] for each n ∈ N, sn → s in W 1,2(0, T ) as n→∞. By Lemma 3.3 we
can take a sequence {ũn} of solutions to (AP)σũ0,sn,h

on [0, T ]. Then, we see that

t→ ψt(ũn(t)) is absolutely continuous on [0, T ] so that t→ k
(sn(t)−a)2 |ũny(t)|2L2(0,1)

is continuous on [0, T ]. First, we have

1

2

d

dt
|ũn(t)|2L2(0,1) −

∫ 1

0

k

(sn(t)− a)2
ũnyy(t)ũn(t)dy =

∫ 1

0

ysnt(t)

sn(t)− a
ũny(t)ũn(t)dy.

For the second term in the left hand side, it holds that

−
∫ 1

0

k

(sn(t)− a)2
ũnyy(t)ũn(t)dy

=
1

sn(t)− a
a0σ(ũn(t, 1))(σ(ũn(t, 1))− ϕ(sn(t)))ũn(t, 1)

− 1

sn(t)− a
β(h(t)−Hũn(t, 0))ũn(t, 0) +

k

(sn(t)− a)2

∫ 1

0

|ũny(t)|2dy.
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Accordingly, by a0(σ(ũn(t, 1)))2ũn(t, 1) ≥ 0 we obtain that

1

2

d

dt
|ũn(t)|2L2(0,1) +

k

(sn(t)− a)2

∫ 1

0

|ũny(t)|2dy

≤
∫ 1

0

ysnt(t)

sn(t)− a
ũny(t)ũn(t)dy +

1

sn(t)− a
a0ϕ(sn(t))σ(ũn(t, 1))ũn(t, 1)

+
1

sn(t)− a
β(h(t)−Hũn(t, 0))ũn(t, 0) fort ∈ [0, T ]. (3.17)

Using (3.13) it follows that∫ 1

0

ysnt(t)

sn(t)− a
ũny(t)ũn(t)dy

≤ k

4(sn(t)− a)2

∫ 1

0

|ũny(t)|2dy +
|snt(t)|2

k

∫ 1

0

|ũn(t)|2dy,

and

1

sn(t)− a
a0ϕ(s(t))σ(ũn(t, 1))ũn(t, 1) ≤ a0cϕ

sn(t)− a

(
|ũn(t, 1)|2 + ũn(t, 1)ϕ(a)

)
≤ a0cϕ
sn(t)− a

(
3

2
|ũn(t, 1)|2 +

ϕ2(a)

2

)
≤ 3a0cϕCe

2(sn(t)− a)

(
|ũny(t)|L2(0,1)|ũn(t)|L2(0,1) + |ũn(t)|2L2(0,1)

)
+

a0cϕ
sn(t)− a

ϕ2(a)

2

≤ k

4(sn(t)− a)2
|ũny(t)|2L2(0,1)

+

(
(3a0cϕCe)

2

4k
+

3a0cϕCe
2δ

)
|ũn(t)|2L2(0,1) +

a0cϕ
δ

ϕ2(a)

2
,

and

1

sn(t)− a
β(h(t)−Hũn(t, 0))ũn(t, 0) ≤ cβ

sn(t)− a
|ũn(t, 0)|

≤ cβCe
2(sn(t)− a)

(
|ũny(t)|L2(0,1)|ũn(t)|L2(0,1) + |ũn(t)|2L2(0,1)

)
+

cβ
2(sn(t)− a)

≤ k

4(sn(t)− a)2
|ũny(t)|2L2(0,1) +

(
(cβCe)

2

4k
+
cβCe

2δ

)
|ũn(t)|2L2(0,1) +

cβ
2δ
.

As a consequence, we see from the above two estimates and (3.17) that

1

2

d

dt
|ũn(t)|2L2(0,1) +

k

4(sn(t)− a)2

∫ 1

0

|ũny(t)|2dy

≤
(
|snt(t)|2

k
+

(3a0cϕCe)
2

4k
+

3a0cβCe
2δ

+
(cβCe)

2

4k
+
cβCe

2δ

)
|ũn(t)|2L2(0,1)

+
a0cϕ
δ

ϕ2(a)

2
+
cβ
2δ

for t ∈ [0, T ].

We denote now the coefficient of |ũn|2L2(0,1) in the above inequality by F (t). Then,

F ∈ L1(0, T ) and Gronwall’s inequality yields that
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1

2
|ũn(t)|2L2(0,1) +

∫ t

0

k

4(sn(t)− a)2
|ũny(t)|2L2(0,1)dτ

≤
(

1

2
|ũ(0)|2L2(0,1) +

(
a0cϕ
δ

ϕ2(a)

2
+
cβ
2δ

)
T

)
e
∫ t
0
F (τ)dτ for t ∈ [0, T ]. (3.18)

Next, for each n ∈ N and h > 0, we can write∫ 1

0

ũnt(t)
ũn(t)− ũn(t− h)

h
dy −

∫ 1

0

k

(sn(t)− a)2
ũnyy(t)

ũn(t)− ũn(t− h)

h
dy

=

∫ 1

0

ysnt(t)

sn(t)− a
ũny(t)

ũn(t)− ũn(t− h)

h
dy. (3.19)

For the second term of (3.19), we obtain

−
∫ 1

0

k

(s(t)− a)2
ũnyy(t)

ũn(t)− ũn(t− h)

h
dy

=− kũny(t, 1)

(sn(t)− a)2

ũn(t, 1)− ũn(t− h, 1)

h
+

kũny(t, 0)

(sn(t)− a)2

ũn(t, 0)− ũn(t− h, 0)

h

+

∫ 1

0

kũny(t)

(s(t)− a)2

ũny(t)− ũny(t− h)

h
dy.

We name as I1, I2 and I3 the three terms in the last identity. We proceed with
estimating them from bellow. For the first term I1, using the same notation g1 and
g2 cf. the proof of Lemma 3.1, it holds that

I1 ≥
1

h

1

sn(t)− a
×(∫ ũn(t,1)

0

a0σ(ξ)(σ(ξ)− ϕ(sn(t)))dξ −
∫ ũn(t−h,1)

0

a0σ(ξ)(σ(ξ)− ϕ(sn(t)))dξ

)

=
g1(sn(t), ũn(t, 1))− g1(sn(t− h), ũn(t− h, 1))

h

+
1

h

(
1

sn(t− h)− a
− 1

sn(t)− a

)∫ ũn(t−h,1)

0

a0σ(ξ)(σ(ξ)− ϕ(sn(t− h)))dξ

+
1

h

1

sn(t)− a
×∫ ũn(t−h,1)

0

(
a0σ(ξ)(σ(ξ)− ϕ(sn(t− h)))− a0σ(ξ)(σ(ξ)− ϕ(sn(t)))

)
dξ.

Next, for the term I2 we have

I2 ≥
1

h

1

sn(t)− a

(
−
∫ ũn(t,0)

0

β(h(t)−Hξ)dξ +

∫ ũn(t−h,0)

0

β(h(t)−Hξ)dξ

)

=
g2(sn(t), h(t), ũn(t, 0))− g2(sn(t− h), h(t− h), ũn(t− h, 0))

h

+
1

h

(
− 1

sn(t− h)− a
+

1

sn(t)− a

)∫ ũn(t−h,0)

0

β(h(t− h)−Hξ)dξ

− 1

h

1

sn(t)− a

∫ ũn(t−h,0)

0

(
β(h(t− h)−Hξ)− β(h(t)−Hξ)

)
dξ
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The term I3 can be dealt with as follows

I3 ≥
1

h

k

2(sn(t)− a)2

(∫ 1

0

|ũny(t)|2dy −
∫ 1

0

|ũny(t− h)|2dy
)

=
1

h

(
k

2(sn(t)− a)2

∫ 1

0

|ũny(t)|2dy − k

2(sn(t− h)− a)2

∫ 1

0

|ũny(t− h)|2dy
)

+
1

h

(
k

2(sn(t− h)− a)2
− k

2(sn(t)− a)2

)∫ 1

0

|ũny(t− h)|2dy

Combining all these lower bounds and using the fact that t→ k/(sn(t)−a)2|ũny(t)|2
is continuous on [0, T ], we obtain

lim inf
h→0

(I1 + I2 + I3)

≥ d

dt
ψt(ũn(t)) +

snt(t)

(sn(t)− a)2

∫ ũn(t,1)

0

a0σ(ξ)(σ(ξ)− ϕ(sn(t)))dξ

+
a0ϕ

′(sn(t))snt(t)

sn(t)− a

∫ ũn(t,1)

0

σ(ξ)dξ +
snt(t)

(sn(t)− a)2

∫ ũn(t,0)

0

β(h(t)−Hξ)dξ

− 1

sn(t)− a

∫ ũn(t,0)

0

β′(h(t)−Hξ)ht(t)dξ +
ksnt(t)

(sn(t)− a)3

∫ 1

0

|ũny(t)|2dy.

Applying this result to (3.19) and letting h→ 0, we observe

|ũnt(t)|2L2(0,1) +
d

dt
ψt(ũn(t))

≤
∫ 1

0

ysnt(t)

sn(t)− a
ũny(t)ũnt(t)dy +

|snt(t)|
(sn(t)− a)2

∣∣∣∣∣
∫ ũn(t,1)

0

a0σ(ξ)(ϕ(sn(t))− σ(ξ))dξ

∣∣∣∣∣
+ a0

|ϕ′(sn(t))||snt(t)|
sn(t)− a

∫ ũn(t,1)

0

σ(ξ)dξ +
|snt(t)|

(sn(t)− a)2

∫ ũn(t,0)

0

β(h(t)−Hξ)dξ

+
1

sn(t)− a

∣∣∣∣∣
∫ ũn(t,0)

0

β′(h(t)−Hξ)ht(t)dξ

∣∣∣∣∣+
k|snt(t)|

(sn(t)− a)3

∫ 1

0

|ũny(t)|2dy.

Using Lemma 3.1, we estimate now from above each of the terms Ji for 1 ≤ i ≤ 6
that pinpoint each term from the the right-hand side of the above inequality. By
using σ(r) ≤ |r|+ ϕ(a) for r ∈ R the following upper bounds hold true:

J1 ≤
1

2
|ũnt(t)|2L2(0,1) +

1

2

|snt(t)|2

(sn(t)− a)2
|ũny(t)|2L2(0,1)

≤ 1

2
|ũnt(t)|2L2(0,1) +

|snt(t)|2

k

(
C0ψ

t(ũn(t)) + C1

)
,

J2 ≤
a0|snt(t)|ϕ(sn(t))

2δ2

(
|ũn(t, 1)|2

2
+ ũn(t, 1)ϕ(a)

)
,

≤ a0|snt(t)|ϕ(sn(t))

2δ2

(
|ũn(t, 1)|2 +

ϕ2(a)

2

)
,

J3 ≤
a0cϕ
δ
|snt(t)|

(
|ũn(t, 1)|2

2
+ ũn(t, 1)ϕ(a)

)
≤ a0cϕ

δ
|snt(t)|

(
|ũn(t, 1)|2 +

ϕ2(a)

2

)
,
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J4 ≤
|snt(t)|cβ

δ2
|ũn(t, 0)| ≤ cβ

δ2

(
|snt(t)|2

2
+
|ũn(t, 0)|2

2

)
,

J5 ≤
cβ
δ
|ht(t)||ũn(t, 0)| ≤ cβ

δ

(
|ht(t)|2

2
+
|ũn(t, 0)|2

2

)
,

J6 ≤
k|snt(t)|

(sn(t)− a)3

∫ 1

0

|ũny(t)|2dy ≤ 2|snt(t)|
δ

(
C0ψ

t(ũn(t)) + C1

)
.

Finally, by combining all these estimates, we obtain that

1

2
|ũnt(t)|2L2(0,1) +

d

dt
ψt(ũn(t))

≤
(
|snt(t)|2

k
+

2|snt(t)|
δ

)
(C0ψ

t(ũn(t) + C1)

+
a0|snt(t)|cϕ

2δ2

(
|ũn(t, 1)|2 +

ϕ2(a)

2

)
+
cβ
δ2

|snt(t)|2

2
+
a0cϕ|snt(t)|

δ

(
|ũn(t, 1)|2 +

ϕ2(a)

2

)
+
(cϕ
δ

+
cβ
δ2

) |ũn(t, 0)|2

2
+
cβ
δ

|ht(t)|2

2
for t ∈ [0, T ].

Therefore, by setting

l(t) :=
|snt(t)|2

k
+

2|snt(t)|
δ

+
a0|snt(t)|cϕ

2δ2
+
a0cϕ|snt(t)|

δ
+

1

2

(cϕ
δ

+
cβ
δ2

)
+
ϕ2(a)

2

(
a0|snt(t)|cϕ

2δ2
+
a0cϕ|snt(t)|

δ

)
and using Gronwall’s lemma, we have that

1

2

∫ t

0

|ũnt(τ)|2L2(0,1)dτ + ψt(ũn(t))

≤
[
ψ0(ũ(0)) +

cβ
2δ2

∫ t

0

|snt(t)|2dτ +
cβ
2δ

∫ t

0

|ht(τ)|2dτ

+ (C1 + 1)

∫ t

0

l(τ)dτ

]
eC0

∫ t
0
l(τ)dτ for t ∈ [0, T ]. (3.20)

Therefore, by l ∈ L2(0, T ) and combining the latter inequality with (A2) we see
that the right hand side of (3.20) is bounded. From this result, we infer that the
sequence {ũn} is bounded in W 1,2(0, T ;L2(0, 1)) and the sequence {ψ(·)(ũn(·))}
is bounded in L∞(0, T ). Finally, this result in combination with Lemma 3.1,
(3.18) and (3.20) means that the sequence {ũn} is bounded in W 1,2(0, T ;L2(0, 1))∩
L∞(0, T ;H1(0, 1)). Therefore, we can take a sequence {nk} ⊂ {n} such that for
some ũ ∈ V (T ) := W 1,2(0, T ;L2(0, 1)) ∩ L∞(0, T ;H1(0, 1)), ũnk

→ ũ weakly in

W 1,2(0, T ;L2(0, 1)), weakly -* in L∞(0, T ;H1(0, 1)) and in C(Q(T )) as k →∞. By
letting k →∞, we get that ũ is a solution of (AP)σũ0,s,h

on [0, T ].

4. Local existence. In this section, using the results obtained in Section 3, we
establish the existence of a solution (P)σũ0,s0,h

which leads to clarifying Theorem

2.4. Throughout the rest of this section, we assume (A1)-(A5). For T > 0 and
L > s0, we define the set

M(T, s0, a
′) := {s ∈W 1,2(0, T )|a′ ≤ s < L on [0, T ], s(0) = s0}.
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Also, for given s ∈M(T, s0, a
′), we define the operator Φ : M(T, s0, a

′)→ V (T ) by
Φ(s) = ũ, where ũ is a solution of (AP)σũ0,s,h

, and the operator ΓT : M(T, s0, a
′)→

W 1,2(0, T ) by ΓT (s) = s0+
∫ t

0
a0(σ(Φ(s)(τ, 1))−ϕ(s(τ)))dτ for t ∈ [0, T ]. Moreover,

for any K > 0 we put

MK(T ) := {s ∈M(T, s0, a
′)| |s|W 1,2(0,T ) ≤ K}.

The construction of a solution of (P)σũ0,s0,h
is done in a couple of steps: First,

by the continuous dependence of a solution ũ of (AP)σũ0,s,h
for given s in a suitable

subspace of W 1,2(0, T ) we show that ΓT1 is a contraction mapping on MK(T1) in
W 1,2(0, T1) for some T1 < T . Next, by Banach’s fixed point theorem, we prove the
existence of a locally in time solution of (P)σũ0,s0,h

(Lemma 4.2). The above setting

is constructed such that, relying on (3.18) and (3.20) in Lemma 3.4, the inequality
in the next Lemma holds true.

Finally, by using (2.7), the solution of (P)σũ0,s0,h
is a solution of (P)σu0,s0,h

, and

by the maximum principle, we observe that a solution (s, u) of (P)σu0,s0,h
on [0, T ]

satisfies ϕ(a) ≤ u ≤ |h|L∞(0,T )H
−1 on Q(T ) (Lemma 4.3), and remove σ.

Now, we start this section from noting the following estimates, which is already
obtained in Section 3:

Lemma 4.1. Let T > 0 and K > 0. It holds that

|Φ(s)|W 1,2(0,T ;L2(0,1)) + |Φ(s)|L∞(0,T ;H1(0,1)) ≤ C for s ∈MK(T ),

where C = C(T, ũ0,K, L, h) depending on T , ũ0, K, L and h.

By using Lemma 4.1 we show that for some T > 0, the mapping ΓT is a contrac-
tion mapping on the closed set of MK(T ) for any K > 0.

Lemma 4.2. Let a < a′ ≤ s0 and K > 0. There exists a positive constant T1 ≤ T
such that the mapping ΓT1

: MK(T1) → MK(T1) is well defined. Furthermore, the
mapping ΓT1

is a contraction on the closed set MK(T1) in W 1,2(0, T ).

Proof. For T > 0 and L > s0, let s ∈ M(T, s0, a
′) and ũ = Φ(s). Then, ũ is a

solution of (AP)σũ0,s,h
so that σ(Φ(s)(t, 1)) ≥ ϕ(a) for t ∈ [0, T ], and

ΓT (s)(t) = s0 +

∫ t

0

a0(σ(Φ(s)(τ, 1))− ϕ(s(τ)))dτ

≥ s0 + a0(ϕ(a)− cϕ)t for t ∈ [0, T ]. (4.1)

Here, by (3.13) and Lemma 4.1, it follows that∫ t

0

|ũ(τ, 1)|2dτ ≤ Ce
∫ t

0

(|ũy|L2(0,1)|ũ|L2(0,1) + |ũ|2L2(0,1))dτ

≤Ce

(
|ũ|L∞(0,T ;L2(0,1))

√
t

(∫ t

0

|ũy|2L2(0,1)dτ

)1/2

+ t|ũ|2L∞(0,T ;L2(0,1))

)
≤
√
tCe(1 +

√
T )C2.

Then, we have that

ΓT (s) ≤ s0 + a0

√
t

(∫ t

0

|Φ(s)(τ, 1)|2dτ
) 1

2

≤ s0 + a0t
3
4 (Ce(1 +

√
T )C2)

1
2 . (4.2)
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Hence, we obtain that∫ t

0

|ΓT (s)|2dτ ≤ 2s2
0t+ 2a2

0tT
3
2

(
Ce(1 +

√
T )C2

)
(4.3)

and ∫ t

0

|Γ′T (s)|2dτ ≤ a2
0

∫ t

0

|Φ(s)(τ, 1))|2dτ

≤a2
0

√
tCe(1 +

√
T )C2. (4.4)

Therefore, by (4.1)-(4.4) we see that there exists T0 < T such that ΓT0(s) ∈MK(T0).
Next, let ũ1 and ũ2 for s1 and s2 ∈ MK(T0), respectively, and set ũ = ũ1 − ũ2,
s = s1 − s2 and δ = a′ − a. Then, we have that

1

2

d

dt
|ũ(t)|2H −

∫ 1

0

(
k

(s1(t)− a)2
ũ1yy(t)− k

(s2(t)− a)2
ũ2yy(t)

)
ũ(t)dy

=

∫ 1

0

(
ys1t(t)

s1(t)− a
ũ1y(t)− ys2t(t)

s2(t)− a
ũ2y(t)

)
ũ(t)dy. (4.5)

Regarding the second term of the left hand side of (4.5), we write

−
∫ 1

0

(
k

(s1(t)− a)2
ũ1yy(t)− k

(s2(t)− a)2
ũ2yy(t)

)
ũ(t)dy

=

∫ 1

0

(
k

(s1(t)− a)2
ũ1y(t)− k

(s2(t)− a)2
ũ2y(t)

)
ũy(t)dy

−
(

k

(s1(t)− a)2
ũ1y(t)(t, 1)− k

(s2(t)− a)2
ũ2y(t)(t, 1)

)
ũ(t, 1)

+

(
k

(s1(t)− a)2
ũ1y(t, 0)− k

(s2(t)− a)2
ũ2y(t, 0)

)
ũ(t, 0)

=:I1 + I2 + I3.

For the term I1, it holds that

I1 =
k

(s1(t)− a)2
|ũy(t)|2L2(0,1) +

∫ 1

0

(
k

(s1(t)− a)2
− k

(s2(t)− a)2

)
ũ2y(t)ũy(t)dy

≥ k

(s1(t)− a)2
|ũy(t)|2L2(0,1) −

2Lk|s(t)|
δ3(s1(t)− a)

|ũ2y(t)|L2(0,1)|ũy(t)|L2(0,1)

≥
(

1− η

2

) k

(s1(t)− a)2
|ũy(t)|2L2(0,1) −

k

2η

(
2L

δ3

)2

|s(t)|2|ũ2y|2L2(0,1),

where η is arbitrary positive number. The term I2 is handled as follows:

−
(

k

(s1(t)− a)2
ũ1y(t, 1)− k

(s2(t)− a)2
ũ2y(t, 1)

)
ũ(t, 1)

=a0

(
σ(ũ1(t, 1))

s1(t)− a
(σ(ũ1(t, 1))− ϕ(s1(t)))− σ(ũ2(t, 1))

s2(t)− a
σ(ũ2(t, 1))− ϕ(s2(t)))

)
ũ(t, 1)

=
a0

s1(t)− a
×(

σ(ũ1(t, 1))(σ(ũ1(t, 1))− ϕ(s1(t)))− σ(ũ2(t, 1))(σ(ũ2(t, 1))− ϕ(s2(t)))

)
ũ(t, 1)



462 KOTA KUMAZAKI AND ADRIAN MUNTEAN

+

(
1

s1(t)− a
− 1

s2(t)− a

)
a0σ(ũ2(t, 1))(σ(ũ2(t, 1))− ϕ(s2(t)))ũ(t, 1)

=
a0

s1(t)− a

(
σ(ũ1(t, 1))− σ(ũ2(t, 1))

)
(σ(ũ1(t, 1))− ϕ(s1(t)))ũ(t, 1)

+
a0

s1(t)− a
σ(ũ2(t, 1))

(
σ(ũ1(t, 1))− ϕ(s1(t))− σ(ũ2(t, 1)) + ϕ(s2(t))

)
ũ(t, 1)

+

(
1

s1(t)− a
− 1

s2(t)− a

)
a0σ(ũ2(t, 1))(σ(ũ2(t, 1))− ϕ(s2(t)))ũ(t, 1)

= : I21 + I22 + I23.

By using (3.13) and (A4), the following inequalities hold:

|I21| ≤
a0Ce

s1(t)− a
|σ(ũ1(t, 1))− ϕ(s1(t))||ũ(t)|H1(0,1)|ũ(t)|L2(0,1)

|I22| ≤
a0

s1(t)− a
σ(ũ2(t, 1))

(
|ũ(t, 1)|2 + |ϕ(s1(t))− ϕ(s2(t))|ũ(t, 1)|

)
≤ a0Ce
s1(t)− a

σ(ũ2(t, 1))|ũ(t)|H1(0,1)|ũ(t)|L2(0,1)

+
a2

0Ce
2(s1(t)− a)2

(σ(ũ2(t, 1))2|ũ(t)|H1(0,1)|ũ(t)|L2(0,1) +
c2ϕ
2
|s(t)|2

|I23| =
(

s(t)

(s1(t)− a)(s2(t)− a)

)
a0σ(ũ2(t, 1))(σ(ũ2(t, 1))− ϕ(s2(t)))ũ(t, 1)

≤
Ce

(
a0σ(ũ2(t, 1))(σ(ũ2(t, 1))− ϕ(s2(t)))

)2

2δ2(s1(t)− a)2
|ũ(t)|H1(0,1)|ũ(t)|L2(0,1)

+
1

2
|s(t)|2.

Accordingly, by adding the above three estimates, for t ∈ [0, T0] we obtain:

3∑
k=1

|I2k|

≤
(

L1(t)

s1(t)− a
+

L2(t)

(s1(t)− a)2

)
|ũ(t)|H1(0,1)|ũ(t)|L2(0,1) +

(c2ϕ + 1)

2
|s(t)|2, (4.6)

where L1(t) = a0Ce(|ũ1(t, 1)| + ϕ(a) + cϕ) + a0Ce(|ũ2(t, 1)| + ϕ(a)) and L2(t) =
a2

0Ce(|ũ2(t, 1)|2 + ϕ2(a)) + Ce(a
2
0(|ũ1(t, 1)| + ϕ(a))4)/2δ2. As for I2, we split the

term I3 as follows:(
k

(s1(t)− a)2
ũ1y(t, 0)− k

(s2(t)− a)2
ũ2y(t, 0)

)
ũ(t, 0)

=−
(

1

s1(t)− a
β(h(t)−Hũ1(t, 0))− 1

s2(t)− a
β(h(t)−Hũ2(t, 0))

)
ũ(t, 0)

=− 1

s1(t)− a

(
β(h(t)−Hũ1(t, 0))− β(h(t)−Hũ2(t, 0))

)
ũ(t, 0)
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−
(

1

s1(t)− a
− 1

s2(t)− a

)
β(h(t)−Hũ2(t, 0))ũ(t, 0)

=:I31 + I32.

Then, by using (3.13) and (A3), we notice that

2∑
k=1

|I3k|

≤

(
cβCeH

s1(t)− a
+

c2βCe

2δ2(s1(t)− a)2

)
|ũ(t)|H1(0,1)|ũ(t)|L2(0,1) +

1

2
|s(t)|2 for t ∈ [0, T0].

(4.7)

What concerns the right-hand side of (4.5), we obtain that∫ 1

0

(
ys1t(t)

s1(t)− a
ũ1y(t)− ys2t(t)

s2(t)− a
ũ2y(t)

)
ũ(t)dy

=

∫ 1

0

ys1t(t)

s1(t)− a
ũy(t)ũ(t)dy +

∫ 1

0

yst(t)

s1(t)− a
ũ2y(t)ũ(t)dy

+

∫ 1

0

(
1

s1(t)− a
− 1

s2(t)− a

)
ys2t(t)ũ2y(t)ũ(t)dy,

while the three terms are controlled from above in the following way:

I41 ≤
ηk

2(s1(t)− a)2
|ũy(t)|2L2(0,1) +

1

2ηk
|s1t(t)|2|ũ(t)|2L2(0,1),

I42 ≤
1

2δ

(
|st(t)|2 + |ũ2y(t)|2L2(0,1)|ũ(t)|2L2(0,1)

)
,

I43 ≤
1

2δ2

(
|s(t)|2|ũ2(t)|2L2(0,1) + |s2t(t)|2|ũ(t)|2L2(0,1)

)
,

Then, by (4.6) and (4.7) we have

1

2

d

dt
|ũ(t)|2L2(0,1) + (1− η)

k

(s1(t)− a)2
|ũy(t)|2L2(0,1)

≤ (L1(t) + cβCeH)
1

s1(t)− a
|ũ(t)|H1(0,1)|ũ(t)|L2(0,1)

+

(
L2(t) +

c2βCe

2δ2

)
1

(s1(t)− a)2
|ũ(t)|H1(0,1)|ũ(t)|L2(0,1)

+

(
1

2ηk
|s1t(t)|2 +

1

2δ
|ũ2y(t)|2L2(0,1) +

1

2δ2
|s2t(t)|2

)
|ũ(t)|2L2(0,1)

+

(
c2ϕ
2

+ 1 +
1

2δ2
|ũ2(t)|2L2(0,1) +

k

2η

(
2L

δ3

)2

|ũ2y|2L2(0,1)

)
|s(t)|2 +

1

2δ
|st(t)|2.

(4.8)
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Young’s inequality together with (3.13) ensure

(L1(t) + cβCeH)
1

s1(t)− a
|ũ(t)|H1(0,1)|ũ(t)|L2(0,1)

≤ (L1(t) + cβCeH)
1

s1(t)− a

(
|ũy(t)|L2(0,1)|ũ(t)|L2(0,1) + |ũ(t)|2L2(0,1)

)
≤ (L1(t) + cβCeH)

(
ηk

2(s1(t)− a)2
|ũy(t)|2L2(0,1) + (

1

2ηk
+

1

δ
)|ũ(t)|2L2(0,1)

)
and (

L2(t) +
c2βCe

2δ2

)
1

(s1(t)− a)2
|ũ(t)|H1(0,1)|ũ(t)|L2(0,1)

≤

(
L2(t) +

c2βCe

2δ2

)
1

(s1(t)− a)2
(|ũy(t)|L2(0,1)|ũ(t)|L2(0,1) + |ũ(t)|2L2(0,1))

≤

(
L2(t) +

c2βCe

2δ2

)
1

(s1(t)− a)2

ηk

2
|ũy(t)|2L2(0,1) +

1

δ2
(

1

2ηk
+ 1)|ũ(t)|2L2(0,1),

Here, by (3.13) and Lemma 4.1, we have that

|ũi(t, 1)|2 ≤ Ce(|ũiy(t)|L2(0,1)|ũi(t)|L2(0,1) + |ũi(t)|2L2(0,1))

≤ 2CeC
2 for t ∈ [0, T0], (4.9)

where C is the same constant as in Lemma 4.1. Then, by (4.9) we notice that L1

and L2 are bounded in L∞(0, T0). Accordingly, by applying these results to (4.8)
and taking a suitable η = η0, we have

1

2

d

dt
|ũ(t)|2L2(0,1) +

1

2

k

(s1(t)− a)2
|ũy(t)|2L2(0,1)

≤ (L1(t) + cβCeH)

(
1

2η0k
+

1

δ

)
|ũ(t)|2L2(0,1)

+

(
L2(t) +

c2βCe

2δ2

)
1

δ2

(
1

2η0k
+ 1

)
|ũ(t)|2L2(0,1)

+

(
1

2η0k
|s1t(t)|2 +

1

2δ
|ũ2y(t)|2L2(0,1) +

1

2δ2
|s2t(t)|2

)
|ũ(t)|2L2(0,1)

+

(
c2ϕ
2

+ 1 +
1

2δ2
|ũ2(t)|2L2(0,1) +

k

2η0

(
2L

δ3

)2

|ũ2y(t)|2L2(0,1)

)
|s(t)|2 +

1

2δ
|st(t)|2.

(4.10)

Now, we put the summation of all coefficient of |ũ|2L2(0,1) by L3(t) for t ∈ [0, T0],

and take L4(t) = c2ϕ/2 + 1 + |ũ2(t)|2L2(0,1)/2δ
2 + k(4L4|ũ2y(t)|2L2(0,1))/2η0δ

6 + 1/2δ.

Then, we have

1

2

d

dt
|ũ(t)|2L2(0,1) +

1

2

k

(s1(t)− a)2
|ũy(τ)|2L2(0,1)

≤L3(t)|ũ(t)|2L2(0,1) + L4(t)(|s(t)|2 + |st(t)|2) for t ∈ [0, T0]. (4.11)
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Here, using Lemma 4.1, (4.2) and si ∈ MK(T0) for i = 1, 2, we see that L3 ∈
L1(0, T0) and L4 ∈ L∞(0, T0). Therefore, Gronwall’s inequality guarantees that

1

2
|ũ(t)|2L2(0,1) +

1

2

k

(s1(t)− a)2

∫ t

0

|ũy(τ)|2L2(0,1)dτ

≤
(
|L4|L∞(0,T0)|s|2W 1,2(0,T )

)
e
∫ t
0
L3(τ)dτ for t ∈ [0, T0]. (4.12)

By using (4.12) we show that there exists T ∗ < T0 such that ΓT∗ is a contraction
mapping on the closed subset of MK(T ∗). To do so, from the subtraction of the
time derivatives of ΓT0

(s1) and ΓT0
(s2) and relying on (3.13) and (4.12), we have

for T1 < T0 the following estimate:

|(ΓT1
(s1))t − (ΓT1

(s2))t|L2(0,T1)

=a0|σ(ũ1(·, 1))− ϕ(s1(·))− σ((ũ2(·, 1))− ϕ(s2(·))|L2(0,T1)

≤a0

(
|ũ1(·, 1)− ũ2(·, 1)|L2(0,T1) + cϕ|s|L2(0,T1)

)
≤a0cϕT1|st|L2(0,T1) + a0

√
Ce

(∫ T1

0

(|ũy|L2(0,1)|ũ|L2(0,1) + |ũ|2L2(0,1))dt

)1/2

≤a0cϕT1|st|L2(0,T1)

+ C3

(
ε|s|W 1,2(0,T1) +

1

ε

√
T1|s|W 1,2(0,T1) +

√
T1|s|W 1,2(0,T1)

)
, (4.13)

where C3 is a positive constant and ε is an arbitrary positive number. We obtain

|ΓT1
(s1)− ΓT1

(s2)|L2(0,T1)

≤T1

(
a0cϕT1|st|L2(0,T1) + C3

(
ε|s|W 1,2(0,T1) + (

1

ε
+ 1)

√
T1|s|W 1,2(0,T1)

))
. (4.14)

Therefore, by (4.13) and (4.14) and taking a sufficiently small number ε we see that
there exists T ∗ < T0 such that ΓT∗ is a contraction mapping on a closed subset of
MK(T ∗).

From Lemma 4.2, by applying Banach’s fixed point theorem, there exists s ∈
MK(T ∗), where T ∗ is the same as in Lemma 4.2 such that ΓT∗(s) = s. This
implies that (P)σũ0,s0,h

has a unique solution (s, ũ) on [0, T ∗]. Thus, we can prove

the existence and uniqueness of a locally in time solution of (P)σũ0,s0,h
and see that

Theorem 2.4 holds. Moreover, this shows that by the change of variable (2.7) a pair
of the function (s, u) is a solution of (P)σu0,s0,h

on [0, T ∗].
At the end of this section, we still must ensure the boundedness of a solution to

(P)σu0,s0,h
, which leads to Theorem 2.2.

Lemma 4.3. Let T > 0, and (s, u) be a solution of (P)σu0,s0,h
on [0, T ]. Then,

ϕ(a) ≤ u(t) ≤ |h|L∞(0,T )H
−1 on [a, s(t)] for t ∈ [0, T ].

Proof. First, from (1.1), we have

1

2

d

dt

∫ s(t)

a

|[−u(t) + ϕ(a)]+|2dz − st
2
|[−u(t, s(t)) + ϕ(a)]+|2

+ k

∫ s(t)

a

uzz(t)[−u(t) + ϕ(a)]+dz = 0 for a.e.t ∈ [0, T ]. (4.15)
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By a < s on [0, T ] and ϕ′ ≥ 0 in (A4), we note that ϕ(s(t)) − ϕ(a) ≥ 0 on
[0, T ]. Hence, for the second term in the left hand side, if u(t, s(t)) < ϕ(a), then
−σ(u(t, s(t))) + ϕ(s(t)) = −ϕ(a) + ϕ(s(t)) ≥ 0 so that

−st
2
|[−u(t, s(t)) + ϕ(a)]+|2 =

a0

2
(−σ(u(t, s(t))) + ϕ(s(t)))|[−u(t, s(t)) + ϕ(a)]+|2

≥ 0.

Also, by the boundary conditions (1.2) and (1.3) it follows that

kuz(t, s(t))[−u(t, s(t)) + ϕ(a)]+

=− σ(u(t, s(t)))st(t)[−u(t, s(t)) + ϕ(a)]+

=a0σ(u(t, s(t)))(−σ(u(t, s(t)) + ϕ(s(t)))[−u(t, s(t)) + ϕ(a)]+

and

− kuz(t, a)[−u(t, a) + ϕ(s(t))]+ = β(h(t)−Hu(t, a))[−u(t, a) + ϕ(s(t))]+.

Since σ ≥ 0, ϕ(s(t)) − ϕ(a) ≥ 0 and β ≥ 0 we note that both expressions are
positive. Therefore, we obtain that

d

dt

∫ s(t)

a

|[−u(t) + ϕ(a)]+|2dz + k

∫ s(t)

a

|[−u(t) + ϕ(a)]+z |2dz ≤ 0 for a.e. t ∈ [0, T ].

(4.16)

Integrating (4.16) over [0, T ], we see that |[−u(t)+ϕ(a)]+|2L2(a,s(t)) = 0 for t ∈ [0, T ]

which implies u(t) ≥ ϕ(a) on [a, s(t)] for t ∈ [0, T ]. Next, we show that u(t) ≤
|h|L∞(0,T )H

−1 on [a, s(t)] for t ∈ [0, T ]. From (1.1), we first obtain

1

2

d

dt
|u(t)|2L2(a,s(t)) +

1

2
st(t)|u(t, s(t))|2

+ k

∫ s(t)

a

|uz(t)|2dz − β(h(t)−Hu(t, a))u(t, a) = 0 for a.e. t ∈ [0, T ]. (4.17)

Here, by u(t, s(t)) = st(t)
a0

+ ϕ(s(t)) and u(t, s(t)) ≥ ϕ(a) on [0, T ] it holds that

st(t)

2
|u(t, s(t))|2 =

1

2

(
|st(t)|2

a0
+ ϕ(s(t))st(t)

)
u(t, s(t))

≥ ϕ(a)

2a0
|st(t)|2 −

cϕ
2
|st(t)|u(t, s(t))

≥ ϕ(a)

4a0
|st(t)|2 −

a0c
2
ϕ

4ϕ(a)
u2(t, s(t))

and

− β(h(t)−Hu(t, a))u(t, a)

=β(h(t)−Hu(t, a))
h(t)−Hu(t, a)

H
− β(h(t)−Hu(t, a))

h(t)

H

≥− β(h(t)−Hu(t, a))
h(t)

H
.
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Hence, the above two results and (4.17) leads to

1

2

d

dt
|u(t)|2L2(a,s(t)) +

ϕ(a)

4a0
|st(t)|2 + k

∫ s(t)

a

|uz(t)|2dz

≤
a0c

2
ϕ

4ϕ(a)
u2(t, s(t)) + β(h(t)−Hu(t, a))

h(t)

H
for a.e. t ∈ [0, T ]. (4.18)

By Sobolev’s embedding theorem in one dimension, it follows that

a0c
2
ϕ

4ϕ(a)
u2(t, s(t)) ≤

a0c
2
ϕ

4ϕ(a)
C ′e|u(t)|H1(a,s(t))|u(t)|L2(a,s(t))

≤
a0c

2
ϕC
′
e

4ϕ(a)
(|uz(t)|L2(a,s(t))|u(t)|L2(a,s(t)) + |u(t)|2L2(a,s(t)))

≤ k

2
|uz(t)|2L2(a,s(t)) +

 1

2k

(
a0c

2
ϕC
′
e

4ϕ(a)

)2

+
a0c

2
ϕC
′
e

4ϕ(a)

 |u(t)|2L2(a,s(t)), (4.19)

where C ′e is a positive constant in Sobolev’s embedding theorem in one dimension.
Therefore, by (4.19), (4.18) becomes

1

2

d

dt
|u(t)|2L2(a,s(t)) +

ϕ(a)

4a0
|st(t)|2 +

k

2

∫ s(t)

a

|uz(t)|2dz

≤

 1

2k

(
a0c

2
ϕC
′
e

4ϕ(a)

)2

+
a0c

2
ϕC
′
e

4ϕ(a)

 |u(t)|2L2(a,s(t)) + cβ
|h|L∞(0,T )

H
. (4.20)

Integrating (4.20) over [0, T ] we see that st ∈ L2(0, T ). Now, using a similar ar-
gument as in the proof for the lower bound and σ(u(t, s(t))) = u(t, s(t)) we have
that

1

2

d

dt

∫ s(t)

a

|[u(t)− |h|L∞(0,T )H
−1]+|2dz − st

2
|[u(t, s(t))− |h|L∞(0,T )H

−1]+|2

− k
∫ s(t)

a

uzz(t)[u(t)− |h|L∞(0,T )H
−1]+dz = 0 for a.e. t ∈ [0, T ]. (4.21)

By noting from supr∈R ϕ(r) ≤ |h|L∞(0,T )H
−1 in (A4) that

− kuz(t, s(t))[u(t, s(t))− |h|L∞(0,T )H
−1]+

=u(t, s(t))st[u(t, s(t))− |h|L∞(0,T )H
−1]+

=a0u(t, s(t))(u(t, s(t))− ϕ(s(t)))[u(t, s(t))− |h|L∞(0,T )H
−1]+

≥a0|h|L∞(0,T )H
−1(|h|L∞(0,T )H

−1 − sup
r∈R

ϕ(r))[u(t, s(t))− |h|L∞(0,T )H
−1]+ ≥ 0,

and

kuz(t, a)[u(t, a)− |h|L∞(0,T )H
−1]+

=− β(h(t)−Hu(t, a))[u(t, a)− |h|L∞(0,T )H
−1]+ = 0,
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we can write (4.21) as follows:

1

2

d

dt

∫ s(t)

a

|[u(t)− |h|L∞(0,T )H
−1]+|2dz + k

∫ s(t)

a

|[u(t)− |h|L∞(0,T )H
−1]+z |2dz

≤ st(t)

2
|[u(t, s(t))− |h|L∞(0,T )H

−1]+|2 for a.e. t ∈ [0, T ]. (4.22)

Similarly to (4.19), we obtain

st(t)

2
|[u(t, s(t))− |h|L∞(0,T )H

−1]+|2

≤st(t)C
′
e

2
(|Uz(t)|L2(a,s(t))|U(t)|L2(a,s(t)) + |U(t)|2L2(a,s(t)))

≤k
2
|Uz(t)|2L2(a,s(t)) +

(
1

2k

(
st(t)C

′
e

2

)2

+
st(t)C

′
e

2

)
|U(t)|2L2(a,s(t)),

where U(t, z) = [u(t, z)−|h|L∞(0,T )H
−1]+ for (t, z) ∈ Qs(T ). We put the coefficient

of |U(t)|2L2(a,s(t)) by G(t). Then, st ∈ L2(0, T ) so that we see that G ∈ L1(0, T ).

Therefore, by applying the above to (4.22) and using Gronwall’s inequality we get

1

2
|[u(t)− |h|L∞(0,T )H

−1]+|2L2(a,s(t)) +
k

2

∫ t

0

|[u(t)− |h|L∞(0,T )H
−1]+z |2L2(a,s(t))dt

≤
(

1

2
|[u0 − |h|L∞(0,T )H

−1]+|2L2(a,s0)

)
e
∫ t
0
G(τ)dτ = 0 for t ∈ [0, T ].

This means that u(t) ≤ |h|L∞(0,T )H
−1 on [a, s(t)] for t ∈ [0, T ]. Thus, we see that

Lemma 4.3 holds.

By Lemma 4.3, we can remove σ from (P)σu0,s0,h
, and conclude that the solution

(s, u) of (P)σu0,s0,h
on [0, T ∗] is a solution of (P)u0,s0,h on [0, T ∗]. Finally, by Theorem

2.4 and Lemma 4.3, Theorem 2.2 is proven.
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