A-priori estimates for stationary mean-field games

  • Received: 01 November 2011 Revised: 01 March 2012
  • 35J47, 49L25, 49N70.

  • In this paper we establish a new class of a-priori estimates for stationary mean-field games which have a quasi-variational structure. In particular we prove $W^{1,2}$ estimates for the value function $u$ and that the players distribution $m$ satisfies $\sqrt{m}\in W^{1,2}$. We discuss further results for power-like nonlinearities and prove higher regularity if the space dimension is 2. In particular we also obtain in this last case $W^{2,p}$ estimates for $u$.

    Citation: Diogo A. Gomes, Gabriel E. Pires, Héctor Sánchez-Morgado. A-priori estimates for stationary mean-field games[J]. Networks and Heterogeneous Media, 2012, 7(2): 303-314. doi: 10.3934/nhm.2012.7.303

    Related Papers:

  • In this paper we establish a new class of a-priori estimates for stationary mean-field games which have a quasi-variational structure. In particular we prove $W^{1,2}$ estimates for the value function $u$ and that the players distribution $m$ satisfies $\sqrt{m}\in W^{1,2}$. We discuss further results for power-like nonlinearities and prove higher regularity if the space dimension is 2. In particular we also obtain in this last case $W^{2,p}$ estimates for $u$.


    加载中
    [1] Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: Numerical methods, SIAM J. Numer. Anal., 48 (2010), 1136-1162. doi: 10.1137/090758477
    [2] Julien Salomon, Aimée Lachapelle and Gabriel Turinici, Computation of mean field equilibria in economics, Math. Models Methods Appl. Sci., 20 (2010), 567-588. doi: 10.1142/S0218202510004349
    [3] F. Camilli, Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: Numerical methods for the planning problem, SIAM J. Control Opt., 50 (2012), 77-109. doi: 10.1137/100790069
    [4] submitted.
    [5] submitted.
    [6] Lawrence C. Evans and Charles K. Smart, Adjoint methods for the infinity Laplacian partial differential equation, Arch. Ration. Mech. Anal., 201 (2011), 87-113. doi: 10.1007/s00205-011-0399-x
    [7] Lawrence C. Evans, Some new PDE methods for weak KAM theory, Calc. Var. Partial Differential Equations, 17 (2003), 159-177. doi: 10.1007/s00526-002-0164-y
    [8] Lawrence C. Evans, Further PDE methods for weak KAM theory, Calc. Var. Partial Differential Equations, 35 (2009), 435-462. doi: 10.1007/s00526-008-0214-1
    [9] L. C. Evans, Adjoint and compensated compactness methods for Hamilton-Jacobi PDE, Arch. Ration. Mech. Anal., 197 (2010), 1053-1088. doi: 10.1007/s00205-010-0307-9
    [10] A. Fathi, Solutions KAM faibles conjuguées et barrières de Peierls, C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 649-652. doi: 10.1016/S0764-4442(97)84777-5
    [11] A. Fathi, Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens, C. R. Acad. Sci. Paris Sér. I Math., 324 (1997), 1043-1046.
    [12] A. Fathi, Orbite hétéroclines et ensemble de Peierls, C. R. Acad. Sci. Paris Sér. I Math., 326 (1998), 1213-1216.
    [13] A. Fathi, Sur la convergence du semi-groupe de Lax-Oleinik, C. R. Acad. Sci. Paris Sér. I Math., 327 (1998), 267-270. doi: 10.1016/S0764-4442(98)80144-4
    [14] D. Gomes, J. Mohr and R. R. Souza, Discrete time, finite state space mean field games, Journal de Mathématiques Pures et Appliquées (9), 93 (2010), 308-328.
    [15] D. Gomes, J. Mohr and R. R. Souza, Mean-field limit of a continuous time finite state game, preprint, 2011.
    [16] D. Gomes, A stochastic analogue of Aubry-Mather theory, Nonlinearity, 15 (2002), 581-603. doi: 10.1088/0951-7715/15/3/304
    [17] D. Gomes and H Sanchez-Morgado, On the stochastic Evans-Aronsson problem, preprint, 2011.
    [18] O. Gueant, "Mean Field Games and Applications to Economics," Ph.D. Thesis, Université Paris Dauphine, Paris, 2009.
    [19] O. Gueant, A reference case for mean field games models, J. Math. Pures Appl. (9), 92 (2009), 276-294.
    [20] Minyi Huang, Peter E. Caines and Roland P. Malhamé, Large-population cost-coupled LQG problems with nonuniform agents: Individual-mass behavior and decentralized $\epsilon$-Nash equilibria, IEEE Trans. Automat. Control, 52 (2007), 1560-1571. doi: 10.1109/TAC.2007.904450
    [21] Minyi Huang, Roland P. Malhamé and Peter E. Caines, Large population stochastic dynamic games: Closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle, Commun. Inf. Syst., 6 (2006), 221-251.
    [22] Jean-Michel Lasry and Pierre-Louis Lions, Jeux à champ moyen. I. Le cas stationnaire, C. R. Math. Acad. Sci. Paris, 343 (2006), 619-625. doi: 10.1016/j.crma.2006.09.019
    [23] Jean-Michel Lasry and Pierre-Louis Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal, C. R. Math. Acad. Sci. Paris, 343 (2006), 679-684. doi: 10.1016/j.crma.2006.09.018
    [24] Jean-Michel Lasry and Pierre-Louis Lions, Mean field games, Jpn. J. Math., 2 (2007), 229-260.
    [25] Jean-Michel Lasry and Pierre-Louis Lions, "Mean Field Games," Cahiers de la Chaire Finance et Développement Durable, 2007.
    [26] Jean-Michel Lasry, Pierre-Louis Lions and O. Guéant, Application of mean field games to growth theory, preprint, 2010.
    [27] Jean-Michel Lasry, Pierre-Louis Lions and O. Guéant, Mean field games and applications, in "Paris-Princeton Lectures on Mathematical Finance 2010," Lecture Notes in Math., 2003, Springer, Berlin, (2011), 205-266.
    [28] J. Mather, Action minimizing invariant measure for positive definite Lagrangian systems, Math. Z, 207 (1991), 169-207. doi: 10.1007/BF02571383
    [29] Ricardo Mañé, On the minimizing measures of Lagrangian dynamical systems, Nonlinearity, 5 (1992), 623-638.
    [30] Kaizhi Wang, Action minimizing stochastic invariant measures for a class of Lagrangian systems, Commun. Pure Appl. Anal., 7 (2008), 1211-1223.
  • Reader Comments
  • © 2012 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4830) PDF downloads(166) Cited by(33)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog